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Speedup of quantum evolution of 
multiqubit entanglement states
Ying-Jie Zhang1,2,*, Wei Han1,*, Yun-Jie Xia1, Jian-Xiang Tian1 & Heng Fan2,3

As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of 
evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states 
and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled 
with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the 
number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to 
the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of 
the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among 
the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types 
states are shorter than in the case N qubits coupled with independent noise channels. We therefore 
reach the interesting result that the potential speedup of quantum evolution of a given N-qubit 
GHZ-type state or W-type state can be realized in the case the number of the applied noise channels 
satisfying M < N.

Quantum mechanics establishes the fundamental and important bounds for the evolution time to transfer a given 
initial quantum state to a prescribed final state in a controlled and optimal way. Bounds of this evolution time, 
known as quantum speed limit time (QSLT), are intimately related to the maximal evolution speed of quantum 
systems. The utility of these limits involve in many areas of research such as the communication speed in quantum 
communication1,2, the precision limits in quantum metrology3, the computation speed in quantum computation4, 
nonequilibrium thermodynamics5, as well as quantum optimal control protocols6–10. Derivations of the QSLTs 
usually consider that such quantum systems are noiseless and undergoing unitary evolutions11–22. Since the rele-
vant influence of the environment on processing or information transferring systems can not be ignored, recently, 
the bounds of evolution time including both Mandelstam-Tamm (MT) and Margolus-Levitin (ML) types focused 
on the open system with nonunitary dynamics process have also been formulated23–33. The QSLTs have already 
been used to illustrate the quantum evolution speed for a qubit state under nonunitary dynamics process. Some 
theoretical studies have shown that the non-Markovianity of the noise channels can speed up the quantum evolu-
tion process26,29,30, and this phenomenon has also been experimentally confirmed by the controlled environment32.

The speedup evolution of quantum state gained when using quantum system to process information should 
be considerable in the limit of large-scale information processing34–36, so it is significant to understand the scaling 
properties of the QSLT for multiqubit system. So far, a few studies have been done on the QSLT in the multiqubit 
systems17,23,31,37–39, it has been shown that entanglement could accelerate the evolution of the closed quantum 
system. For the multiqubit open system, in refs 23 and 24, the authors mainly consider Markovian dephasing of 
N-qubits system where each qubit interacts only with its own noise channel. By choosing the initial GHZ-type 
states, they have found that the evolution speeds of separable and entangled states scale in the same way with 
respect to the number of qubits, and the speedup evolution due to entanglement is also true in the nonunitary 
dephasing channels. But the influences of entanglement and the number of qubits on the quantum evolution 
speed of the multiqubit system with different types initial states under more general and typical nonunitary noise 
channels, are not well studied until now. So the task to explore the quantum evolution speed of the multiqubit 
entanglement open system is still extremely necessary.

In this paper, we investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in two differ-
ent cases. one case is described that N qubits would be coupled with independent amplitude-damping channels 
as shown in Fig. 1(a). In this case, the GHZ-type entanglement can reduce the QSLT of the evolution process. In 
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addition, the QSLTs of the entangled GHZ-type states increase as the number of qubits increasing in the small-scale 
system, and are unaffected by the number of qubits in the larger-scale system. However, the QSLTs for the W-type 
states are independent of the number of qubits and the initial entanglement. The above results are obviously dif-
ferent from the one corresponding to the dephasing channels23,24. In the previous studies23,24,31, the QSLT of open 
multiqubit system has been analyzed in the case each qubit respectively interacting with its own noise channel. In 
comparison, we also consider the other case that only M amplitude-damping channels respectively added to M 
qubits among the N-qubit system (M <  N) in Fig. 1(b). By investigating the influence of the number of the applied 
noise channels on the QSLT, it is striking to find that the speedup evolution of these two types states can occur. 
Additionally, the number of the applied noise channels M plays the opposite effect on the QSLTs for the mulitqubit 
GHZ-type states and W-type states, i.e., the shortest QSLT of a given N-qubit GHZ-type state can be acquired by 
choosing the case M =  N −  1, while for a given N-qubit W-type state, the smallest QSLT occurs by taking the case 
M =  1.

