
1Scientific RepoRts | 6:28850 | DOI: 10.1038/srep28850

www.nature.com/scientificreports

Improved Separability Criteria 
Based on Bloch Representation of 
Density Matrices
Shu-Qian Shen1, Juan Yu1, Ming Li1 & Shao-Ming Fei2,3

The correlation matrices or tensors in the Bloch representation of density matrices are encoded with 
entanglement properties. In this paper, based on the Bloch representation of density matrices, we give 
some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and 
some examples show that the proposed criteria can be more efficient than the previous related criteria.

Quantum entanglement is a fascinating phenomenon in quantum physics. It can be seen as a physical resource 
like energy with applications from quantum teleportation to quantum cryptography1–5. In the last years, much 
work has been devoted to understanding entanglement, but there are still many problems unsolved. One of them 
is to determine whether a given quantum state is entangled or separable. This problem is extremely difficult to 
solve, and has been proved as a nondeterministic polynomial-time hard problem6. Nevertheless, a variety of 
operational criteria for separability of quantum states have been proposed in the last decades. Among them are 
the positive partial transpose (PPT) criterion or Peres-Horodecki criterion7,8, realignment criteria9–13, covariance 
matrix criteria14–16 and so on; see, e.g.17,18, for a comprehensive survey.

The Bloch representation19–21 of density matrices stands as an important role in quantum information. The 
correlation matrices or tensors in the Bloch representation are encoded with entanglement properties22,23, which 
can be exploited to study quantum entanglement. In ref. 24, by making use of correlation matrices, Vicente 
obtained the correlation matrix criterion for bipartite quantum states, which can be more efficient than the PPT 
criterion7,8 and the computable cross norm or realignment (CCNR) criterion9,10 in many different situations. 
After that, this criterion was used to give the analytical lower bounds for the entanglement measures: concur-
rence and tangle25,26, which are good supplement to the lower bounds based on PPT and CCNR criteria. By the 
matricizations of tensors, the correlation matrix criterion was generalized to detect non-full-separability of mul-
tipartite states27. Later, this multipartite criterion was extended and improved to be a much more general case28. 
Meanwhile, by the standard tensor norm and the norms of matricizations of tensors, some genuine entanglement 
conditions were derived. In refs 22, 23, some simple geometrical methods based on correlation tensors were pre-
sented to detect various multipartite entanglement. By bounding tensor norms for partially separable states and 
states of limited dimension, Klöckl and Huber29 studied the detection of multipartite entanglement in an exper-
imentally feasible way. In many cases, only few definite measurements are needed. Recently, Li et al.30 presented 
some separability criteria under the combination of correlation matrices and the Bloch vectors of reduced density 
matrices, which can be stronger than the correlation matrix criterion24 by examples.

This paper is further devoted to an investigation of entanglement detection in terms of Bloch representations 
of density matrices. On the one hand, by adding some parameters, a more general separability criterion for bipar-
tite states is presented, which can outperform the corresponding criteria given in24,30. On the another hand, the 
presented bipartite separability criterion is extended to the multipartite case. An example shows that the new 
multipartite separability criterion can be better than the corresponding criteria obtained in refs 27, 28 and 30.

Results
Separability criteria for bipartite states. Let λ = −i d, 1,2, , 1i

d( ) 2  be the traceless Hermitian gener-
ators of SU(d) satisfying the orthogonality relation λ λ δ=Tr( ) 2i

d
j

d
ij

( ) ( ) . Then any state ρ in  ⊗d d1 2 can be 
represented as21
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where Id denotes the d ×  d identity matrix,
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Denote by ||·||tr, ||·||2 and Ep×q the trace norm (the sum of singular values), the spectral norm (the maximum 
singular value) and the p ×  q matrix with all entries being 1, respectively. By defining = −r r r( , , )d

t
1 11

2 , 
= −s s s( , , )d

t
1 12

2  and T =  (tij), we construct the following matrix
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where α and β are nonnegative real numbers, m is a given natural number, t stands for transpose, and for any 
column vector x,

ω = .�� ���� ����x x x( ) ( )
(4)

m
m columns

Using ρα β( )m
, , we can get the following separability criterion for bipartite states.

Theorem 1. If the state ρ in  ⊗d d1 2 is separable, then
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See Methods for the proof of Theorem 1.
When α and β are chosen to be 0, Theorem 1 reduces to the correlation matrix criterion in ref. 24: if ρ in 
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If we choose α =  β =  m =  1, then Theorem 1 becomes the separability criterion given in [30, Corollary 2]: any 
separable state ρ in  ⊗d d1 2 must satisfy
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For simplicity, we call these criteria in (6) and (7) the V-B and L-B criteria, respectively. The following result 
can help us find that our separability criterion from Theorem 1 is stronger than the V-B and L-B criteria.

Proposition 1. If α and β are selected to satisfy

α β− = −d d d d( 1) ( 1) , (8)1 1 2 2

then Theorem 1 becomes more effective when m gets larger.
See Methods for the proof of Proposition 1.
From Proposition 1, Theorem 1 with the condition (8) is stronger than the V-B criterion.
For the case d1 =  d2 and α =  β, it follows from Proposition 1 that Theorem 1 is more efficient when m gets 

larger. In particular, Theorem 1 is better than the L-B criterion, and the L-B criterion is better than the V-B cri-
terion. For the case d1 ≠  d2, let us consider the following example. The following 2 ×  4 bound entangled state is 
due to31:
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where 0 <  b <  1. To verify the efficiency of the present criteria, we consider the state
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Then Theorem 1 can detect the entanglement in ρx for 0.2235 ≤  x ≤  1, while the V-B criterion and L-B crite-
rion can only detect the entanglement in ρx for 0.2293 ≤  x ≤  1 and 0.2841 ≤  x ≤  1, respectively. Thus, Theorem 1 
is better than the V-B and L-B criteria.

