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eSNPO: An eQTL-based SNP 
Ontology and SNP functional 
enrichment analysis platform
Jin Li1,2,3,*, Limei Wang4,5,*, Tao Jiang1, Jizhe Wang1, Xue Li1, Xiaoyan Liu2, Chunyu Wang2, 
Zhixia Teng2, Ruijie Zhang1, Hongchao Lv1 & Maozu Guo2

Genome-wide association studies (GWASs) have mined many common genetic variants associated with 
human complex traits like diseases. After that, the functional annotation and enrichment analysis of 
significant SNPs are important tasks. Classic methods are always based on physical positions of SNPs 
and genes. Expression quantitative trait loci (eQTLs) are genomic loci that contribute to variation in 
gene expression levels and have been proven efficient to connect SNPs and genes. In this work, we 
integrated the eQTL data and Gene Ontology (GO), constructed associations between SNPs and GO 
terms, then performed functional enrichment analysis. Finally, we constructed an eQTL-based SNP 
Ontology and SNP functional enrichment analysis platform. Taking Parkinson Disease (PD) as an 
example, the proposed platform and method are efficient. We believe eSNPO will be a useful resource 
for SNP functional annotation and enrichment analysis after we have got significant disease related 
SNPs.

Genome-wide association study (GWAS) is an examination of many common genetic variants in different indi-
viduals to see if any variant is associated with a trait. GWAS studies typically focus on associations between single 
nucleotide polymorphisms (SNPs) and traits like major complex diseases1. Since two SNPs with significantly 
altered allele frequency between the Age-related Macular Degeneration (ARMD) and healthy controls was firstly 
found in 20052, more than 100,000 risk SNPs associated to hundreds of diseases in human have been mined 
via GWAS3. There are several GWAS databases for human diseases and traits, such as GWAS Catalog3, GWAS 
Central4 and GWASdb5,6.

After getting the significant SNPs, functional analysis is an important task. Generally, SNPs are considered to 
be functional through related genes, and the most popular method is SNP functional enrichment analysis. Gene 
ontology (GO) is a major bioinformatics initiative to unify the representation of gene and gene product attrib-
utes7,8. There are several SNP functional database, such as SNP Function Portal9 and F-SNP database10; and SNP 
functional enrichment analysis methods, such as I-GSEA4GWAS11, SNP-based pathway enrichment analysis12, 
SNPsnap13 and SNP2GO14. Similar to gene functional enrichment analysis, these methods can be divided into two 
categories, significant SNPs based methods and SNP sets based methods. A common ground in these methods is 
that the SNP functions are explained by the related genes according to physical positions on chromosome.

Expression quantitative trait loci (eQTLs) are genomic loci that contribute to variation in expression levels of 
mRNAs15. The first genome-wide gene expression QTL study was carried out in yeast and published in 200216. 
Plenty of eQTL studies followed in plants and animals, including humans. Studies have shown that SNPs repro-
ducibly associated with complex disorders are significantly enriched for eQTLs relative to frequency-matched 
SNPs17. Systematic integrations of eQTLs and GWAS have been used to identify risk genes in Schizophrenia18, 
Psoriasis19, and Muscle traits20. Therefore, eQTL data is an important and useful source for SNP functional 
annotation.
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In this study, taking eQTL as medium between SNPs and their functions, we integrated eQTL and GO infor-
mation and constructed a human SNP Ontology database and SNP functional enrichment analysis platform. It 
will be an efficient tool after GWAS analysis for a complex trait.

Material and Methods
eQTL data. The eQTL data were collected from several open databases and literatures. The gene expression 
patterns are specific among tissue types, and so do the eQTL patterns. Therefore, a classification by tissue types 
is necessary. We classified them into 12 tissues (Table 1). We combined the data from different studies of same 
tissue type. For each data, we set a significant threshold of FDR <  0.05. We retained only the SNPs with reference 
names and genes with gene symbols. In each tissue type, the numbers of samples, SNPs and genes are all after the 
screening.

