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A general method for parameter 
estimation in light-response models
Lei Chen1, Zhong-Bin Li2,3, Cang Hui4,5, Xiaofei Cheng6, Bai-Lian Li7 & Pei-Jian Shi6

Selecting appropriate initial values is critical for parameter estimation in nonlinear photosynthetic light 
response models. Failed convergence often occurs due to wrongly selected initial values when using 
currently available methods, especially the kind of local optimization. There are no reliable methods 
that can resolve the conundrum of selecting appropriate initial values. After comparing the performance 
of the Levenberg–Marquardt algorithm and other three algorithms for global optimization, we develop 
a general method for parameter estimation in four photosynthetic light response models, based on 
the use of Differential Evolution (DE). The new method was shown to successfully provide good fits 
(R2 > 0.98) and robust parameter estimates for 42 datasets collected for 21 plant species under the 
same initial values. It suggests that the DE algorithm can efficiently resolve the issue of hyper initial-
value sensitivity when using local optimization methods. Therefore, the DE method can be applied to fit 
the light-response curves of various species without considering the initial values.

Photosynthesis is one of the most important biological processes involved in plant growth, and the rate of photo-
synthesis rate can be affected by a list of factors, such as temperature, CO2 concentration and light intensity1,2. In 
particular, many nonlinear models have been developed for describing the rate of photosynthesis in response to 
the change of irradiance3–5. There are three types of photosynthetic light response models currently available in 
literature: exponential, rectangular hyperbola and nonrectangular hyperbola.

Exponential Model6:
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where P I( ) is the net photosynthetic rate, I the irradiance, a the initial quantum efficiency, Amax the net light satu-
rated photosynthetic rate, and Rd the dark respiration rate.

Rectangular Hyperbolic Model7,8:
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Nonrectangular Hyperbola Model9:

θ

θ
=

+ − + −
−P I

aI A aI A a I A
R( )

( ) 4
2

, (3)d
max max

2
max

where θ is a curvature parameter.
Modified Rectangular Hyperbola Model10,11:
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where β and γ  are constants.
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Species
Exponential Rectangular Nonrectangular Modified Rectangular

R square AIC R square AIC R square AIC R square AIC

1
0.999 − 21.42 0.998 − 13.58 0.999 − 23.14 0.999 − 15.01
0.998 − 25.65 0.995 − 14.58 0.998 − 21.34 0.998 − 22.42

2
0.987 − 17.50 0.974 − 9.90 0.98 − 11.25 0.990 − 18.15
0.961 − 14.18 0.953 − 12.15 0.96 − 11.12 0.970 − 14.98

3
0.979 − 10.42 0.995 − 25.89 0.995 − 23.89 0.994 − 22.09
0.991 − 19.81 0.998 − 34.71 0.998 − 32.71 0.997 − 29.49

4
0.965 0.28 0.985 − 9.69 0.985 − 7.69 0.985 − 7.55
0.988 − 6.87 0.994 − 14.62 0.994 − 12.62 0.994 − 12.10

5
0.978 − 18.15 0.960 − 11.71 0.99 − 21.75 0.975 − 14.85
0.994 − 18.38 0.999 − 37.09 1.00 − 35.06 0.999 − 37.72

6
0.990 − 36.34 0.992 − 37.97 1.00 − 41.01 0.989 − 33.37
0.997 − 34.44 0.992 − 25.48 1.00 − 29.27 0.998 − 35.79

7
0.999 − 25.26 0.998 − 16.01 1.00 − 32.13 0.999 − 22.95
0.997 − 11.62 0.998 − 13.86 1.00 − 12.09 0.998 − 13.15

8
0.986 − 20.87 0.996 − 38.73 1.00 − 36.62 0.996 − 35.76
0.973 − 7.89 0.984 − 14.25 0.98 − 12.19 0.982 − 10.89

9
0.996 − 26.03 0.990 − 18.43 0.99 − 20.07 0.999 − 37.43
0.998 − 28.81 0.998 − 25.38 1.00 − 34.55 1.000 − 38.14

10
0.999 − 23.71 0.998 − 17.03 0.999 − 22.01 0.999 − 21.12
0.995 − 5.62 0.994 − 2.39 0.996 − 5.40 0.995 − 3.93

Table 1. Akaike’s information criterion (AIC) and R2 values of each model using the Differential Evolution 
algorithm.

