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Phase-Transformation-Induced 
Extra Thermal Expansion Behavior 
of (SrxBa1–x)TiO3/Cu Composite
Jie Sheng1, Lidong Wang1, Shouwei Li2, Benke Yin2, Xiangli Liu2 & Wei-Dong Fei1

The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the 
type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) 
of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than 
metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume 
fraction because of the limitation of reinforcement CTEs. SrxBa1−xTiO3 (SBT) powder presents negative 
thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we 
demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal 
expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be 
obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature 
range of phase transformation is extended greatly, therefore, the low CTE can be achieved within 
wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of 
SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie 
temperature of SBT particles and the CTE of the composite. The results given in the present study 
provide a new approach to design the MMCs with low CTE.

Metal matrix composites (MMCs) have been intensively studied in the past few decades because of their excellent 
adjustable thermalphysics properties, such as a low coefficient of thermal expansion (CTE) and high thermal 
conductivity (TC)1,2. Copper, as a class of important metal matrix, simultaneously exhibits a high TC (up tp 
400 W/(m·K)) and CTE3–5, conversely, ceramic reinforcement always enhibits a low TC and CTE. However, in 
order to meet the low CTE demand in application, MMCs generally have high volume fraction of reinforcement 
(general higher than 50 Vol. %), which inevitability induces the deterioration of thermal conductivities, ductility 
and machinable properties of MMCs. Therefore, the bottleneck for MMC applications in the fields of electronic 
packaging, heat sinking, etc is how to achieve a low CTE at the condition of low volume fraction for the optimi-
zation of thermal expansion and thermal conductivities6–8.

As mentioned before, ceramic-reinforced copper matrix composites have been investigated and developed, 
such as SiC/Cu. The volume fraction of SiC reinforcement in the SiC/Cu composite is generally very high in 
order to obtain a sufficiently low CTE, but the TC of the composite is degraded9,10. It is very difficult to effec-
tively enhance the TC of a SiC/Cu composite at such a high volume fraction of SiC reinforcement. Diamond 
particles with a low CTE and high TC is also a kind of significant reinforcements which could simultaneously 
achieve the low thermal expansion and high TC in Cu matrix composites11–13. However, superficial oxidation  
(> 700 °C) and graphitization (>1000 °C) have to be considered during the manufacturing process with high 
sintering temperature7.

Generally, it is convenient method to utilize ceramic reinforcement with a low or negative CTE to reduce 
the ceramic volume fraction in Ceramic/Cu composite, and then a low CTE and high TC can be simultaneously 
obtained for the composite. In the last decade, many studies have investigated negative-CTE ceramics to reinforce 
MMCs with a low CTE and high TC, such as β -eucryptite (AlLiSiO4)14–17 and ZrW2O8

18–20. However, the CTE 
of β -eucryptite (approximately − 0.7 ×  10−6 K−1) is not as low as expected and microcracks are easily formed in 
the bulk β -eucryptite ceramics due to its poor strength. It is difficult to obtain a good combination of properties 
in β -eucryptite/Cu composites. Even though ZrW2O8 exhibits a very large negative CTE (− 9 ×  10−6 K−1), for 
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ZrW2O8–Cu composite, its CTE was significantly larger than the theroy prediction because of the allotropic 
transformation of ZrW2O8 under high mismatch stress in the composite. Furthermore, the complex synthesis 
technology and thermal instability also limit its practical application as the reinforcement in copper matrix com-
posites7. Novel materials or mechanisms are expected to develop low CTE and high TC composites.

Utilization of the negative thermal expansion of phase transformation is another promising method to achieve 
low-CTE composites. For instance, Invar alloy (Fe–36Ni) presents very low CTE and is widely used in the fields of 
wireless communication, precision instruments, etc.21. However, the application of Invar alloys in emerging fields 
has been restricted owing to their disadvantages such as a high density, low TC, and high resistance.