Brain data. As Parkinson Disease (PD) is a disorder of the central nervous system, we selected eQTL data in 
brain for a case study from Gibbs et al.21 and Myers et al.22. In Gibbs et al.’s study, four frozen tissue samples of the 
cerebellum (CRBLM), frontal cortex (FCTX), caudal pons (PONS) and temporal cortex (TCTX) were obtained 
from 150 neurologically normal Caucasian subjects resulting in 600 tissue samples. SNP genotyping was per-
formed using Infinium HumanHap 550 beadchips (Illumina) for 561,466 SNPs. Profiling of 22,184 mRNA tran-
scripts was performed using HumanRef-8 Expression BeadChips (Illumina). For each of the four brain regions, 
a regression analysis was performed using Plink23. After eQTL analysis in each brain regions, we integrated the 
results. In Myers et al.’s study, whole-genome genotyping for 366,140 SNPs and expression analysis of 14,078 
genes were carried out on a series of 193 neurologically normal human brain samples using the Affymetrix 
GeneChip Human Mapping 500 K Array Set and Illumina HumanRefseq-8 Expression BeadChip platforms. A 
one-degree-of-freedom allelic test of association analysis was performed using Plink23. We integrated the results 
from these 2 studies. Finally, we got 51,131 significant correlations between 22,740 SNPs and 7,161 genes with the 
threshold of FDR <  0.05.

Gene annotation data. The gene annotation data was downloaded from the Gene Ontology (GO) database 
(www.geneontology.org/page/download-annotations)7,8.

ESNPO construction. We defined associations between SNPs and GO terms via combining the associations 
between SNPs and genes from eQTL and the associations between genes and GO terms from GO annotation 
database. A SNP and GO term with at least one common gene will be connected for an association. It was illus-
trated in Fig. 1.

SNP functional enrichment analysis. We performed Fisher exact test to estimate the significance of asso-
ciations between SNPs and GO terms. The Fisher exact test is equal to Hypergeometric test. Suppose there are N 
SNPs and M disease-related SNPs in eSNPO. For a given GO term, there are n SNPs and m disease-related SNPs. 
The p value is estimated as follows.
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P value adjustment. In an analysis, multiple GO terms are tested for significance and the Type I error 
would increase. Therefore, a multiple test adjustment is needed after estimating p values. There are 7 p value 
adjustment methods adopted using p.adjust function in R. The Bonferroni correction (“bonferroni”)24 in which 
the p values are multiplied by the number of comparisons. Less conservative corrections are also included by 
Holm (“holm”)25, Hochberg (“hochberg”)26, Hommel (“hommel”)27, Benjamini & Hochberg (“BH” or its alias 
“fdr”)28, and Benjamini & Yekutieli (“BY”)29, respectively. There is no golden standard to compare these methods, 
and the most popular method is False Discovery Rate method. The False Discovery Rate (FDR) is one way of 

Tissue type Samples SNPs Genes Reference

Adipose Subcutaneous 111 18963 241 gtexportal52

Artery Tibia 124 28332 372 gtexportal52

Brain 765 22740 7161 eQTL Browser53, seeQTL54

Heart 87 14086 186 gtexportal52

Lung 124 31905 434 gtexportal52

Muscle Skeletal 143 25383 301 gtexportal52

Nerve Tibial 102 23253 327 gtexportal52

Skin 114 20506 296 gtexportal52

Blood 5479 406341 6780 Blood eQTL browser55, gtexportal52

Liver 427 2305 3463 eQTL Browser53

Lymphoblastoid 1220 208039 9168 eQTL Browser53, seeQTL54, Liming Liang56

Thyroid 112 33939 481 gtexportal52

Table 1.  eQTL data in 12 tissues.

http://www.geneontology.org/page/download-annotations
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conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. In this 
study, we used the “fdr” method.