Results
Decoherence model and quantum speed limit time. Here, we mainly consider N qubits of ground 
state |0〉  and excited state |1〉  without interacting with each other. M (1 ≤  M ≤  N) qubits respectively couple to 
their own amplitude-damping channels, while the other N −  M qubits are isolated from any environment and 
would not evolve at all in the dynamical process. The dynamics of the whole system can be obtained simply from 
the evolution of the individual qubit. And the dynamics of the i-th qubit, 1 ≤  i ≤  M, can be governed by a master 
equation that gives rise to a completely positive trace-preserving channel Λ i describing the evolution as 
ρ ρ= Λi i 0i

, where ρ0i
 and ρi are the initial and evolved reduced states of the i-th qubit, respectively. In the Born-

Markov approximation, the amplitude-damping channel is given by its Kraus representation as40 
ρ ρ ρΛ = +† †K K K Ki 0 0 0 0 1 0 1i i i

, with = + −K P0 0 1 1 10  and =K P 1 01 . In the zero-temperature 
limit, P =  e−Γt is the decay of the excited population, and Γ  is the dissipation rate.

Let us consider the situation where the initial state of N qubits is in the multiqubit GHZ-type state or W-type state, that 
is ρ α β α β= + +⊗ ⊗ ⊗ ⊗⁎ ⁎( 1 0 )( 1 0 )G N N N N

0 , or ρ = + + +   w w w( 100 0 010 0 00 01 )W
N0 1 2

+ + +   

⁎ ⁎ ⁎w w w( 100 0 010 0 00 01 )N1 2 , with |α|2 +  |β|2 =  1 and ∑ == w 1i
N

i1
2 . Due to only M 

(1 ≤  M ≤  N) qubits interacting with their own amplitude-damping channels respectively, then the initial state ρG W
0
/  

evolves in time into a mixed state ρt
G W/  acquired simply by the composition of M individual maps

ρ ρ= Λ Λ Λ . (1)t
G W

M
G W/

1 2 0
/

In the next section, we mainly study the QSLT of the N-qubit entangled state. So we need to start with the 
definition of the QSLT for an open quantum system. The QSLT can effectually define the bound of minimal evo-
lution time for arbitrary initial states, and be helpful to analyze the maximal evolution speed of an open quantum 
system. A unified lower bound, including both MT and ML types, has been derived by Deffner and Lutz26. This 
QSLT is determined by an initial state ρ0 =  |φ0〉 〈 φ0| and its target state ρτ. With the help of the von Neumann trace 
inequality and the Cauchy-Schwarz inequality, the QSLT is as follows,

τ τ ρ ρ≥ =










τ τ τ
τ∞ Bmax 1 , 1 , 1 sin [ ( , )],

(2)
QSL 1 2

2
0  

Figure 1. Quantum evolution speed for multiqubit entanglement states in two different cases. The map Λ  means 
a completely positive trace-preserving noise channel. (a) one case is described that N qubits would be coupled with 
independent noise channels Λ ′ s; (b) the other case of only M qubits among the N-qubit system respectively interacting 
with their own noise channel Λ , here the number of the noise channels M is less than the number of the qubits N.
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with  ∫τ ρ=τ
τ−


dtl
t l

1
0

, and σ σ= + +A ( )l
n
l l

1
1/  denotes the Schatten l-norm, σ1, σ2, ···, σn are the singular 

values of A, ρ ρ φ ρ φ=τ τB( , ) arccos0 0 0  denotes the Bures angle between the initial and target states of the quan-
tum system. And the ML-type bound based on the operator norm (l =  ∞ , that is ∫τ σ σ σ=τ

τ∞ −
 dtmax[ , , , ]n

1
0 1 2 ) 

of the nonunitary generator provides the sharpest bound on the QSLT26. So in the following we use this ML-type 
bound to demonstrate the QSLT of the dynamics evolution from an initial state ρG W

0
/  to a final state ρτ

G W/  by fixing an 
actual evolution time τ. According to ref. 31, τQSL/τ =  1 indicates the evolution is already along the fastest path and 
possesses no potential capacity for further quantum speedup. While for the case τQSL/τ <  1, the speedup evolution may 
occur, and the much shorter τQSL the greater the capacity for potential speedup will be.