SrxBa1−xTiO3 (SBT), as an important ferroelectric ceramic, has been intensively investigated. The CTE of SBT 
can reach as low as − 150 ×  10−6 K−1 when the ferroelectric–paraelectric (tetragonal–cubic) phase transformation 
takes place22–24. On the one hand, the Curie temperature (TC) of SBT is in the range of approximately 20 to 400 K, 
which can be precisely controlled by adjusting the Sr content22, suggesting that we can obtain large negative CTE 
in a temperature range near room temperature by using SBT powders with different Sr contents. Consequently, 
the dependence of the CTE of the SBT/Cu composite on the temperature can be designed by the Sr content. On 
the other hand, the Curie temperature of SBT is very sensitive to the stress23, and a thermal mismatch stress is 
an intrinsic feature of MMCs25. Therefore, a wide temperature range is expected for phase transformation owing 
to the non-uniform stress acting on the SBT particles with different sizes and shapes in the SBT/Cu compos-
ite. Based on the performance of SBT during the process of transformation, SBT may act as a promising and 
newly-developing kind of reinforcement for low CTE and high TC MMCs used at near room temperature.

In the present study, the thermal expansion behavior of an SBT/Cu composite with an SBT volume fraction of 
40% has been investigated, and a very low CTE was achieved. The results presented in the paper provide a route 
to design MMCs with a low CTE. SrxBa1−xTiO3 powders with x =  0.1, 0.2, and 0.3 are denoted as 10SBT, 20SBT, 
and 30SBT, and the corresponding composites are defined as 10SBT/Cu, 20SBT/Cu and 30SBT/Cu composites, 
respectively.

Results and Discussion
Figure 1(a–c) show the morphologies of SBT powders with different Sr contents observed by scanning electron 
microscopy(SEM). It is found that the morphologies of the SBT powder are very similar, and the particle size of 
the SBT powder is very inhomogeneous and distributed from several hundred nanometers to several microm-
eters. Figure 1(d) presents the X-ray diffraction(XRD) spectra of SBT powders with different Sr contents. Only 
diffraction peaks corresponding to the perovskite structure can be observed in Fig. 1(d), which indicates that the 
powders obtained through the above solid reaction method are of pure perovskite phase.

In order to determine the values of Curie temperature(TC) of the SBT powders with different Sr contents, the 
dielectric-constant–temperature (ε –T) curves were measured and are shown in Fig. 2(a). TC can be determined 
by the peak of ε –T curves. As shown in Fig. 2(b), the TC gradually decreases for the SBT powders as the Sr content 
increases, which is in agreement with previous studies26.

Figure 3(a) shows the typical morphology of SBT/Cu composites with different Sr contents. The SBT powders 
are uniformly distributed in the composites; moreover, no pores can be observed in the composites. Figure 3(b) 

Figure 1. (a–c) SEM images of SBT powders with different Sr contents. (d) XRD patterns of SBT powders with 
different Sr contents.
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shows the XRD spectra of the SBT/Cu composite with different Sr contents, in which only Cu and SBT diffraction 
peaks are observed. The XRD spectra indicate that no interfacial reaction and other impurities were introduced 
during the spark plasma sintering(SPS) process.

Fine scan XRD curves in the 2θ range of 44–47° were measured at 25 °C to probe the phase composition of 
the SBT particles in the composites. A single diffraction peak of {200}C exists for cubic(C)–phase SBT exists 
in this 2θ range, and the two diffraction peaks of {002}T and {200}T exist for tetragonal(T)–phase SBT in this  
2θ range (the subscripts C and T indicate the C and T phases, respectively). Therefore, the phase composition 
of the SBT powders in the composites can be determined by peak fitting. After Kα2 diffraction striping, the 
diffraction peaks were fitted by the Pearson VII function. As shown in Fig. 3(c–e), three diffraction peaks 
are observed for the SBT particles in the composite in this 2θ range, which indicates that the C and T phases 
of the SBT ferroelectric coexist. Among the three peaks, the bilateral peaks arise from the T-phase particles, 
and the middle peak represents the C phase. The SBT powders in the composites consist of T and C phases, 
which are different from the as-sintered SBT powders. The Curie temperature of the as-sintered SBT powder 
in the 20SBT/Cu composite is approximately 65 °C, as shown in Fig. 2(b). However, C-phase SBT particles 
can be observed at 25 °C in the composite. This suggests that the Curie temperatures of the SBT particles are 
decreased owing to the thermal mismatch stress in the composite27. In addition, the shapes and sizes of the 
SBT powders and the interfacial state between the SBT powder and the copper matrix are inhomogeneous. 
Therefore, the mismatch stress acting on different SBT particles in the composites may be quite different, 
resulting in different Curie temperatures for SBT particles with a different stress, which causes the coexistence 
of the T and C phases.

