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Identification of circulating 
microRNAs during the liver 
neoplastic process in a murine 
model of hereditary tyrosinemia 
type 1
Francesca Angileri1,2,*, Geneviève Morrow1,*, Jean-Yves Scoazec3, Nicolas Gadot3, 
Vincent Roy1, Suli Huang2,4, Tangchun Wu2 & Robert M. Tanguay1

Hereditary tyrosinemia type 1 (HT1) is a severe inborn error of metabolism, impacting the tyrosine 
catabolic pathway with a high incidence of hepatocellular carcinoma (HCC). Using a HT1 murine model, 
we investigated the changes in profiles of circulating and hepatic miRNAs. The aim was to determine if 
plasma miRNAs could be used as non-invasive markers of liver damage in HT1 progression. Plasma and 
liver miRNAome was determined by deep sequencing after HT1 phenotype was induced. Sequencing 
analysis revealed deregulation of several miRNAs including let-7/miR-98 family, miR-21 and miR-148a, 
during manifestation of liver pathology. Three miRNAs (miR-98, miR-200b, miR-409) presenting the 
highest plasmatic variations among miRNAs found in both plasma and liver and with >1000 reads in at 
least one plasma sample, were further validated by RT-qPCR. Two of these miRNAs have protein targets 
involved in HT1 and significant changes in their circulating levels are detectable prior an increase in 
protein expression of alpha-fetoprotein, the current biomarker for HCC diagnosis. Future assessment of 
these miRNAs in HT1 patients and their association with liver neoplastic lesions might designate these 
molecules as potential biomarkers for monitoring HT1 damage progression, improving diagnosis for 
early HCC detection and the design of novel therapeutic targets.

Hereditary tyrosinemia type 1 (HT1, OMIM 276700) is a rare inherited metabolic disease associated with a high 
risk of liver cancer development and usually fatal before two years of age if not treated effectively (reviewed in1). 
HT1 is caused by a deficiency in fumarylacetoacetate hydrolase (FAH, EC 3.7.1.2), the last enzyme of the tyrosine 
catabolic pathway2. Three main clinical forms of HT1 have been described, each associated with liver and kidney 
failures3. The combination of NTBC (2-(2-nitro-trifluoromethylbenzoyl)-1,3-cyclohexanedione) intake with a 
low-tyrosine diet, and liver transplantation for the most severe cases, represent the only treatments available for 
this disease4. However although this regimen prevents liver and kidney dysfunction in patients5, affected individ-
uals can still develop several chronic complications including cirrhosis with a high risk of HCC6,7. HT1 patients 
are therefore closely followed by regular liver imaging and marker measurements such as alpha-fetoprotein (AFP) 
level6. However, patients monitoring is not completely effective since almost 80% of small HCCs foci do not show 
increase in AFP levels and liver image sensitivity is not effective in detecting small liver lesions8,9. For instance, 
HCC has been found on an explanted liver from a patient for whom the AFP level had not obviously increased 
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and imaging had missed the detection10. Therefore additional predictive value from other parameters for early 
detection of tumorigenic process would help in the follow-up.

Growing evidence suggests that microRNAs (miRNAs) are deregulated in liver pathologies11. MiRNAs con-
stitute an abundant class of short non-coding RNAs of approximately 18–24 nucleotides (nts) in length, which 
have key roles in cell development and differentiation by mediating the post-transcriptional regulation of 
protein-coding genes12. Circulating miRNAs have been reported to be associated with the physiological/patho-
logical state of the tissue they are derived from, representing a blood-based fingerprint of the affected tissue13. 
Currently, high–throughput technologies have revealed comprehensive profiling of circulating miRNAs in a wide 
variety of cancers, driving the discovery of novel cancer pathways regulated by oncogenic or tumour suppressive 
miRNAs14. MiRNAs are not only found in solid tumours, but also in circulation and body fluids15, in a highly 
stable, cell-free form16. Since miRNAs expression is tissue-, tumour-, and disease-specific, they are considered a 
class of circulating nucleic acids useful as clinical biomarkers for cancer diagnosis13.

Here we examined the genome-wide expression profile of miRNAs in the fah−/− mouse17 after induction of 
the HT1 phenotype, in order to evaluate the potential of using circulating miRNAs as a non-invasive method to 
assess HT1 liver damage progression.

