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The Statistical Value of Raw 
Fluorescence Signal in Luminex 
xMAP Based Multiplex 
Immunoassays
Edmond J. Breen1, Woei Tan2 & Alamgir Khan1

Tissue samples (plasma, saliva, serum or urine) from 169 patients classified as either normal or 
having one of seven possible diseases are analysed across three 96-well plates for the presences of 37 
analytes using cytokine inflammation multiplexed immunoassay panels. Censoring for concentration 
data caused problems for analysis of the low abundant analytes. Using fluorescence analysis over 
concentration based analysis allowed analysis of these low abundant analytes. Mixed-effects analysis 
on the resulting fluorescence and concentration responses reveals a combination of censoring and 
mapping the fluorescence responses to concentration values, through a 5PL curve, changed observed 
analyte concentrations. Simulation verifies this, by showing a dependence on the mean florescence 
response and its distribution on the observed analyte concentration levels. Differences from normality, 
in the fluorescence responses, can lead to differences in concentration estimates and unreliable 
probabilities for treatment effects. It is seen that when fluorescence responses are normally distributed, 
probabilities of treatment effects for fluorescence based t-tests has greater statistical power than the 
same probabilities from concentration based t-tests. We add evidence that the fluorescence response, 
unlike concentration values, doesn’t require censoring and we show with respect to differential analysis 
on the fluorescence responses that background correction is not required.

Multiplexed immunoassays have widespread applications in the life sciences1 and as employed here are often used 
for detecting key biomarkers such as those associated with human inflammation responses. Yet for life scientists, 
immunoassay data analysis on low abundant analytes gets confounded because concentration detection limits 
censor many of their readings from analysis. In this report we show censoring is a concern for concentration 
based analysis and not for fluorescence based analysis and it is seen that fluorescence based analysis has higher 
statistical power than concentration based analysis and therefore a better choice for assigning statistical signifi-
cance to main effects.

Censoring prevents fluorescence responses outside the range of specific standards from being assigned a con-
centration value. Universally, concentration based analysis are reported in the literature2–12 and analysis treating 
out-of-range values simply as unreliable are increasing the risk of obtaining inaccurate concentration estimations 
and false conclusions13–16. Therefore, in concentration based analysis out-of-range values at times are imputed by 
maximum likelihood estimations (MLE)5,17–19, extrapolation3, or substitution20. Extrapolated values are generally 
those estimated concentration values that are out-of-range of the standards but are still within the limits (top/
bottom) of a fitted five or four point logistic curve21. MLE fits a distribution for both the values for detected obser-
vations and the proportion of out-of-range values and is considered reliable if the number of in-range values is 
large, but can be sensitive to outliers22. However, what is not clear to many is that fluorescence based analyses are 
free of such concerns simply because they don’t have out-of-range problems.

There is a ubiquitous appeal for expressing immunoassay results in terms of concentrations that comes from 
the premise they provide absolute quantification, allows the reporting of sensitivity in well understood terminol-
ogy; i.e., pg/ml or ng/ml, and is needed for dosage determination. While the underlying fluorescence responses 
are assumed to provide only relative quantification of the analyte abundances. This assumption may not be strictly 
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true for the observed fluorescence responses for a given platform; as automatic calibration steps during setup 
yields a highly reproducible signal output even across different instruments23. Recently, we have argued that for 
statistical differential analysis and for reproducibility fluorescence values are the better choice and they alleviate 
the concern of determining levels of detection15,17,22,24,25. It this report a xMAP suspension bead-based immuno-
assay format is used to demonstrate fluorescence based data analysis, however the methodological techniques 
used here are generic and applicable to other immunoassay platforms that use typical sigmoidal/ logistic concen-
tration curves to map fluorescence to concentration values.