QSLTs of N-qubit GHZ-type states. We choose GHZ-type state ρG
0  to be the initial qubits’ state. Using 

Eq. (1), we can straightforwardly reach the evolutional density matrix as follows

∑

ρ β α δ αβ

α β µ

= + − +

+ + ⊗

⊗ ⊗

⊗

=

≤
⊗ − ⊗ − +

⁎

⁎

P P[ (1 ) ]( 0 0 ) [ ( 0 1 )

( 1 0 ) ] [( 0 0 ) ( 1 1 ) ],
(3)

t
G M

MN
N M N

N

k

M N

k
M k N M k

2 2 /2

0

( ) ( )PS

with δMN =  1 if M =  N, and δMN =  0 when M <  N. Owing to only M qubits coupled to their own noise channels, we 
can clearly obtain that, the off-diagonal elements of ρG

0  should be multiplied by the factor PM/2. And the diagonal 
terms (|0〉 〈 0|)⊗N and (|1〉 〈 1|)⊗N in turn give rise to new diagonal terms of the form (|0〉 〈 0|)⊗(M−k) ⊗  (|1〉  
〈 1|)⊗(N−M+k), for 0 ≤  k ≤  M, and PS accounting for all possible permutations of the state of M qubits, and the coef-
ficients μk =  |α|2Pk(1 −  P)M−k.

In order to illustrate the roles of the number of qubits N, the number of noise channels M and  
the entanglement of the initial state on the quantum evolution speed of the multiqubit open system, we  
should firstly use the ML-type bound to calculate QSLT of the dynamics evolution from an initial state  
ρG

0  to a final state ρτ
G  by an actual evolution time τ. According to Eq.  (3), we can clearly find, 

ρ ρ ρ ρ β β α δ β α α= − = + − + + −τ τ τ τ τTr P P PBsin [ ( , )] ( ) 1 (1 ) 2 1G G M
MN

M M2
0 0

4 2 2 2 2 /2 4 .  Thus 
our main task in the following is to calculate the singular values of ρ

 t
G  and find out the largest  

singular value σ ρ=
∞

 t
G

max . (i) If one consider N  qubits interacting with independent noise  

channels (M =  N), the singular values σi are σ = − − ± + −
α − − − −P P P P{ [ (1 ) ] [ (1 ) ]N N N N N

1/2 2
1 1 1 1

2

β α + − +− − −
P P P P/ [ (1 ) ] 1 }N N N2 2 2 1 1 2

,  σ α= − − − −− − − −
kP P N k P P P[ (1 ) ( ) (1 ) ]k k N k k N k

3
2 1 1 , 

and σ α= − − − −− − − −
N k P P kP P P[( ) (1 ) (1 ) ]k N k k N k k

4
2 1 1 , here k =  1, ···, N −  1. In the whole dynamics 

process, with the analysis of σ′si  as shown in Fig. 2(d), the largest singular value σmax can be given by 
− − + + −

α − − − −P P P P{ [ (1 ) ] [ (1 ) ]N N N N N
2

1 1 1 1
2

β α + − +− − −
P P P P/ [ (1 ) ] 1 }N N N2 2 2 1 1  w i t h 

0 <  P <  1. (ii) For the case M <  N, the singular values σi are σ β α= | − + |
α −

P MP P(1 / 1 )M M
1 2

2 2 1
2

, 
σ β α= | + + |

α −
P MP P(1 / 1 )M M

2 2
2 2 1

2
,  σ α= − − − −− − − −

kP P M k P P P[ (1 ) ( ) (1 ) ]k k M k k M k
3

2 1 1 ,  and 
σ α= − − − −− − − −

M k P P kP P P[( ) (1 ) (1 ) ]k M k k M k k
4

2 1 1 , here k =  0, 1, ···, M −  1. Through comparing the 
above singular values, the largest singular value σmax can be given by