Results
HT1 phenotype in fah−/− mouse.  Due to the rarity and severity of HT1, studies addressing the basis and 
progression of the disease are usually performed in the fah−/− mouse model. This model is very well characterized 
and reconstitutes many features of human HT1. Figure 1a shows a typical mouse protocol to study HT1; mice are 
put on an NTBC diet until 4 months of age and NTBC is then removed to allow HT1 progression. At the molec-
ular level, the course of HT1 can be divided in two stages. The early stage is characterized by the activation of the 
stress response due to the accumulation of toxic metabolites and the late stage is characterized by the activation of 
cell death resistance and proliferation mechanisms with a robust induction of AFP18,19.

At the tissue level, liver damages are visible one week after NTBC withdrawal and neoplastic changes are 
observed in 100% of mice after 15 weeks of drug withdrawal19. Figure 1e shows representative liver sections of 
fah−/− mice treated with NTBC and withdrawn from NTBC diet for 4 and 8 weeks. After 4 weeks of NTBC inter-
ruption, portal tracts are expanded by periportal fibrosis; numerous inflammatory cells are present in portal 
tracts and within the hepatic lobules. Hepatocellular changes include ballooning and micro- and macro-vesicular 
steatosis; some apoptotic cells are present (Fig. 1e). More severe histological lesions are observed after 8 weeks of 
NTBC withdrawal; architectural changes are characterized by the disorganization and thickening of hepatocyte 
plates; fibrosis and sinusoidal capillarization are present. Numerous oval-like cells are observed; these are mor-
phologically similar to the oval cells described at the initiation of the process of chemical carcinogenesis, and are 
arranged in cohesive sheets or in pseudoglandular structures (Fig. 1e).

Deep sequencing of small RNAs in plasma and livers from control and HT1 mice.  Our initial 
aim was to determine plasma and liver miRNAs profiles of fah−/− mice and see if there was any correlation 
between variations of miRNAs and progression of HT1. For this purpose, we performed deep sequencing of 
miRNAs from both tissues of NTBC-treated and 4 weeks NTBC-withdrawn fah−/− mice (Fig. 1b,c). This with-
drawal period was chosen based on previous studies demonstrating a peak in expression of stress proteins and the 
presence of liver lesions18,19 (Fig. 1a,e). Four mice were taken at each time point and total RNAs were submitted 
to LC Science (Houston, TX, USA) for processing and analysis. After quality control and samples assessment, 4 
pools were generated by LC Science following our instructions and submitted to deep-sequencing analysis, i.e 
plasma NTBC-treated (P0), plasma 4 weeks NTBC-withdrawn (P4), liver NTBC-treated (L0) and liver 4 weeks 
NTBC-withdrawn (L4) (Fig. 1b,c). The pooling strategy was used here because the goal of the experiment was to 
have a general idea of the plasma and liver miRNA profiles rather than having data specific to some individuals.

From liver and plasma samples we detected a total of 1,002 mature miRNAs registered as mouse specific in 
miRbase (Release 20), and specifically 805 mature miRNAs in mouse plasma and 920 mature miRNAs in mouse 
liver (in both control and NTBC-withdrawn fah−/− mice), with no significant difference within 5′​ and 3′​ end 
terminus (Supplementary Table S1). Among these, only a small fraction (4.6%) was expressed at very high levels 
(≥​10,000 raw reads). The remaining miRNAs were expressed at relatively high (8.0%, 1000–9999 raw reads), 
moderate (15.5%, 100–999 raw reads), and low (71.7%, 1–99 raw reads) level.

Therapy interruption induces changes in the expression of miRNAs in liver and plasma of fah−/− 
mice.  For the following comparison analysis, the number of read copies from each miRNA tracked during 
mapping, was normalized to adjust for varying sequencing depth between the samples by dividing the counts 
by a library size parameter (Supplementary Table S1). This procedure yielded a total of 805 plasma miRNAs  
and 916 liver miRNAs for subsequent analysis.

