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Locally indistinguishable 
orthogonal product bases in 
arbitrary bipartite quantum system
Guang-Bao Xu1,2, Ying-Hui Yang1,3, Qiao-Yan Wen1, Su-Juan Qin1 & Fei Gao1

As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be 
perfectly distinguished by local operations and classical communication. However, very little is known 
about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we 
first construct a series of orthogonal product bases that are completable but not locally distinguishable 
in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number 
of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum 
systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product 
bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally 
indistinguishable product bases in arbitrary bipartite quantum system.

The following situation is often encountered in quantum cryptography1 and quantum algorithms2. Suppose that 
Alice and Bob share a bipartite quantum system. They are told that the state they own comes from a set of orthog-
onal states that are known to each of them, but they are not told that which state their combined system is in. 
What they need to do is to identify the given state by local operations and classical communication (LOCC) since 
they are in two different places. It is well known that orthogonal quantum states can always be distinguished by 
global operations. However, this is not always true if we restrict the set of actions on the bipartite system to LOCC 
only. Bennett et al.3 first constructed a set of nine orthogonal product states that cannot be perfectly distinguished 
by LOCC in a 3 ⊗  3 quantum system. Their work showed the counterintuitive phenomenon of nonlocality with-
out entanglement, i.e., entanglement is not necessary for the local indistinguishability of orthogonal quantum 
states. Later, a simple proof for the nonlocality of the nine product states was given by Walgate et al.4. Inspired by 
their work, many scholars are engaged in the research of the local distinguishability of orthogonal product states. 
With further research, numerous results5–20 have been presented up to now.

Unextendible product basis (UPB) is a set of orthogonal product states that spans a subspace whose 
complementary subspace contains no product state. As an object with rich mathematical structure, it was intro-
duced by Bennett et al.21 and has been thoroughly studied in the literatures6–8,17,20. Bennett et al. presented two 
different UPBs, each of which has five product states in a 3 ⊗  3 quantum system. Furthermore, they proved that 
a UPB cannot be perfectly distinguished by LOCC. DiVincenzo et al.20 gave a complete characterization of 
unextendible product bases by orthogonality graphs and presented several generalizations of UPBs to arbitrary high 
dimensions and multipartite systems. Chen et al.6 made a further research on the minimum size of unextendible 
product bases. On the other hand, many huge advances have been made on the orthogonal product states that 
cannot form a UPB. Yu et al.22 constructed 2d −  1 orthogonal states that are locally indistinguishable in d ⊗  d (d ≥  3)  
and conjectured that any set of no more than 2(d −  1) product states is locally distinguishable in a d ⊗  d (d ≥  3) 
quantum system. Wang et al.23 presented a small set with only 3(m +  n) −  9 orthogonal product states and proved 
the local indistinguishability of these states in an m ⊗  n quantum system, where m ≥  3 and n ≥  3. Recently, Zhang 
et al.24 constructed 3n +  m −  4 locally indistinguishable orthogonal product states that do not constitute a UPB 
and presented a smaller set with 2n −  1 orthogonal product states that cannot be perfectly distinguished by LOCC 
in m ⊗  n (3 ≤  m ≤  n). All the results show it is a meaningful work to research the structure of the locally indis-
tinguishable product basis and the smallest number of locally indistinguishable orthogonal product states in 
arbitrary high-dimensional quantum systems.
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In this paper, we construct a series of completable and locally indistinguishable orthogonal product bases, 
which have eight members, twelve members, ···, 4 min(m, n) −  4 members, respectively, in a general m ⊗  n (m ≥  3 
and n ≥  3) quantum system. Our results show that Yu et al.’s conjecture22, i.e., any set of no more than 2(d −  1) 
product states is locally distinguishable in a d ⊗  d (d ≥  3) quantum system, is not true. In fact, eight is so far the 
smallest number of locally indistinguishable states of a completable orthogonal product basis22–24. On the other 
hand, we construct a series of small and locally indistinguishable orthogonal product bases, which contain five 
members, seven members, ···, 2 min(m, n) −  1 members respectively, in m ⊗  n (m ≥  3 and n ≥  3). It should be 
pointed out that five is so far the smallest number of locally indistinguishable states of an orthogonal product 
basis by Refs. 20 and 21. These new results lead to a better understanding of the structures of locally indistinguish-
able product bases in arbitrary bipartite quantum systems.