Species
Exponential Rectangular Nonrectangular Modified Rectangular

R square AIC R square AIC R square AIC R square AIC

11
0.991 − 19.48 0.975 − 8.64 0.988 − 14.65 0.993 − 21.20
0.958 − 10.46 0.919 − 3.32 0.965 − 10.52 0.984 − 19.03

12
0.992 − 8.97 0.996 − 16.51 0.996 − 14.83 0.995 − 13.51
0.998 − 17.39 0.999 − 25.17 0.999 − 25.08 0.998 − 20.70

13
0.999 − 10.09 1.000 − 16.75 1.00 − 15.45 1.000 − 14.75
0.999 − 19.33 0.999 − 14.16 1.00 − 14.69 0.998 − 7.84

14
0.997 − 33.31 0.999 − 41.85 1.00 − 44.65 0.992 − 23.31
0.992 − 22.77 0.994 − 24.92 0.99 − 23.36 0.996 − 26.88

15
0.998 − 4.91 0.996 1.26 1.00 − 5.05 0.998 − 1.05
0.998 1.95 0.993 9.79 1.00 − 1.34 0.996 6.48

16
0.995 − 3.05 0.984 10.86 0.99 0.32 0.997 − 7.49
0.995 − 11.99 0.988 − 0.58 0.99 − 5.62 0.994 − 7.58

17
0.995 − 28.86 0.994 − 26.81 0.996 − 30.64 0.995 − 27.36
0.997 − 30.19 0.995 − 22.64 0.999 − 37.67 0.997 − 27.04

18
0.994 − 30.15 0.994 − 31.26 0.995 − 31.42 0.994 − 28.23
0.982 − 28.23 0.984 − 29.42 0.984 − 27.41 0.982 − 26.21

19
0.996 − 18.87 0.998 − 27.78 1.00 − 36.33 0.999 − 28.39
1.000 − 32.57 0.996 − 6.78 1.00 − 23.79 1.000 − 28.34

20
0.987 − 10.90 0.996 − 24.77 0.996 − 22.77 0.993 − 17.47
0.998 − 31.17 0.997 − 27.28 0.999 − 45.01 0.998 − 28.24

21
0.991 − 14.11 0.968 − 3.82 0.99 − 11.83 0.985 − 7.63
0.997 − 10.88 0.989 − 0.85 1.00 − 21.03 0.995 − 5.20

Table 2. Akaike’s information criterion (AIC) and R2 values of each model using the Differential Evolution 
algorithm.

Models 
Times of failed 

convergence
Exponential Model 358
Rectangular Hyperbolic Model 251
Nonrectangular Hyperbola Model 1260
Modified Rectangular Hyperbola Model 820

Table 3. Performance of the Levenberg-Marquardt in the simulation test.
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Selecting appropriate initial values is crucial for fitting these nonlinear models and estimating their 
parameters. For biologically meaningful parameters, using the estimates directly from experiments would 
be a first try for assigning the initial values. However, for model specific parameters that cannot be measured 
in experiments, choosing appropriate initial values when fitting the model could become problematic. For 
example, two of the parameters in Eq. (4) are constants without direct biological meanings. Even for those 
parameters with direct biological meanings, assigning their initial values in the model fitting could still be 
time consuming. For instance, all the three parameters in the exponential model (Eq. 1) have sound biological 
meanings, but only Amax can be directly measured; the other two parameters, a and Rd, require additional 
procedures to derive.