Figure 4(a,b) show the technical and average CTEs in the temperature range of 50–300 °C for SBT/Cu com-
posites with different Sr contents. Generally, the thermal expansion behavior can be described by the technical 
CTE (αT) and physical CTE (αP): with α = − −T l l l T T( ) ( )/ ( )T 0 0 0  and α =T dl l( ) / dTP , respectively, where l0 
is the sample length at the reference temperature (T0), and l is the sample length at the temperature T. αT 
reflects the total expansion rate in the temperature range of T–T0, and αP is the instantaneous expansion coef-
ficient at T. It can be found that the SBT/Cu composites exhibit a very low CTE, and the CTE of the 20SBT/Cu 
composite is much lower than those of the other two. The above results indicate that there is a suitable Sr con-
tent that obtains the optimized thermal expansion properties of the SBT/Cu composites. In addition, the CTE 
curves rapidly decrease from approximately 150 °C, and form a valley within the temperature range of 150–
275 °C. The physical CTE curve of the 20SBT/Cu composite is shown in Fig. 4(c). It is found that the physical 
CTE is negative in the temperature range where the technical CTE curve rapidly decreases in Fig. 4(a). The 

Figure 2. (a) Dielectric-constant–temperature curves of SBT powders with different Sr contents. (b) Curie 
temperature of SBT powders with different Sr contents.
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thermal expansion behavior of the SBT/Cu composite is quite different from conventional MMCs such as 
MMCs reinforced by SiC and Al2O3 particles. In paricular, a negative CTE was rarely observed in MMCs.

In order to study the origin of the low CTE, an in-situ XRD analysis of the 20SBT/Cu composite upon heating 
was carried out in the 2θ range from of 44–47°, and the typical XRD curves (after Kα 2 diffraction striping) and their 
peak fittings are presented in Fig. 4(d). According to the XRD peak fittings, the positions of the {200}C, {002}T, and 
{200}T peaks of the 20SBT particles in the composite can be obtained, and the lattice constants of the C and T phases 
can be evaluated. The value of lattice constant for a-axis(aT) increases, at the same time, the value of lattice constant 
for c-axis(cT) decreases as the sample is heated, as shown in Fig. 4(e). The negative expansion of cT leads to a low 
thermal expansion of the SBT particles and composites. aT and cT are equal to aC when the temperature is higher 
than Tm, as shown in Fig. 4(e), which means that the all of the 20SBT particles transform to the C phase. Because Tm 
is higher than TC of the 20SBT powders, the Curie temperatures of some 20SBT particles in the composite increase 
upon heating. This is different from the behavior upon cooling and will be analyzed later in this paper.

The intensity ratio (IT/IC) between the T-phase diffraction peaks (the sum of the {200}T and {002}T peak inten-
sities) and the C-phase {200} diffraction peak reflects the content ratio between the T and C phases in the 20SBT/
Cu composite. The relationship between IT/IC and the temperature upon heating is presented in Fig. 4(f). It is 
found that the content of the T-phase 20SBT in the composite decreases as the temperature increases, which 
indicates that a phase transformation occurs, starting from room temperature to Tm. When comparing Fig. 4(c) 
with Fig. 4(e), the variation trend in the thermal expansion matches the process of SBT phase transformation in 
the composite. The CTE of the SBT powder is lower than that of Cu matrix; moreover, the CTE of the SBT powder 
is sufficiently low to negative value when the ferroelectric–paraelectric phase transformation happens. Therefore, 
the SBT/Cu composites exhibit very low CTEs.