Results
Definition 1. Consider a quantum system = ⊗ =H Hi

q
i1  with q parties. An orthogonal product basis (PB) is a set S 

of pure orthogonal product states spanning a subspace HS of H. An uncompletable orthogonal product basis is a PB 
whose complementary subspace ⊥HS , i.e., the subspace in H spanned by vectors that are orthogonal to all the vectors 
in HS, contains fewer mutually orthogonal product states than its dimension. An unextendible product basis (UPB) 
is an uncompletable product basis for which ⊥HS  contains no product state20. We call a PB is completable if it is not an 
uncompletable orthogonal product basis.

Definition 220. Consider a multipartite quantum system = ⊗ =H Hi
q

i1  with q parties. A strongly uncompletable 
product basis (SUCPB) is a PB spanning a subspace Hs in a locally extended Hilbert space Hext such that for all Hext 
the subspace ⊥HS  = ⊕ ⊥H H H( )ext S S  contains fewer mutually orthogonal product states than its dimension.

Definition 3. Suppose that {Mt} is a set of measurement operators, which can act on the measured Hilbert space. 
And t denote one of the possible measurement outcomes. If the measured state is |φ〉  before it is measured, the prob-
ability of the measurement outcome t is given by φ φ= †p t M M( ) t t  and the postmeasurement state is 

φ
φ φ†

M
M M

t
1

t t

. Furthermore, the measurement operators {Mt} satisfy the completeness, i.e., ∑ =†M M It t t . If we 

denote †M Mt t as Et, it is easy to see that Et is a positive semidefinite operator. We will say that the measurement is a 
positive operator-valued measure (POVM) and the objects Et are the POVM elements corresponding to each 
measurement outcome t4.

It is easy to see that POVM is a general measurement to a measured quantum state according to the definition 3.  
As we mentioned in the preceding part, LOCC denote local operations and classical communication. When it 
comes to identify a given state that is chosen from a known set of orthogonal states by LOCC, the local operations 
are local POVMs or local unitary operations. That is, if a measured state is a bipartite (or multipartite) quantum 
system, each party that holds one particle of the bipartite (or multipartite) quantum system can only perform 
POVM or unitary operations on his (or her) own particle. For simplicity, we usually say a set of orthogonal states 
is locally distinguishable if it can be distinguished by LOCC.

Definition 44. We will say that a POVM is trivial if all the POVM elements are proportional to the identity operator 
since such a measurement yields no information about the measured state. Any measurement not of this type will be 
called nontrivial.

Different from Definition 4, we give a new definition about trivial measurement here. It should be noted that we 
say a measurement is trivial if it satisfies our new definition.

Definition 5. A POVM is trivial to a set of orthogonal states, φ| 〉 = i r{ : 1, 2, , }i , if and only if we cannot get any 
useful information about the measured state that is arbitrarily selected from the set by the POVM, i.e., for each of the 
POVM elements, †M Mt t, we have φ φ φ φ= = =

† †p t M M M M( ) t t r t t r1 1 .

Definition 64. Alice goes first if Alice is the first person to perform a nontrivial measurement upon the system.

Lemma 120. Given a PB φ= | 〉 =  S i r{ : 1, 2, , }i  on a Hilbert space = ⊗ =H Hi
q

i1  of total dimension D. If the set S 
is completable in H or a locally extended Hilbert space Hext, then the density matrix ρ φ φ= − ∑− =I( )S D r i

r
i i

1
1  is 

separable, where I is the identity matrix of rank D.

Local indistinguishability of completable orthogonal product basis. Now we construct a completable  
product basis with 4p −  4 members that cannot be locally distinguished in a general m ⊗  n (m ≥  3 and n ≥  3) 
quantum system and give a proof for its indistinguishability.

theorem 1. In an m ⊗  n quantum system, the 4p −  4 orthogonal product states 
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cannot be perfectly distinguished by LOCC, where m ≥  3, n ≥  3, p is an arbitrary integer from 3 to min(m, n), 
j =  i +  1 when i =  1, ···, p −  2 and j =  1 while i =  p −  1.