σ
σ

σ
=







<

>
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P P
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,
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c
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From Eq. (4), it is worth noting that, the largest singular value σmax can occur a sudden transition from  
one to another at a certain critical strength of Ptc

 for an arbitrary N and M. And Ptc
 is obtained by 

β α| + | | | | + | = | − |− −P P P(1 / 1 ) 2 (1 )t
M

t
M

t
M2 2 1 1

c c c
. So Ptc

 is related to the initial state (α, β) and the number of 
noise channels M. When <P Pt tc

, σmax is equal to σ
=k3 0

, while for >P Pt tc
, σ2 is the largest singular value of ρ

 t
G 

among all σ′si . This remarkable behavior can be shown in Fig. 2 by taking the four-qubit system as an example. 
Therefore, when the number of noise channels M is less than the number of qubits N, the QSLT can be calculated 
as

∫ ∫

∫
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with Pτ means the excited population of the final state ρτ
G. It is clear to find that the QSLT of the multiqubit 

GHZ-type states is evaluated as a function of the number of noise channels M and the initial entanglement (α, β).
By fixing an actual evolution time τ, the influences of the number of qubits N, the number of noise channels 

M and the entanglement of the initial state on the QSLTs for the multiqubit GHZ-type states are depicted in Fig. 3 
for M =  N and Fig. 4 for M <  N. The entanglement of the mulitqubit state can be characterized by the genuinely 
multiqubit (GM) concurrence C defined in41,42, with C =  0 for a separable state and C =  1 for a maximally entan-
gled state. For the biqubit system, the GM concurrence can be simplified to the Wootter’s concurrence42. For the 
N-qubit state ρG

0 , the GM concurrence can be immediately obtained C =  2|αβ|. By considering N qubits coupled 
to their independent noise channels, respectively, Fig. 3(a) clearly shows that the QSLT equals to the actual evolu-
tion time τ for the separable state (α =  1, β =  0). So the evolution speed of the unentangled N-qubit state ρG

0  under 
the amplitude-damping channels is unaffected by the number of qubits N. While for the entangled N-qubit state 
ρG

0 , the QSLT firstly increases as the number of qubits N increasing and then maintains to a fixed value. That is to 
say, for the GHZ-type state with a given entanglement, the increasing qubits’ number N of the multiqubit system 
can lead to the smaller quantum speed in the small-scale system. However, for the larger-scale system, the evolu-
tion speed of the entangled GHZ-type state is independent of N. Besides, another meaningful result can be 
acquired from Fig. 3(b): for the entanglement GHZ-type state, the larger initial entanglement can lead to the 
greater potential speedup of the evolution process, and thus reduce the QSLT below its value of the unentangled 
multiqubit system.

Furthermore, for a given GHZ-type multiqubit state ρG
0  (fixing N, α and β), when we consider only M qubits 

coupling to their own noise channels, here M <  N, the QSLT of the dynamics evolution from ρG
0  to ρτ

G can be calcu-
lated by Eq. (5). From Fig. 4(a) for the initial unentangled state (N =  4, α =  1 and β =  0) and Fig. 4(b) for the initial 
entangled state (N =  4 and α β= = 2 /2), it is worth noting that the quantum speedup evolution from ρG

0  to ρτ
G 

can occur at a certain region τP[ ,1]critical  in the case M <  N than the case M =  N. But when only one qubit is interact-
ing with its noise channel, the evolution speed is not accelerated for the initial unentangled state, as shown by the 
red dashed line in Fig. 4(a). So we therefore reach the interesting result that the speedup of the evolution of the 
multiqubit GHZ-type state can be acquired by controlling the number of the applied noise channels M <  N. And 

Figure 2. The singular value σ′si  for ρ
 t
G  as a function of Pt with the different number of noise channels M 

for ρG0  = 1/2(|1111〉 + |0000〉)(〈1111| + 〈0000|). Since all σ′si  contain P , the behaviors of σ′ s P/i  can explore 
the largest singular value σmax. (a–c) for the case M <  N, there exists a certain critical strength of Ptc