Database
After all, we construct a SNP Ontology and SNP functional enrichment analysis platform (http://bioinfo.hrbmu.
edu.cn/esnpo/ or http://nclab.hit.edu.cn/esnpo/). It mainly includes 2 functions, eQTL-based SNP functional 
annotation and SNP functional enrichment analysis. After removing redundancy, we got 699,445 associations 
between 21,123 SNPs and 11,714 GO terms. The detailed statistics for the 12 tissues were illustrated in Table 2. 
The GO terms are formed by 3 components, Biological Process (BP), Cellular Component (CC) and Molecular 
Function(MF).

Case study
PD SNPs data. PD is a degenerative disorder of the central nervous system mainly affecting the motor sys-
tem. We used 2,034 unique PD-related SNPs in Guiyou Liu et al.30. These SNPs came from these following works: 
41 SNPs were from the GWAS Catalog3; 70 SNPs were from a large PD GWAS with over 3,400 cases and 29,000 
controls conducted by Do et al.31; 783 SNPs were from a meta-analysis of PD GWAS with 4,238 PD cases and 
4,239 controls performed by Pankratz et al.32; 1,292 SNPs were from a meta-analysis of PD GWAS using a com-
mon set of 7,893,274 variants across 13,708 cases and 95,282 controls conducted by Nalls et al.33. The threshold 
of p values in these studies were set to be 5.00E− 08. After removing redundancy, we selected 2034 unique SNPs 
with P <  5.00E− 08.

PD enrichment analysis. In the eQTL-based SNP enrichment analysis, of the 2,034 SNPs, there are 846 
SNPs annotated in 77 terms. After Fisher exact test, there are 67 (87.0%) significant terms under the threshold of 
fdr <  0.01.

Figure 1. ESNPO construction. 

http://bioinfo.hrbmu.edu.cn/esnpo/
http://bioinfo.hrbmu.edu.cn/esnpo/
http://nclab.hit.edu.cn/esnpo/
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In the position-based SNP enrichment analysis, of the 2,034 SNPs, there are 1,318 SNPs annotated in 807 
terms. After Fisher exact test, there are 396 (49.1%) significant terms under the threshold of fdr <  0.01.

Compared between the significant results from eSNPO and position-based enrichment analysis, there are 
43 terms in common, including 19 Biological Process (BP) terms, 14 Cellular Component(CC) terms and 10 
Molecular Function (MF) terms.

From the results, though there are fewer annotated GO terms in eSNPO than position-based method, there 
are higher proportion of significant results in eQTL-based method.

To evaluate the method, we performed literature verification on these significant BP GO terms. Of these 19 BP 
terms in common between these 2 methods, there are 5 terms about axon or neurons; 5 terms about microtubule; 
4 terms about apoptotic, cell death or autophagy; 1 term about pregnancy. The axon or neurons34,35, microtu-
bule36–38, apoptotic39–41, cell death42,43 or autophagy39,44. pregnancy45,46 were verified by other studies.

Furthermore, we further verified these significant GO terms only obtained in eQTL-based method (8 BP 
terms, 8 CC terms and 8 MF terms). Of these 8 BP terms, there are 2 terms about apoptotic signaling pathway47, 
1 term about cell proliferation48,49, 1 term about cell adhesion50, 2 term about JUN phosphorylation51 which have 
been verified by other studies.

Conclusion
In this work, we constructed an eQTL-based SNP Ontology and SNP functional enrichment analysis platform 
(http://bioinfo.hrbmu.edu.cn/esnpo/ or http://nclab.hit.edu.cn/esnpo/). We integrated the eQTL data and GO, 
constructed associations between SNPs and GO terms, then performed functional enrichment analysis. Taking 
PD as an example, this eQTL-based method is an efficient method as the position-based method. Therefore, we 
believe it is a useful SNP functional enrichment analysis resource after we selected significant disease related 
SNPs.

However, there are still some shortages in this method. The first is there may not be enough suitable eQTL data 
we can use. And the second is that the scale of eSNPO is far less than the position-based method. These shortages 
will be solved along with more and more eQTL studies have been done.
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