Proof. Many proof techniques are borrowed from Ref. 22. To distinguish these states, one of the two parties (Alice 
and Bob) has to start with a nondisturbing measurement, i.e., the postmeasurement states should be mutually 
orthogonal. Without loss of generality, suppose that Alice goes first with a set of general m ×  m POVM elements 

| = 

†M M t l{ 1, , }t t , where

=
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The post measurement states {Mt ⊗  IB|ψi〉: i =  1, ···, 4p −  4} should be mutually orthogonal. For the states |ψi〉  
and |ψj〉 , where 1 ≤  i ≤  p −  1, 1 ≤  j ≤  p −  1 and i ≠  j, we have ψ ψ〈 | ⊗ | 〉 = .†M M I 0i t t B j  Thus 〈 | | 〉 =†i M M j 0t t , 
which means that =a 0ij

t  for 1 ≤  i ≤  p −  1, 1 ≤  j ≤  p −  1 and i ≠  j. For the states ψ| 〉j  and ψ| 〉+ −i p 1 , where j =  i +  1 
when i  =   1,  · · · ,  p  −   2 and j  =   1 when i  =   p  −   1,  we can get ψ ψ〈 | ⊗ | 〉 = .+ −

†M M I 0j t t B i p 1  Thus 
− = − =† † †j M M j M M i j M M0 0 0 0t t t t t t ,  i . e . ,  = =†j M M a0 0t t j

t
0 .  Simi lar ly,  we can get 

= =†M M j a0 0t t j
t
0 . Therefore = =a a 0j

t
j
t

0 0  for j =  1, 2, ···, p −  1. For the states ψ| 〉+ −i p 1  and ψ| 〉+ −i p3 3 , where 
j =  i +  1 when i =  1, ···, p −  2 and j =  1 while i =  p −  1, we have ψ ψ〈 | ⊗ | 〉 = .+ − + −

†M M I 0i p t t B i p3 3 1  Thus 
=† †M M i M M i0 0t t t t . That is, =a aii

t t
00 for i =  1, ···, p −  1.

Therefore, we have
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Now we consider the probability of the measurement outcome corresponding to the measurement operator Mt 
for each of the 4p −  4 states. It is easy to see that ψ ψ〈 | ⊗ | 〉 = ∀ ∈ −

† †M M I I a i p( ) ( ) ( {1, 2, , 4 4})i t t i
t
00  for 

t =  1, 2, ···, l, where ∑ == a 1t
l t

1 00  according to the completeness of the measurement operators. This means that 
any state of the 4p −  4 states can lead to the outcome that is corresponding to Mt with the same probability a t

00, i.e., 
the measurement {Mt ⊗  IB | t =  1, 2, ···, l} is trivial to the 4p −  4 states. In other words, Alice cannot get any infor-
mation about which the measured state will be by the measurement {Mt}. Thus Alice cannot go first. In fact, a 
similar argument can be used to exhibit that Bob faces the same dilemma, i.e., he cannot gain any useful informa-
tion by a nondisturbing measurement, either. Therefore, they cannot perfectly distinguish these states by LOCC. 
In other words, the 4p −  4 states cannot be perfectly distinguished by LOCC. This completes the proof.

In general, the local indistinguishability of an incomplete PB are proved by Definition 44,22,23. That is, in order 
to prove the local indistinguishability of an incomplete PB, we just need to show that all the POVM elements are 
proportional to the identity operator to keep the orthogonality of the postmeasurement states no matter who 
performs the first measurement. However, it is not a necessary condition for the local indistinguishability of an 
incomplete PB that all the POVM elements are proportional to the identity operator. In fact, we give a weaker 
condition to prove the local indistinguishability of an incomplete PB, which can be seen obviously by the proof 
of Theorem 1.

It is noted that the product basis (1) is completable since the 4p −  4 states of (1) can become a completed 
orthogonal product basis in m ⊗  n (m ≥  3 and n ≥  3) by adding the following mn −  4p +  4 states:

∪ ∪
∪
∪ ∪
∪

| 〉| 〉 | 〉| 〉| ≤ ≤ − | 〉| 〉| ≤ ≤ −
| 〉| 〉| = − ≤ ≤ − + ≤ ≤ −
| 〉| − 〉| ≤ ≤ − | 〉| 〉| ≤ ≤ − ≤ ≤ −
| 〉| 〉| ≤ ≤ − ≤ ≤ − .



i i p i i p
i j when j p i j and j i p
i p i p i j p i m j n
i j i p p j n

{ 0 0 } { 1 2 2} { 2 3 1}
{ 3, 4, , 2, 1 2 1 1}
{ 1 1 3} { 1,0 1}
{ 0 1, 1}

From Theorem 1, we know that the parameter p can be an arbitrary integer from 3 to min(m, n). That is, we actu-
ally construct a series of orthogonal product bases that are locally indistinguishable in m ⊗  n (m ≥  3 and n ≥  3). In 
particular, we have the following corollary by Theorem 1 when p =  3.

corollary 1. In an m ⊗  n quantum system, the eight orthogonal product states 
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cannot be perfectly distinguished by LOCC, where m ≥  3 and n ≥  3.
As a special case, we can get eight states (2) that cannot be perfectly distinguished by LOCC in a d ⊗  d 

quantum system when m =  n =  d ≥  3. This fact shows that the conjecture22, i.e., any set of no more than 2(d −  1) 
product states is locally distinguishable in a d ⊗  d (d ≥  3) quantum system, is not true. By Refs 22–24, we know 
that the product basis composed by the eight states (2) is so far the smallest completable and locally indistinguish-
able orthogonal product basis in m ⊗  n (m ≥  3 and n ≥  3).