The changes in miRNAs profiles due to the onset of HT1 were similar in plasma and liver (Table 1). Indeed, 
7–9% were present only before HT1 induction (P0 and L0), 24–25% were present only once HT1 was triggered 
(P4 and L4) and 69% of the miRNAs were present in both types of samples (P0 and P4, L0 and L4). Another trend 
observed in both plasma and liver samples with the onset of HT1, was a decrease of 33% in the total number of 
reads (P0 vs P4, L0 vs L4). Interestingly, 72.1% of the mouse mature miRNAs were present both in plasma and 
liver (Supplementary Table S1). Mouse miR-192 showed the highest expression level in plasma of NTBC-treated 
mice (P0), whereas miR-21a was highest in the plasma of mice after disease onset (P4) (Table 1). Analyses of 
liver samples revealed miR-122 as the most abundant in both L0 and L4 samples. While this profiling does not 
document the influence of NTBC itself on miRNAs expression, the fact that mouse on NTBC diet develop nor-
mally during the time course of our standard protocol and do not show any major difference with wild-type mice 
except some mild liver lesions19 suggests that the effect of NTBC on the miRNAs profiles observed must be minor 
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compared to the effect of HT1. The miRNAs changes associated with the progression of HT1 during the treatment 
were also considered as minor for the same reasons.

Figure 1.  HT1 mouse model and study design. (a) Fah−/− male mice are kept on NTBC diet until 4 months of 
age and then NTBC is withdrawn to allow HT1 progression. From the fourth week of NTBC withdrawal, water 
soaked food is added to the cages. The main characteristics of the chosen time points are presented to give an 
overview of HT1 disease progression18,19. BW: expected percentage of body weight comparatively to the weight 
at the beginning of experimentation. L/BW: expected percentage of liver/body weight ratio. (b) Deep sequencing 
of plasma miRNAs. Total RNAs were isolated from plasma of 4 mice treated with NTBC and equimolar amounts 
of total RNA extracts were pooled together to give P0. The same approach was used for 4 different mice removed 
from NTBC therapy during 4 weeks (P4). (c) Deep sequencing of liver miRNAs. Total RNAs were isolated from 
liver of 4 mice before NTBC interruption and equimolar amounts of total RNA extracts were pooled together 
to give L0. The same approach was used for 4 different mice untreated with NTBC for 4 weeks (L4). (d) RT-
qPCR analysis. Total RNAs were isolated from three mice per time point. RT-qPCR analysis was performed on 
each mouse individually. (e) Representative liver sections of fah−/− mice at different time point of the disease 
(HES staining). 1- Fah−/− treated mice present mild hepatocellular changes due to the genetic background: 
hepatocytes are enlarged and often contain micro or macro-vesicular steatosis (black stars); large dysmorphic 
nuclei (arrowheads) show several well formed nucleoli (x350). 2–4 weeks off NTBC fah−/− mice present liver 
lesions with hepatocellular changes and inflammation. The portal tract (PT) is enlarged; numerous inflammatory 
cells (*​) are visible within the portal tract and into the adjacent lobule (x200). 3–8 weeks off NTBC fah−/− mice 
present severe liver changes; hepatocyte plates are disorganized and thickened; numerous oval-like cells are 
present, arranged either in small sheets or in pseudoglandular structures (arrows). CLV: centrilobular vein 
(x250). Panels are representative of at least three pictures taken per sample of a total number of n =​ 4 mice for 
each series.
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The top deregulated plasma miRNAs are associated with pathological processes.  We then 
focused on miRNAs present in both plasma and liver to detect plasmatic variations likely related to the HT1 liver 
pathology (721 mouse miRNAs). Like many high-throughput experiments, a >​1.5-fold change in reads count 
difference was adopted as a selection criterion for differentially expressed miRNAs between plasma sample of 
HT1 (P4) and control mice (P0) (304 mouse miRNAs, Supplementary Table S2). From these criteria, 207 miRNAs 
were found to be up-regulated in plasma following HT1 onset while 97 were down-regulated. Out of these 304 
miRNAs, 125 did not show meaningful changes in the liver while 139 were deregulated in the same way in both 
plasma and liver. Interestingly, among the 16 miRNAs having >​1000 normalized reads in at least one plasma 
sample (Table 2), several miRNAs (e.g. let-7/miR98 family members, miR-200b, miR-21a, miR-142, miR-192, 
miR-148a) have already been reported for their implication in liver carcinogenesis and other pathological con-
ditions13,20. Accordingly, target prediction of these 16 plasma miRNAs has identified proteins affecting mainly 
hepatic and renal systems and involved in critical biological processes such as organismal injury, cancer, cellular 
growth and proliferation (Fig. 2a). Moreover, gene ontology terms classification of the potential miRNAs targets21, 
revealed enrichment in important biological processes like metabolic regulation, apoptosis, immune system pro-
cess, cell-to-cell communication, protein transport and localization (Fig. 2b). Together these results suggest a 
general breakdown of tissue integrity and an increase in immune responses and tissue repairing processes after 
NTBC interruption in fah−/− mice suffering of progressive liver failure.