; (d) for the 
case M =  N, a unified expression for σ = − − + + −

α − − − −P P P P{ [ (1 ) ] [ (1 ) ]N N N N N
max 2

1 1 1 1
2

β α| | | | + − + |− − −
P P P P/ [ (1 ) ] 1 }N N N2 2 2 1 1 2

 can be acquired by combining σ1 and σ2.
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then, numerical calculation also shows that the critical excited population τPcritical of the final state ρτ
G is determined 

by M. Taking the cases in Fig. 4(b) for the initial entangled state ρ = + +1/2( 1111 0000 )( 1111 0000 )G
0  as 

Figure 3. The QSLT for the evolution from ρG0  to ρτ
G by a fixed actual evolution time Pτ = 0.5, quantified by 

τQSL/τ as a function of the parameters for the number of qubits N and the entanglement C = 2|αβ| of the 
initially prepared state ρG0 , in the case M = N. Different initial states, (α =  1, β =  0), (α β= =3 /2, 1/2) and 
(α β= = 2 /2) considered in (a); and different number of qubits, N =  2, 4, 8 chosen in (b).

Figure 4. The QSLT for a given GHZ-type multiqubit state ρG0 , quantified by τQSL/τ as a function of the 
excited population Pτ of the final state and the number of noise channels M, in the case M < N. (a,c) for the 
initial unentangled state, α =  1, β =  0; (b,d) for the initial entangled state α β= = 2 /2.
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examples, when M =  1, we find the value of the critical excited population is = .τ 

P 0 285critical ; While for M =  2 and 
M =  3, we can acquire = .τ 

P 0 124critical  and =τP 0critical .
Due to the above results in the case M <  N, we should further understand the role of the number of noise 

channels M on the QSLT for a given initial state by a fixed actual evolution time τ. Figure 4(c,d) present the results 
of our analysis for τQSL/τ as a function of the number of noise channels M by choosing different actual evolution 
times τ, in the case M <  N =  21. By gradually increasing the number of the applied noise channels to the mul-
tiqubit system, we observe that the QSLT for the open system can monotonically decrease. That is to say, for the 
case of M <  N, the capacity for potential speedup of evolution from ρG

0  to ρτ
G can be enhanced as the number of 

the applied noise channels increasing. Then the greatest capacity for quantum speedup of a given N-qubit 
GHZ-type state can be acquired by choosing the case N −  1 qubits respectively interacting with their own noise 
channels.

QSLTs of N-qubit W-type states. In the following, instead of the initial GHZ-type states, we choose the 
W-type states as the initial N-qubit states. Only M qubits among the multiqubit system is independently coupled 
with an amplitude-damping channel, i.e., the number of noise channels M is less than the number of the qubits N. 
According to Eq. (1), the evolutional density matrix of the N-qubit system can be obtained

TS

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

ρ =







− +









+






+ +

+







⊗

= = +

⊗

=

= + = = ≠

= = +

⊗ −

⁎

⁎

P w w P w

w P w w

P w w

(1 ) ( 0 0 ) 1 1

1 1 1 1

1 1 ( 0 0 ) ,
(6)

t
W

i

M

i
j M

N

j
N

i

M

i i i

j M

N

j j j
i

M

k k i

M

i k i k

i

M

j M

N

i j i j
N

1

2

1

2

1

2

1

2

1 1,

1 1

1

here TS accounting for the permutation between |1i〉  and |1j〉 . Next, by calculating the QSLT in Eq. (2) for the 
evolution from ρW

0  to a final state ρτ
W  with an actual evolution time τ, we illustrate the influences of various 

parameters (N, M, and the initial entanglement parameters ′w si ) on the QSLTs of the W-type states.
In the case M =  N (All qubits independently coupled to their own noise channels), the evolutional density matrix 

of the N-qubit system can be rewritten as ρ ρ= − +⊗P P(1 )( 0 0 )t
W N W

0 , the largest singular value of ρ
 t
W  is 

σ = Pmax , and the distance satisfies ρ ρ = | −τ τPBsin [ ( , )] 12
0 . Then we acquire ∫τ τ = − =τ

τ
P P dt/ 1 / 1QSL 0

. 
It is easy to check that if the multiqubit open system is initially prepared in the W-type state, the QSLT for the evo-
lution from ρW

0  to ρτ
W is independent of the number of qubits N and the initial entanglement parameters ′w si . This 

can be understood that, when all qubits coupled to their independent noise channels, the quantum evolution speeds 
of the W-type multiqubit entanglement states would not be accelerated, and unaffected by the qubits’ number and 
the initial entanglement.