On the basis of previous studies25,28, the CTE of an MMC can be expressed by the following equation:
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Figure 3. (a) SEM image of an SBT/Cu composites. (b) XRD patterns of SBT/Cu composites with different 
Sr contents. (c–e) Fine-scan XRD curves in the 2θ range of 44–47° of SBT/Cu composites with different Sr 
contents.
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where αp is the average CTE of the SBT powder; αm is the CTE of the Cu matrix; fm and fp represent the volume 
fractions of the matrix and particles, respectively; Km and Kp represent the bulk moduli of the matrix and particle 
reinforcement, respectively; and σm is the thermal mismatch stress in the Cu matrix. It is clear that the CTE of the 
composite is affected by the CTE and volume fraction of the powder and the rate of change in the matrix. When 
the SBT particles in the composite transform from the T phase to the C phase, the average CTE of the SBT is dra-
matically reduced, which leads to a decrease in the CTE of the composite.

In addition, the compressive stress and the tensile stress are simultaneously induced on the SBT particles 
and on the Cu matrix, respectively, when the composite is cooled from a high temperature because the CTE of 
the SBT particles is lower than that of the Cu matrix14,15. The tensile stress acting on the matrix can be relaxed 
upon heating, and Km is much smaller than Kp in the SBT/Cu composite; therefore, it can be concluded that the 
CTE of the composite decreases during this process on the basis of Equation (1) and our previous studies16,17,25. 
The SBT phase transformation from the T phase to the C phase leads to a sharp decrease of SBT particle CTE; 
correspondingly, the quick relaxation of the tensile stress causes the CTE of the Cu matrix to decrease greatly, as 
shown in Fig. 4(f). Therefore, a negative physical CTE can be obtained in the temperature range in which many 
SBT particles quickly transform from the T phase to the C phase. Moreover, the phase transformation of the SBT 
powders in the composite occurs over a wide temperature range owing to the inhomogeneous stress in different 
SBT particles, resulting in a low CTE for the composites over a wide temperature range.

On the basis of the above results, it is found that the abnormal thermal expansion behavior of the SBT/Cu 
composites is closed to the phase transformation. The most important factor affecting the Curie temperature of 
the SBT particles in the composite is the thermal mismatch stress, and the effect of the stress on TC can be ana-
lyzed by Landau–Devonshire theory29. The XRD analysis results indicate that the effect of the thermal stress on 
the Curie temperature upon cooling is different from that during heating process. The difference is analyzed in 
the following paragraphs.

SBT particles in the composite are in the highly symmetric cubic phase when the temperature is higher than 
the Curie temperature during the cooling process. Thus, it can be assumed that the SBT particles are isotropic 
inclusions in the SBT/Cu composites. According to the Eshelby approach of equivalent inclusions for compos-
ites29, a hydrostatic compressive stress can be induced on the SBT particles upon cooling.

In terms of Landau–Devonshire theory, the Gibbs energy of one SBT particle in the composite is expressed by 
the following equation30–33.

σ σ σ= + + + − − +G G a P a P a P Q P Q P( ) (2)el 1
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where P is the spontaneous polarization along the [001] direction of the particle (P1 =  P2 =  0, P3 =  P); a1, a11, and 
a111 are given in ref. 28; and Gel is the elastic energy in an SBT particle. It can be considered that the SBT particle 
experiences a hydrostatic stress (σ σ σ σ= = =1 2 3 ). Thus, P and TC can be determined by as follows:

Figure 4. (a) Technical CTEs of SBT/Cu composites with different Sr contents. (b) Average technical CTEs of 
SBT/Cu composites with different Sr contents. (c) Physical CTE of the 20SBT/Cu composite. (d) XRD peaks of 
20SBT/Cu composite and their peak fittings at different temperatures. (e) Variation in the XRD peak positions 
of the 20SBT/Cu composite for 2θ =  44–47°. (f) IT/IC and d111 of the Cu versus temperature.
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TC of an SBT particle in the composite is expressed as

= +T T T (4)C C
0

1

where = +T T Ca a/4C
0

0 11
2

111, C is the Curie-Weiss constant, T0 is the Curie-Weiss temperature, and =T1
σ+C Q Q(2 )12 11 . + >Q Q2 012 11  for a pure BT particle according to the data given in ref. 30, assuming that there 

is no change in this equation when Ba is substituted with Sr atoms, so the TC of the SBT particles in the compos-
ites decreases upon cooling. Although the TC of the as-sintered 20SBT powder is approximately 60 °C, TC of the 
SBT particles in the composite is different owing to the inhomogeneous stress on different SBT particles, which 
causes the coexistence of the C and T phases at room temperature.