Local indistinguishability of small orthogonal product basis. Now we give a small orthogonal prod-
uct basis with 2p −  1 members that cannot be perfectly distinguished by LOCC in an m ⊗  n quantum system, 
where m ≥  3, n ≥  3 and 3 ≤  p ≤  min(m, n). Then we give a simple proof for its local indistinguishability.

theorem 2. In an m ⊗  n quantum system, the 2p −  1 orthogonal product states 

∑ ∑
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cannot be perfectly distinguished by LOCC, where m ≥  3, n ≥  3, p is an arbitrary integer from 3 to min(m, n), 
j =  i +  1 when i =  1, ···, p −  2 and j =  1 while i =  p −  1.

Proof. Similar to the proof of Theorem 1, one of the two parties (Alice and Bob) has to start with a nondisturbing 
measurement to distinguish these states, i.e., the postmeasurement states should be mutually orthogonal. Without 
loss of generality, suppose that Alice goes first with a set of general m ×  m POVM elements †M Mt t (t =  1, ···, l), 
where

=
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We can get =a 0ij
t  for 1 ≤  i ≤  p −  1, 1 ≤  j ≤  p −  1 and i ≠  j, and = =a a 0j

t
j
t

0 0  for j =  1, 2, ···, p −  1 by the same way 
as the proof of Theorem 1 since the postmeasurement states should be mutually orthogonal. For the states ψ| 〉+ −i p 1  
and |ψ2p−1〉 , where j =  i +  1 when i =  1, ···, p −  2 and j =  1 while i =  p −  1, we have ψ ψ〈 | ⊗ | 〉 = .+ − −

†M M I 0i p t t B p1 2 1  
Thus 〈 | | 〉 = 〈 | | 〉† †M M i M M i0 0t t t t , i.e., =a aii

t t
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Now we consider the probability of the measurement outcome corresponding to the measurement operator Mt 
for each of the 2p −  1 states. It is easy to see that ψ ψ⊗ = ∀ ∈  −

† †M M I I a i p( ) ( ) ( {1, 2, , 2 1})i t t i
t
00  for 

t =  1, 2, ···, l, where ∑ == a 1t
l t

1 00  according to the completeness of the measurement operators. This means that 
any one of the 2p −  1 states can lead to the outcome that is corresponding to Mt with the same probability a t

00, i.e., 
the measurement {Mt ⊗  IB | t =  1, 2, ···, l} is trivial to the 2p −  1 states. That is, Alice cannot get any useful informa-
tion about which the measured state will be by the measurement {Mt}. In fact, if Bob goes first with a nondisturb-
ing measurement, they cannot distinguish the 2p −  1 states, either. Therefore, the 2p −  1 states cannot be perfectly 
distinguished by LOCC. This completes the proof.                      □ 

The parameter p can be an arbitrary integer from 3 to min(m, n) in Theorem 2. That means that we construct 
a series of orthogonal product bases that are locally indistinguishable in m ⊗  n (m ≥  3 and n ≥  3). We have the 
following corollary directly by Theorem 2 when p =  3.
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corollary 2. In an m ⊗  n quantum system, the five orthogonal product states 

ψ ψ

ψ ψ

ψ

= − = −

= − = −

= + + + +

1
2

1 ( 0 1 ) , 1
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2 ( 0 2 ) ,

1
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( 0 1 ) 2 , 1
2

( 0 2 ) 1 ,

1
3
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1 2
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5

are locally indistinguishable, where m ≥  3 and n ≥  3.
When m =  n =  3, the five states of (4) form a UPB. In Ref. 21, Bennett et al. exhibits two results. One is that a 

UPB is not completable even in a locally extended Hilbert space. The other is that if a set of orthogonal product 
states is exactly measurable by LOCC, then the set can be completed in some extended space. Thus it is obvi-
ous that the five states of (4) in m ⊗  n are locally indistinguishable by the two results, which is coincident with 
Corollary 2. Since any four orthogonal product states are shown to be locally distinguishable20, it is easy to see that 
five is the smallest number of uncompletable and locally indistinguishable product states.