Validation of changes in circulating miRNAs levels during HT1 progression.  To confirm the 
modulation of specific miRNAs during progression of the HT1-induced liver pathology in fah−/− mice after 
NTBC removal, three miRNAs (namely miR-200b-3p, miR-98-5p and miR-409-5p) were selected for validation 
by RT-qPCR (Table 2, highlighted miRNAs). These miRNAs were chosen because they were found in both plasma 
and liver samples, in addition to have at least 1000 reads in one group of plasma sample and >​1.5 Log2 fold change 
between NTBC-treated (P0) and –untreated (P4) animals.

Plasma (805 mmu-miR total) Liver (916 mmu-miR total)

Control (P0) 
(NTBC-treated)

HT1 (P4)  
(NTBC-untreated)

Control (L0) 
(NTBC-treated)

HT1 (L4)  
(NTBC-untreated)

Specific mmu-miR1 60 (7%) 191 (24%) 59 (9%) 229 (25%)

Total number of reads1 2,916,233 1,767,043 3,020,177 1,956,385

Most abundant mmu-miR miR-192-5p 
(333,335 reads2)

miR-21a-5p 
(120,886 reads2)

miR-122-5p 
(785,568 reads2)

miR-122-5p 
(253,398 reads2)

Table 1.  Similarity and differences of plasma and liver miRNA profiles before and after HT1 onset. 1mmu-miR 
found in only one of the two plasma or liver samples. 2Normalized reads (Supplementary Table S1).

miR_name
Normalized read counts in plasma1

Log2 fold change  
(NTBC-untreated/-treated)

NTBC-treated 
(P0)

NTBC-untreated 
(P4) Plasma (P4/P0) Liver (L4/L0)

miR-200b-3p 666.53 3,139.24 2.24 1.95

miR-98-5p 365.38 1,655.84 2.18 —

miR-409-5p 282.60 1,173.17 2.05 4.34

miR-136-3p 727.90 2,880.37 1.98 3.19

miR-21a-5p 31,374.05 120,886.48 1.95 —

miR-142-3p 339.69 1,129.17 1.73 —

let-7d-5p 3,100.25 9,470.69 1.61 —

let-7a-5p 1,997.27 5,736.78 1.52 —

miR-106b-3p 5,629.12 1,918.62 −​1.55 —

miR-151-3p 8,680.60 2,670.18 −​1.70 —

miR-10b-5p 105,854.24 32,047.06 −​1.72 —

miR-423-5p 3,853.60 1,075.40 −​1.84 —

miR-378c 3,928.77 958.90 −​2.03 —

miR-486-5p 242,915.53 48,666.34 −​2.32 —

miR-148a-3p 77,032.13 15,401.51 −​2.32 −​2.33

miR-192-5p 333,335.37 64,636.71 −​2.37 −​1.89

Table 2.   Most abundant plasma miRNAs (>1000 reads in P0 or P4) having a Log2 fold change greater 
than 1.5 or lesser than -1.5 and being also present in at least one liver sample. 1Only miRNA present in both 
plasma and liver samples, having read counts >​1000 in P0 or P4 and Log2 fold change greater than 1.5 or lesser 
than –​1.5 are presented. See Supplementary Table S2 for all the miRNA found in both plasma and liver and 
having >​1.5 Log2 fold change. Values in bold font: miRNA selected for validation by RT-qPCR. —: Log2 fold 
change considered as non-meaningful (<​1.5 and >​–​1.5).
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Since the aim of the validation protocol was to verify the level of the selected miRNAs at different stages of the 
disease, a new mouse protocol based on previous studies was undertaken with 4 different time points18,19; i.e. 0, 
1, 4 and 8 weeks without NTBC (Fig. 1d). The 1 week withdrawal point was chosen to reveal if potential miRNAs 
biomarkers could detect the HT1 phenotype from the beginning of its pathological manifestations19, while the 4 
and 8 weeks time points represented manifestation of acute and chronic phase respectively, with increasing risk of 
tumour development19 (Fig. 1a). NTBC-treated mice were used as reference sample. Importantly, all plasma sam-
ples were analysed individually. HT1 progression was carefully followed during the experiment. Figure 3a shows 
that the body weight of each mouse at a given drug withdrawal time point was in the expected range according to 
previous reports19 (Fig. 1a). Moreover, the liver/body weight ratio at the time of sacrifice was also consistent with 
previous findings19 (Figs 3b and 1a).