When the temperature is below the Curie temperature, the T-phase SBT particles in the composite are aniso-
tropic, and their stress state can be assumed to be symmetric about the c axis, i.e., σ σ σ σ= = ≠1 2 3. In this case, 
TC of a T-phase SBT particle can be derived from Equations (2) and (3), and

= +T T T (6)C C
0

2

where, σ σ= +T C Q Q(2 )2 12 11 3 . The CTE of T-phase SBT particles in the SBT/Cu composites along [001] direc-
tion is negative; thus, the compressive stress acting on the SBT particles along the [001] direction relaxes much 
quickly, and even transforms into a tensile stress upon heating. Meanwhile, σ3  decreases rapidly. When σ3  
decreases to a certain value, the value of T2 can be changed to be positive within a certain temperature range; that 
is, TC can be increased upon heating. The Curie temperature is not the same in all SBT particles in the SBT/Cu 
composites owing to the different particle shape and interface states. Therefore, the T–C phase transformation can 
affect the CTEs of the SBT/Cu composites over a wide temperature range.

The negative CTE of the 20SBT/Cu composite may be caused by the following two reasons. On the one hand, 
20SBT particles exhibit a negative thermal expansion during the phase transformation; then, the transformation 
of large number of 20SBT particles leads to a quick decrease in the CTEs of the composite. On the other hand, 
the yield strength of the Cu matrix decreases as the temperature increases, which results in the quick relaxation of 
the tensile stress on the Cu matrix through plastic deformation34. The high rate of change in the stress acting on 
the Cu matrix causes a further decrease in the CTE of the composite; therefore, a negative CTE is obtained in the 
20SBT/Cu composite within a certain temperature range.

In summary, we have designed and prepared SBT-reinforced Cu matrix composites and observed extra low 
thermal expansion behavior in SBT/Cu composites. Owing to the considerable negative thermal expansion effect 
during the ferroelectric-paraelectric phase transformation process, the CTE of the SBT/Cu composite can be 
dramatically reduced and precisely controlled by adjusting the volume fraction of SBT reinforcement. This is the 
first demonstration of the utilization of this phase transformation to design and reduce the CTE of MMCs, which 
provides significant application value and an innovative design approach to achieving low-CTE MMCs.

Methods
Fabrication of SBT Powders. SBT powders with different Sr contents were prepared through solid reac-
tion method. Chemical pure BaCO3, SrCO3 and TiO2 powders were mixed by ball-milling method for 12 h, and 
sintered at 1200 °C for 2 h in order to obtain SBT powders.

Fabrication of SBT/Cu Composite Powders. Pure Cu and SBT powder were mixed through ball-milling 
for 4 h, with ball-to-powder mass ratio equals 5:1.

Consolidation of the SBT/Cu Composites Powders. The SBT/Cu composites with the SBT volume 
fraction of 40% were prepared by spark plasma sintering (SPS) method at 600 °Cand 50 MPa for 10 min, under 
the condition of vaccum.

Characterizations. Microstructures of SBT powders and SBT/Cu composites were observed on a Helios 
Nanolab600i scanning electron microscope (SEM). The phase compositions of SBT powders and composites 
were analyzed by X-ray diffraction (XRD) on a Philips X’Pert X-ray diffractometer with Cu Kα  radiation. The  
in situ XRD on heating was carried out on a PANalytical diffractometer with Cu Kα  radiation. Thermal expansion 
experiments were performed on a Netzsch DIL 402C dilatometer with a heating rate of 2 K/min. The dimension 
of specimens for thermal expansion measurement is Ф6 mm ×  15 mm. The dielectric properties of SBT powders 
were analyzed on an Agilent 4294A impedance analyzer.
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