Now we consider whether or not the 2p −  1 states of Theorem 2 are uncompletable in the m ⊗  n quantum sys-
tem, where m ≥  3, n ≥  3 and p is an arbitrary integer from 3 to min(m, n). By the analysis of the last paragraph, we 
know that the 2p −  1 states of Theorem 2 are uncompletable in the m ⊗  n (m ≥  3 and n ≥  3) quantum system when 
p =  3. Then we prove that the 2p −  1 states of Theorem 2 are uncompletable in the m ⊗  n (m ≥  4 and n ≥  4) quan-
tum system when p =  4. It is noted that some proof techniques are borrowed from Ref. 20. By Theorem 2, we get the 
following seven orthogonal product states that cannot be locally indistinguishable in the 4 ⊗  4 quantum system.
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Let S =  {|ψ1〉 , |ψ2〉 , ···, |ψ7〉 }. The density matrix ρS has rank 16 −  7 =  9. We can enumerate the product states 
that are orthogonal to the members of S, which are not all mutually orthogonal:

+ − + − + −

+ − + − + − .

1
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6
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(6)

A B A B A B

A B A B A B

These six vectors are not enough to span the full Hilbert space ⊥HS . This means that the range of ρS contains only 
six product states, whereas ρS has rank 9. Therefore ρS must be entangled. By Lemma 1, we can get S is a SUCPB 
because ρS is entangled. That is, the 2p −  1 states of Theorem 2 are uncompletable in the m ⊗  n (m ≥  4 and n ≥  4) 
quantum system when p =  4. On the other hand, we can prove that the 2p −  1 states of Theorem 2 are 
uncompletable in the m ⊗  n (m ≥  5 and n ≥  5) quantum system by the same method, where 5 ≤  p ≤  min(m, n). By 
Theorem 2, we get the following 2p −  1 states in the p ⊗  p (p ≥  5) quantum system.
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where j =  i +  1 when i =  1, ···, p −  2 and j =  1 while i =  p −  1. Let S′  =  {|ψ1〉 , |ψ2〉 , ···, |ψ2p−1〉 }. The density matrix ρ ′S  
has rank p2 −  (2p −  1) =  (p −  1)2. We can enumerate the product states that are orthogonal to the members of  
S′ , which are not all mutually orthogonal:

+ − +

+ − +

i j j

i i j

1
6

( 0 2 ( 1) ) ,

1
6

( 0 2 ( 1) )
(8)

A B

A B

where i =  1, 2, ···, p −  1; j =  i +  1 for i =  1, 2, ···, p −  2 while j =  1 for i =  p −  1; and j +  1 =  i +  2 for i =  1, 2, ···, p −  3 
while j +  1 =  1 for i =  p −  2 and j +  1 =  2 for i =  p −  1. These 2p −  2 vectors are not enough to span the full Hilbert 
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space ′
⊥HS . This means that the range of ρ ′S  contains only 2p −  2 product states, whereas ρ ′S  has rank (p −  1)2. 

Therefore ρ ′S  must be entangled. By Lemma 1, we can get S′  is a SUCPB because ρ ′S  is entangled. That is, the 
2p −  1 states of Theorem 2 are uncompletable in the m ⊗  n (m ≥  5 and n ≥  5) quantum system when 
5 ≤  p ≤  min(m, n). Therefore, the 2p −  1 orthogonal product states of (3) are uncompletable in the m ⊗  n quantum 
system, where m ≥  3, n ≥  3 and p is an arbitrary integer from 3 to min(m, n).

Discussion
In this paper, we construct a completable orthogonal product basis with 4p −  4 members that cannot be perfectly 
distinguished by LOCC in an m ⊗  n quantum system, where m ≥  3, n ≥  3 and p is an arbitrary integer from 3 to 
min(m, n), and give a simple but quite effective proof. As a special case, we get eight orthogonal product states 
that can be completable but cannot be locally distinguished in m ⊗  n (m ≥  3 and n ≥  3). On the other hand, we 
construct a samll locally indistinguishable orthogonal product basis with 2p −  1 members in m ⊗  n, which are 
uncompletable, where m ≥  3, n ≥  3 and p is an arbitrary integer from 3 to min(m, n). Our work is useful to under-
stand the structures both of completable and uncompletable product bases that cannot be distinguished by LOCC 
in arbitrary bipartite quantum system.
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