There are many statistical software packages currently available for fitting nonlinear models; to list a few, SAS, 
R, GenStat, MatLab, Sigmaplot, and SPSS. The built-in functionality to fit nonlinear models in these software 
packages normally implement algorithms of local optimization for regression and parameter estimation, such 
as the Gauss-Newton, Levenberg-Marquardt and Nelder-Mead algorithms. As local optimization methods are 
highly sensitive to the setting of initial values, failed convergence often occurs due to wrongly assigned initial 
values. However, there are no reliable methods available for selecting initial values5.

To develop effective methods for resolving the problem of assigning appropriate initial values when using 
these nonlinear models, we need to go beyond local optimization. Genetic algorithms and simulated annealing 
algorithms have been widely applied to search global optimal solutions in multi-dimensional space12–17. In par-
ticular, recent comparisons have suggested that the Differential Evolution (DE) algorithm performs better than 
other global optimization methods such as the genetic algorithm and simulated annealing18,19. There are four 
main steps for implementing the DE algorithms: initialization, mutation, crossover and selection, which is also 
capable of dealing with non-differentiable problems18. Compared to local optimization methods, global optimiza-
tion algorithms are less sensitive to initial values20,21. However, the application of global optimization algorithms 
to parameter estimation in photosynthetic light-response models is lacking.

The objectives of this study are to: (1) test the performance of the Levenberg-Marquardt (LM) algorithm, 
a local optimization method, and three global optimization algorithms: Genetic Algorithm (GA), Generalized 
Simulated Annealing (GSA) and the Differential Evolution (DE) algorithm; (2) develop a reliable method for 
fitting photosynthetic light-response models using the global optimization algorithm and simultaneously solve 
the issue of hyper initial-value sensitivity in local optimization algorithms.

Results and Discussion
Model comparison. According to calculated values of AIC (Tables 1 and 2), the modified rectangular and 
the nonrectangular hyperbolic models performed better than the exponential and rectangular hyperbolic models. 
The nonrectangular model is more flexible for its additional curvature parameter (θ); when θ =  0, it becomes the 
rectangular model5,22. For example, the estimates of θ for the photosynthetic datasets of Brassica rapa var.  
chinensis (L.) Kitam., Camellia sinensis (L.) Kuntze and Impatiens balsamina L. were all close to zero, the other 
three parameters of the nonrectangular model were also equal to those estimated from the rectangular model 
(Supplementary Tables S1 and S2).

Comparison of local and global optimization algorithms. Not surprisingly, failed convergence often 
occurred from wrongly assigned initial values when only using the LM algorithm, due to its hyper sensitivity 
to initial values (Table 3). In particular, the nonrectangular hyperbolic model failed to converge for 1260 times 
due to inappropriate initial values in the simulation (Table 3, Supplementary Table S3). There were also many  
compromised fits with R2 <  0.90 even when the LM algorithm converged successfully (Fig. 1). By contrast, the DE 
algorithm was less sensitive to initial values, which provided good fits with R2 approximately 0.98 for all the 42 
datasets of 21 species (Tables 1 and 2) when using the same initial values for each photosynthetic model, as listed 
in Table 4. The DE also performed the best among the three global optimization methods, followed by the GSA 
(Fig. 2). In comparison, parameter estimates from the GA were not reliable with even negative R2 (Fig. 3). The 
speed of convergence for the GA algorithm was also slower than that of the DE and GSA algorithms. Although 
the best optimum solutions of the 100 simulation tests from the LM were similar to those from the DE (Fig. 4), 
however, it was not recommended to only use the LM as the large amount of failures occurred due to wrongly 
sampled initial values (Table 3). After setting the initial values to the parameter estimates from the DE algorithm, 
the value of R2 estimated from the LM algorithm only slightly increased (< 0.05) for the rectangular and modified 
rectangular models; however, the values of R2 almost remained the same for the exponential and nonrectangular 
models (Fig. 5). Although local optimization methods are sensitive to the input of initial values, local optimiza-
tion algorithms are generally faster and more accurate than global optimization method in a local space20,23,24. 
In addition, there was no failures of convergence when the parameters of rectangular and modified rectangular 
models obtained from the DE algorithm were set as the initial values for running the LM algorithm. Therefore, 
we recommend to combine the DE and LM algorithms for estimating parameters of the rectangular and modified 
rectangular models if higher accuracy is needed, instead of increasing the number of iterations when running the 
DE algorithm.