Separability criteria for multipartite states. Let   be an f1 ×  ··· ×  fN tensor, A and A be two nonempty 
subsets of {1, ···, N} satisfying ∪ = A A N{1, , }. Then we denote by A A  the A A,  matricization of  ; see28 for 
detail. This matricization is a generalization of mode-n matricization in the multilinear algebra32.

For any state ρ in  ⊗ ⊗
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Clearly, if m =  0, the tensor  ρα α

( )m
, ,

( )
N1

 reduces to the correlation tensor in ref. 27. When m =  α1 =  ··· =  αN =  1, 
the tensor  ρα α

( )m
, ,

( )
N1

 becomes the tensor with a constant multiple in ref. 30.
An n partite sate ρ in  ⊗ ⊗

d dn1  is (fully) separable33 if and only if it can be written in the form

∑ρ ρ ρ= ⊗ ⊗p ,
(14)i
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where the probabilities > ∑ =p p0, 1i i i , and ρ ρ, ,i i
n1  are pure states of the subsystems.

In the following, we give the full separability criterion based on  α α

m
, ,

( )
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.

Theorem 2. If the state ρ in  ⊗ ⊗

d dN1  is fully separable, then, for any subset A of {1, ···, N}, we have
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See Methods for the proof of Theorem 2.
For the case α1 =  ··· =  αN =  0, Theorem 2 reduces to the criterion given in [28, Theorem 4], which has an 

important improvement on the corresponding criterion given in ref. 27. If α1 =  ··· =  αN =  1 and m =  1, then 
Theorem 2 becomes [30, Corollary 3]. For simplicity, we call these criteria in refs 27, 28 and 30 V-M, H-M and 
L-M criteria, respectively. In the following we give a tripartite example to demonstrate the efficiency of Theorem 
2. Consider a perturbation of the tripartite GHZ state16:

φ
γ

′ = + +
1 ( 000 110 111 ),

(16)GHZ 

where  is a given real parameter, and γ denotes the normalization. We consider the mixture of this state with the 
maximally mixed state:

ρ φ φ′ =
−

+ ′ ′ .
x I x1

8 (17)GHZ
x

GHZ GHZ8

 V-M (H-M) criteria L-M criteria Theorem 2

0 0.3536 ≤  x ≤  1 0.4118 ≤  x ≤  1 0.3307 ≤  x ≤  1

10−5 0.3536 ≤  x ≤  1 0.4118 ≤  x ≤  1 0.3307 ≤  x ≤  1

10−1 0.3424 ≤  x ≤  1 0.4118 ≤  x ≤  1 0.3281 ≤  x ≤  1

1 0.3274 ≤  x ≤  1 0.4256 ≤  x ≤  1 0.3243 ≤  x ≤  1

Table 1.  Entanglement conditions of ρ ′GHZ
x  with different values of  from the V-M (H-M) criterion, the 

L-M criterion and Theorem 2 with α1 = α2 = α3 = 0.1 and m = 1.
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In the tripartite case, the V-M criterion is equivalent to the H-M criterion obviously. By taking m =  1 and 
α1 =  α2 =  α3 =  0.1, Table 1 displays the detection results with different values of . Clearly, Theorem 2 is more 
efficient than the V-M, H-M and L-M criteria.

Discussions
Correlation matrices or tensors in the Bloch representation of quantum states contain the information of entan-
glement of the quantum states. Based on the Bloch representation of quantum states, we have given some new 
separability criteria including the V-B, L-B, V-M, H-M and L-M criteria as special cases. For bipartite cases, by 
choosing some special parameters involved, our criteria are stronger than the V-B and L-B criteria. For multipar-
tite cases, by a simple example it has been also shown that our criterion can be more efficient than the V-M, H-M 
and L-M criteria.

Nevertheless, the problem of how to choose the involved parameters such that Theorems 1–2 can detect more 
entangled states needs to be further studied in the future. In the Bloch representation (1), the traceless Hermitian 
generators of SU(d) come from Gell-Mann matrices. But this is by far not the only possible choice. Maybe the new 
basis of observables34 constructed from Heisenberg-Weyl operators can be used to obtain better separable crite-
ria, since the Heisenberg-Weyl based observables can outperform the canonical basis of generalized Gell-Mann 
operators in entanglement detection34. Thus, this problem is worth studying in the coming days.

It should be noted that the separability criteria Theorems 1–2 presented in30 for bipartite and multipartite 
states are at most as good as the corresponding V-B, L-B, V-M and L-M criteria, respectively. For example, set 
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which implies that the L-B criterion is at least as good as the criterion (18). Other cases can be proved similarly.

Methods
Proof of Theorem 1. Since ρ is separable, from [24, (17)], it follows that there exist vectors ∈ −ui
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where we have used the following equality, for any vectors |a〉  and |b〉 ,
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Proof of Proposition 1. For any state ρ, from [24, Lemma 1], we get
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where the equality (24) has been used in the first and fifth equalities, and, in the third and fourth equalities, we 
have employed the fact that the trace norm of a Hermitian positive semidefinite matrix is equal to its trace.

Proof of Theorem 2. Without loss of generality, we assume that
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where we have used the equality (24).
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