Analysis of RT-qPCR results showed that the expression profile of the selected miRNAs was significantly 
different in NTBC-withdrawn and in NTBC-treated matched control mice (Fig. 3c–e). Specifically miR-98-5p 
and miR-200b-3p changed significantly from the early stage of HT1 manifestation (Fig. 3c,d). The miR-409-5p, 
despite a less significant variation in the first week of withdrawal (Fig. 3e), was the one showing the highest 

Figure 2.  Pathway enrichment analysis and Gene Ontology (GO) classification of predicted miRNAs 
targets. (a) Functional analysis of predicted miRNAs targets was performed using Ingenuity software and 
integrated database. The p-value associated with a biological process or pathway annotation was calculated 
with the right-tailed Fisher’s Exact Test by the Ingenuity Function and Pathways analysis system. Top related 
pathways were those involved in organismal injury and abnormalities, cancer, gastrointestinal disease, liver 
hyperplasia and hepatocellular carcinoma. (b) Gene Ontology (GO) terms classification performed by DAVID 
bioinformatics software v 6.7. Top enriched processes were those involved in metabolic and cellular processes 
(26% and 19% respectively), biological process (10%), developmental process (10%) and localization (9%). 
P-values were obtained with the overrepresentation Fisher Exact Test and corrected by the Benjamini Hochberg 
post-hoc method, calculated by the EASE method in DAVID.
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expression value after the long term therapy discontinuation, with almost the same expression value throughout 
acute and chronic phase response. For each of the miRNAs tested the highest fold change corresponded to the 
acute phase of the disease (4 weeks NTBC-withdrawal) (Fig. 3c–e). This could denote that the acute phase of HT1 
disease, characterized by highest expression of stress proteins18, corresponds also to the highest miRNAs mobi-
lization. However, this could also be due to the fact that these miRNAs were selected based on deep sequencing 
data at this particular time-point. Interestingly, miR-98-5p and miR200b-3p showed significant changes in circu-
lating levels prior to AFP protein increase in liver, revealing a potential use as diagnostic tools (Figs. 3c,d and 4).

Figure 3.  Modulation of plasma levels of miR-98, miR-200b and miR-409 after NTBC withdrawal. 
(a–e) Mice were weighted three times per week and periodically examined for signs of clinical illness during 
the protocol. (a) Graph represents the percentage of body weight of each mouse at the indicated time point 
comparatively to its weight at the beginning of experimentation. (b) Graph represents the percentage of liver/
body weight ratio of each mouse at the indicated time point. Grey bars represents the values expected for each 
time point (Fig. 1a) and are based on previous experiments19. (c–e) RT-qPCR analysis of miR-98, miR-200b and 
miR-409 plasma levels in fah−/− mice NTBC-treated and -untreated. C. elegans miR-39 was used as a loading 
control. Graph represents 3 individual per time point and median levels of miR-98-5p (c), miR-200b-3p (d) and 
miR-409-5p (e) in healthy controls and in NTBC-withdrawn mice (i.e. 1 week off, 4 weeks off and 8 weeks off). 
The relative expressions of selected miRNAs were normalized to C. elegans miR-39. Data are representative of 
at least three independent experiments. (a–e) Statistical significance was assessed by ordinary one way ANOVA 
followed by the Dunnett’s post hoc multiple comparisons test. P-values are represented by asterisk. ***​p <​ 0.001 
and ****p <​ 0.0001.
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Discussion
Deep sequencing profiling of liver and plasma miRNAome in the HT1 murine model during the pathogenic pro-
cess following removal of the drug NTBC was performed. Sequencing results showed that miRNAs expression 
levels in plasma and liver of fah−/− mice were distributed over 4 orders of magnitude and a significant number 
of miRNAs were either not expressed or expressed at very low levels. Several miRNAs presented variation in 
sequences compared to the annotated molecules (i.e. isomiRs), indicating a dynamic and versatile miRNAome 
in HT1.