In conclusion, the application of the DE algorithm can not only effectively resolve the issue of hyper  
sensitivity of initial values in local optimization but also provide good fits for the photosynthetic models. The 
lower and upper bounds of initial values (Table 4) for each photosynthetic light-response model can be regarded 
as a standard setting when using the DE algorithm. In addition, the estimated parameters (Supplementary Tables 
S1 and S2) of the mainstream photosynthetic models for both herbaceous and woody plant species can be used as 
a reference for selecting initial values when using the traditional local optimization method.
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Figure 2. Difference of R2 when using the Differential Evolution and Generalized Simulated Annealing 
algorithm for the modified rectangular (A), nonrectangular (B), rectangular (C) and exponential (D) models.

Figure 1. Distribution of R2 when using the Levenberg–Marquardt algorithm with successful convergence of 
the modified rectangular (A), nonrectangular (B), rectangular (C) and exponential (D) models.
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Figure 3. Values of R2 when using the Genetic Algorithm for the modified rectangular (A), nonrectangular (B), 
rectangular (C) and exponential (D) models.

Figure 4. Difference of R2 when using the Differential Evolution and the best optimum from the Levenberg–
Marquardt algorithm for the modified rectangular (A), nonrectangular (B), rectangular (C) and exponential 
(D) models.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:27905 | DOI: 10.1038/srep27905

Methods
A total of 42 datasets from 21 species (Supplementary Table S4), including both herbaceous and woody plants, 
were used for evaluating the performance of three global optimization algorithms: Genetic Algorithm (GA), 
Generalized Simulated Annealing (GSA) and the Differential Evolution (DE) algorithms, when fitting the photo-
synthetic light response models. For comparison, the Levenberg-Marquardt (LM) algorithm, a derivative based 
local optimization method, was also applied to estimate parameters of the photosynthetic models. The raw data 
of species 2, 5–9, 14–17, 20 and 22 (see Supplementary Table S4) were extracted from figures in publications25–36 
using the GetData Graph Digitizer 2.26 (http://getdata-graph-digitizer.com). After 500 iterations, the estimates 
from the three optimization methods were used to evaluate their performance. To avoid biasing the results, we 
used the same lower and upper bounds for parameter estimation when using the three global optimization 
(Table 4). For each dataset, 100 random values were drew from a uniform distribution with the same lower and 

Figure 5. Difference of R2 when using the Differential Evolution, combined with the Levenberg–Marquardt 
algorithm for the modified rectangular (A), nonrectangular (B), rectangular (C) and exponential (D) models.

Models Parameters Lower bound Upper bound

Exponential Model 
a 0 1

Amax 0 100
Rd 0 100

Rectangular Hyperbolic Model 
a 0 1

Amax 0 100
Rd 0 100

Nonrectangular Hyperbola Model 

θ 0 1
a 0 1

Amax 0 100
Rd 0 100

Modified Rectangular Hyperbola Model

a 0 1
β 0 1
γ 0 1

Rd 0 100

Table 4.  Lower and upper bounds of parameters for each model optimized by the Genetic Algorithm, 
Generalized Simulated Annealing and the Differential Evolution algorithms. The maximum number of 
iteration is 500.

http://getdata-graph-digitizer.com
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upper bounds for the global optimization algorithms as initial values for testing the LM algorithm. A total of 4200 
simulations were repeated for each photosynthetic model. Parameters of all the photosynthetic light-response 
models were estimated by the LM, GA, GSA and DE algorithms, implemented in the minpack.lm, GA, GenSA, 
and DEoptim packages of R37. The coefficient of determination R2 and Akaike’s information criterion (AIC)38 
were used as the goodness-of-fit index and for model comparison, respectively.
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