However, for the case only M qubits coupled with their own noise channels, respectively, we mainly study the relation-
ship between the number of noise channels M and the QSLT for a given initial W-type state ρW

0 , here =w N1/i , i =  1, 
2, … , N. In this case, we can calculate the largest singular value ρ σ= = + + −

∞


M M M N M P P[ ( )/ ]t
W

Nmax
1
2

2  

and the distance ρ ρ = + −τ MP N M M P NBsin [ ( , )] / ( 1) /2
0

2 2+ − + − − |N M N M N M P N( ) / 2 ( ) / 12 2 2 . 
According to the definition in Eq. (2), we can obviously find that the QSLT for a given initial W-type state is closely related 
to the number of noise channels M. Figure 5 shows the QSLT for the evolution process within a fixed actual evolution 
time τ as a function of the excited population Pτ of the final state and the number of noise channels M. By considering a 
given initial W-type state, we observe that, when the number of the applied noise channels is less than the number of the 
multiqubit system (M <  N), the QSLT can be reduced, as shown in Fig. 5(a). On the other hand, a monotonic behavior of 
the QSLT can also be depicted in Fig. 5(b): when M <  N, the QSLT for the open system can monotonically increase by 
gradually increasing the number of the applied noise channels to the N-qubit system. So we can conclude that the capac-
ity for potential speedup of evolution from ρW

0  to ρτ
W can be promoted by decreasing the number of the applied noise 

channels. And when only one qubit among the N-qubit system (M =  1) is coupled with its own noise channel, the maxi-
mal capacity for potential speedup of a given N-qubit W-type state would be reached. Finally, by comparing the analysis 
of the QSLT for the GHZ-type state and the W-type state, the role of the number of the applied noise channels M on the 
quantum speedup for the above two states in the case M <  N, is clearly contrary, as shown in Figs 4(d) and 5(b).

Discussion
Above all, the exemplary states we take to analyze the quantum evolution speed of multiqubit open system are the 
GHZ-type state and W-type state. Although these two types states represent just the restricted class of states, the 
study of their quantum evolution speed is important in their own right: they are crucial in quantum information 
and communication theory35,36,43–46, and such states have been experimentally produced in atomic and photonic 
systems46,47. And these two types of multiqubit states and the amplitude damping channels can be realized by the 
potential candidates such as cavity QED48, trapped ions49, superconducting qubits50 and the Nitrogen-Vacancy 
center of diamond51.

In summary, we have demonstrated the QSLT of the N-qubit entanglement state (GHZ-type state or W-type 
state) under amplitude-damping channels. Although a similar study of QSLT for open multiqubit system has been 
analyzed in the case each qubit respectively interacting with its own noise channel (M =  N), the investigations 
mainly focus on the QSLT of a few special states (such as two-qubit Bell states, the multiqubit product state 
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11 1 ), and do not concern the role of the number of the qubits N on the QSLT31. Here, by considering the con-
trollable noise channels number M, we have clearly illustrated the roles of the number of qubits N, the number of 
noise channels M and the entanglement of the initial state on the QSLT of the multiqubit open system. The model 
with controllable noisy channel number plays an important role in the study of quantum metrology52. Some new 
and interesting phenomena are observed. For the case M =  N, we have obtained that the QSLT of the entangled 
GHZ-type state first increases as the number of quits N increasing and then saturates at a fixed value. And the 
entanglement of GHZ-type state can shorten the QSLT of the evolution process. But the QSLT of the W-type state 
is independent of the number of qubits N and the initial entanglement. Moreover, for the other case M <  N, the 
QSLTs of the mulitqubit GHZ-type states and W-type states are shorter than in the case N qubits independently 
coupled with independent noise channels. So the speedup of a dynamics process of a given N-qubit GHZ-type 
state or W-type state occurs when the controllable noise channels’ number is less than the number of qubits. Our 
results may be of both theoretical and experimental interests in exploring the potential quantum speedup for the 
multiqubit states by the controllable noise channels’ number in the large-scale information processing.
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