The onset of HT1 pathology due to NTBC withdrawal resulted in a noticeable change in the amount of detect-
able miRNAs in both plasma and liver and in a significant variation of their relative expression levels. To associate 
the circulating signature with HT1 liver pathology, mouse miRNAs present in both plasma and liver were consid-
ered. Interestingly, we noticed overlap of several molecules with prominent roles in liver function. Among these, 
several miRNAs including let-7/miR-98 family, miR-21, miR-34a/c, miR-142, miR148a, and miR-192 predom-
inantly expressed in liver, exhibited elevated changes in plasma samples20. Several additional miRNAs that have 
already been related to pathological conditions and neoplastic lesions were overrepresented among circulating 
molecules such as miR-155 (part of the miR-17-92 cluster)22, miR-200 family23, miR-148a24 and miR-37525.

Although some studies report of a low or even inverse correlation between miRNAs expression levels in  
tissues and plasma20, differential analysis of overlapping molecules showed a similar pattern for almost half of 
plasmatic and hepatic miRNAs (139/304). Differences were also observed and, among these, several members of 
the let-7 family were up-regulated in plasma after 4weeks of NTBC interruption despite an invariable expression 
in liver. As previously demonstrated, important changes in liver molecular pathways occur already after the first 
week of NTBC withdrawal18,19,26, and circulating levels of miRNAs might reflect these early changes representing 
potential indicator of the hepatic state during HT1 degenerative process.

The variation of miR-98, miR-200b and miR-409 plasmatic expression was validated at different time-point of 
HT1 disease. The pattern of HT1-induced up-regulation of miR-409 was different from the two other miRNAs, 
with significant variations starting at 4 weeks. This time point correlates with a significant increase of alka-
line phosphatase (hepatocellular dysfunction) and γ​-glutamyl-transferase (hepatocyte inflammation) in mice 
serum26. Some reports have shown a correlation between miR-409 overexpression and epithelial-mesenchymal 
transition and tumour growth in prostate cancer progression27,28, while others report an onco-suppressive action 
of miR-409 and demonstrate its down-regulation in gastric and lung cancers29,30. Although no functional study 
has been conducted to establish its role in liver injury progression, our result unveils for the first time an impor-
tant deregulation of miR-409 circulating levels in the HT1 pathological process.

MiR-98 and miR-200b were shown to be up-regulated from the first week following HT1 onset a moment 
which corresponds to the previously reported drastic increase in alanine transaminase (hepatocyte inflammation) 
serum levels26. Interestingly, both of these miRNAs have targets that have already been shown to be associated 
with HT1 disease progression. Indeed, an indirect up-regulation of HO-1 gene expression by miR-98 action 
has been related with oxidative stress injury in hepatocytes31 and, similar to the induction of plasma miR-98 
demonstrated here, HO-1 expression in liver was shown to increase in mice at the beginning of HT1 patho-
logical process19,32. Similarly, miR-200b has been found positively correlated with liver fibrosis progression and 
PI3K/Akt pathway regulation33,34, mechanisms that are present in HT1 progression19,26. Since combined increased 
expression of miR-98 and miR-200b has also been connected with differentiation stage of cancer phenotype 
progression23, the high levels of these molecules in plasma of mice after NTBC removal (Fig. 3c,d), warrants 

Figure 4.  Time-course of AFP expression in liver during HT1 progression. (a) Representative immunoblot 
of AFP protein expression level in liver from individual mouse treated with NTBC or withdrawn from 
treatment for 1, 4 or 8 weeks. Western blots are representative of three independent experiments and were done 
on the livers from the same mice as the one used for RT-qPCR experiments. (b) Densitometric analysis of AFP 
expression. Values were normalized to loading control levels and finally compared to the fah−/− healthy control 
(NTBC-treated). Data in graphs represents three mice for each time point. Statistical significance was assessed 
by ordinary one way ANOVA followed by the Dunnett’s post hoc multiple comparisons test. P-values are 
represented by asterisk: ****p <​ 0.0001.
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further validation of these molecules as potential biomarkers of liver injury in HT1 patients. Especially since both 
miRNA were significantly up-regulated 1 week after-NTBC withdrawal, a time-point at which AFP protein was 
still almost not detectable in the liver.

In summary, this investigation provides evidence for deregulation of plasma and liver miRNA profiles during 
HT1 manifestation. Among the validated miRNAs affected by HT1, two are known to be involved in liver injury 
processes and can be linked to HT1 through their known targets. While it is premature to identify miR-98 and 
miR-200b as biomarkers of the state of liver injury, our results clearly warrant further investigation. Validation 
of such circulating biomarkers in plasma/serum of affected patients could potentially represent a new standard  
for a non-invasive routine clinical application in combination with pre-existing therapeutic and diagnostic 
methodologies.

Materials and Methods
Chemicals.  NTBC (S. Lindstedt, Gothenburg University, Sweden) was diluted in water (7.5 mg/L) and the 
pH was adjusted at 7–7.3. Synthetic Caenorhabditis elegans miR-39 was from Qiagen (Mississauga, ON, Canada).

Animal maintenance and treatment.  Four months-old fah knockout (fahΔexon5, referred to here as 
fah−/−) male mice17 were fed with a standard rodent chow (Charles River Rodent, Purina 5075-U.S, Agribrands, 
St-Hubert, QC, Canada) containing 0.51% tyrosine and 0.82% phenylalanine, and housed in a controlled envi-
ronment with 12h light-dark cycles. Pregnant females and fah−/− pups received NTBC in drinking water until 
beginning of experimentation. To induce the HT1 phenotype, 4 months-old fah−/− mice were withdrawn from 
NTBC therapy for periods of 1 to 8 weeks with our standard feeding protocol18,19 (Fig. 1a). Mice were weighted 
three times per week and periodically examined for signs of clinical illness. At the end of each starvation period, 3 
to 4 mice were anesthetized by injection of ketamine-xylazine, and blood and livers were harvested and stored at 
−​80 °C. Fah−/− mice receiving NTBC ad libitum (n =​ 3–4) were used as healthy control. All animal experiments 
were performed according to the guidelines of the Canadian Council on Animal Care (CCAC). All experimental 
protocols were approved by the animal care committee of Université Laval (CPA-UL).

RNA isolation.  Isolation of the total RNAs from plasma and liver (200 μ​l and 0.26 mg respectively for each 
mouse) was performed using the mirVana PARIS miRNA Isolation Kit (Ambion 1556, Austin, TX). Due to 
the low amount of plasma available from each mouse and the low miRNAs concentration in biological fluids16, 
plasma samples were treated twice with acid-phenol chloroform and glycogen was included for a better RNA 
recovery. RNA quality and purity were verified on an Agilent 2100 Bioanalyzer system and Agilent RNA Nano 
6000 LabChip kits (Agilent Technologies, Santa Clara, CA, USA). C. elegans miRNA cel-miR-39 was added 
into the denatured plasma samples to normalize sample-to-sample variation in the isolation step. The spiked-in 
miRNA was introduced after addition of 2X Denaturing Solution (Ambion) to the plasma sample to avoid degra-
dation by endogenous plasma RNases.

RNA deep sequencing and data analysis.  For deep sequencing analysis, plasma and liver total RNA 
extracts were isolated from fah−/− control mouse (NTBC-treated) and fah−/− withdrawn from NTBC during 
4 weeks (HT1 mice) (Fig. 1a–c). These two time points were chosen as representative of mice in healthy state 
(control) and mice suffering of acute pathophysiological manifestation of the disease (4 weeks after therapy 
interruption)19.

Total RNA extracts were submitted to LC Science (Huston, TX, USA) for further processing. Four pools, con-
stituted each from total RNA from 4 different mice, were generated with equimolar RNA amounts by LC Science, 
following our instructions (i.e. plasma from control mice (P0), plasma from HT1 mice (P4), liver from control 
mice (L0) and liver from HT1 mice (L4)) (Fig. 1b,c). Each sample was processed to generate a cDNA library 
using the Illumina TruSeqTM Small RNA Preparation kit according to Illumina’s TruSeqTM Small RNA Sample 
Preparation Guide (see Supplementary File S1). The purified cDNA library was used for cluster generation on 
Illumina’s Cluster Station and then sequenced on Illumina GAIIx. Raw sequencing reads (40 nts) were obtained 
using Illumina’s Sequencing Control Studio software version 2.8 (SCS v2.8) following real time sequencing image 
analysis and base calling by Illumina’s Real-Time Analysis version 1.8.70 (RTA v1.8.70). The extracted sequencing 
reads were analysed using a proprietary pipeline script, ACGT101-miR v4.2 (LC Sciences), as described in the 
Supplementary material (Supplementary File S1).

Quantitative reverse transcription polymerase chain reactions (RT-qPCRs).  Expression levels of 
three selected miRNAs were confirmed by RT-qPCR in plasma from 12 mice subjected to different length of therapy  
interruption (i.e. from 0 to 8 weeks NTBC withdrawal, n =​ 3/time-point). Importantly, in these experiments mice 
were treated individually. Due to the low and variable RNA content of plasma, a fixed volume of RNA eluate (5 μ​l) 
from a given volume of starting plasma, rather than a fixed mass of RNA, was used as input into the reverse tran-
scription reactions16. C. elegans miRNA spiked-in during the RNA isolation process was used as internal reference 
for normalization of technical variations between samples. Input RNA was reverse transcribed following the 
manufacturer’s protocol of the TaqMan miRNA Reverse Transcription Kit (Applied BioSystems, Foster City, CA). 
RT products were diluted 1:5 and subjected to quantitative PCR (qPCR) in triplicate on a 7500 Fast Real-Time 
PCR System (Applied BioSystems, Foster City, CA). Data were analysed with 7500 Software version v2.3 
(Applied BioSystems), with the automatic setting for assigning baseline and Ct (cycle threshold) determination.  
The miRNA expression levels were normalized against cel-miR-39 and calculated by the equation 2–ΔCt, in which 
Δ​Ct =​ Ct miRNA–Ct cel-miR-39.

Target gene prediction and enriched biological function analysis.  The Ingenuity incorporated 
analysis of TarBase (http://diana.cslab.ece.ntua.gr/tarbase/)35, miRecords (http://mirecords.biolead.org/)36 and 

http://diana.cslab.ece.ntua.gr/tarbase/
http://mirecords.biolead.org/
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TargetScan (http://www.targetscan.org/)37, were used to predict the potential target genes of detected miRNAs. 
Gene Ontology (GO) and KEGG pathways enrichment analysis of these target genes were performed with 
DAVID Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov)21 and PANTHER classification system 
(http://pantherdb.org/)38.

Histological Analysis.  Mouse livers were fixed in 4% PBS-buffered paraformaldehyde, pH 7.4, and kept 
at 4 °C. Tissue samples were embedded in paraffin-wax at 58 °C. Four micrometer sections were prepared and 
stained with hematoxylin-eosin-saffron (HES) at ANIpath, a university platform for experimental animal his-
topathology (Lyon, France). Analysis and interpretation were done by a pathologist experienced in both human 
and experimental liver pathologies (JYS). Classification of liver changes was performed according to international 
recommendations39.

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot.  Frozen livers were 
homogenized with a teflon pestle at 10% (W/V) in RIPA Buffer (20 mM Tris-HCl, pH 7.5; 150 mM NaCl, 1 mM 
Na2EDTA, 1 mM EGTA, 1% NP-40) containing protease and phosphatase inhibitor cocktails (cOmplete, Mini, 
EDTA-free; PhosSTOP; Roche Diagnostics, Indianapolis, USA). Liver extracts were then centrifuged at 10,000 g 
for 15 minutes at 4 °C and protein concentration was measured in the supernatant with the Bio-Rad Protein Assay 
(Bio-Rad Laboratories Inc., Hercules, CA). Proteins were analysed as described previously19. The antibody against 
AFP (1:10,000) was a gift from Dr. L. Bélanger (CRCHUQ, QC, Canada) and the antibody against GAPDH 
(#5174; 1:5000; loading control) was from Cell Signaling Technology (Danvers, MA, USA). Densitometric analysis  
on western blot bands was performed using ImageJ 1.47v software. Values were normalized to loading control 
levels and finally compared to the fah−/− healthy control (NTBC-treated). Data in graphs represents three mice 
for each time point.

Statistical analysis.  The Student’s t-test or ANOVA was used to analyse the differences between samples. 
Values of p <​ 0.05 were considered statistically significant. RT-qPCR experiments were repeated at least twice 
with similar results. All experiments included triplicate samples for each treatment group. Statistical analyses 
were performed with GraphPad Prism software v6.0b (La Jolla, CA, USA).
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