Results
Blanks and standards. Comparing patient fluorescence responses against standards and blanks reveals 
whether the patient responses are within range of the standards14 (Fig. 1a). The same distributions for all 37 ana-
lytes are given in Supplementary Figure S1. The analytes in (Fig. 1a) were chosen because their sample median 
fluorescent response was below the median response of their lowest standard (S8). For IL-11 its tissue median 
response is actually below the median of the blank (B, Fig. 1a). Also note, the median response for IL-32 in plasma 
and serum are also below their median blank response.

It’s not uncommon for test sample fluorescence responses to be less than their blank2,14. Given that analyte dis-
tributions with a median response below the blank appear normal against the shape of the distributions seen for 
other analytes, it’s arguable what the real association is between the standards and test samples14. While fluores-
cence responses below the associated blank cannot be assigned concentration values without using imputation19, 
they can be used for differential analysis and for assigning statistical significances to treatment effects.

Fluorescence and concentration level of detection. When working with concentration values a deci-
sion is made on how to set the appropriate level-of-detection (LOD) for each analyte25. However, the inverse 
procedure of going from fluorescence to concentration, via the inverse 5PL curve, also has limits (top/bot-
tom), beyond which no concentration values can be obtained. In contrast, when working with the fluorescence 
responses no level of detection is generally specified2,13,26–33. This is because fluorescence enables the analysis of 
low signal and will have more power for testing differences in analyte expression13,14. In this report we are inter-
ested to test if censoring the fluorescence responses is required.

If a fluorescent level of detection exists it is expected that as the fluorescence response drops, the responses, 
for a given analyte, should approach some lower limit. This was not seen in the analyte responses that have a 
median response less than their lowest standard (Fig. 1b). When the individual fluorescence responses are com-
pared against their lower level of detection, LOD, (Fig. 1b: dashed horizontal lines) as obtained from the Bio-Plex 
ManagerTM, there doesn’t appear to be a real difference in point scatter above or below these thresholds (Fig. 1b). 
While IL-22 appears to show a greater scatter above its LOD, this is only a perceptual limit and comes from the 
scaling to view all the responses for the serum samples with respect to the other analytes. Note, for IL-11 all 
the urine samples are below the associated LOD (Fig. 1b). Table 1 gives the coefficients of variation (CV), used 
here as a standardised measure of point scatter and dispersion, for analyte responses with respect to tissue types 
that have at least 5 fluorescence responses above and below their associated LOD. The samples for analysis were 
chosen such that the N nearest points above and below the LOD was selected. Therefore, in total 2N points for 
each analyte and tissue combination was used. The actual value of each N was determined from the minimum 
number of responses either above or below the associated LOD (Table 1). If the analyte responses approach a 
lower limit then we expected on average that the point scatter (CV) below the LOD to be less than above it. A test 
of equality of two coefficients of variation is reportedly equivalent to testing for equality of variances between the 
logarithmic transformed data34. Therefore, we used an F-test and the NULL hypothesis that the ratio between the 
variances of the log2 transformed data above and below the LOD should be one. Seven of the 17 comparisons 
were found significant at the 0.05 level (Table 1). Of these only two represented the case where the CV was greater 
above the LOD than below. The boxplot distributions of the log2 of the CVs (Fig. 1c), for the groups above (A) 
and below (B) the LOD (Table 1) shows that above the LOD the CVs have a greater range of values than below 
it. However, statistically the two groups (A, B), according to a Mann-Whitney test they are statistically similar 
(w =  135, p-value =  0.65) and similarly according to a paired t-test (t =  − 0.42, df =  16, p-value =  0.68). Thus, con-
firming our original observation that there appears little difference in point scatters above and below the LOD, as 
determined from the standards.

A lower limit wasn’t revealed either by considering the log2 of the rank differences; where if a limit of detec-
tion existed then this difference should approach zero as the rank reduces (Fig. 1d). Over the first 50% of the 
differences the average log2 difference for all these analytes is approx. − 1 (Fig. 1d). This reflects ½ a fluorescence 
response unit change per unique fluorescence response change; and suggests that Fl(rank +  1)− Fl(rank) =  0.5, 
when rank is in the set 1:(n/2) and n is the largest rank value (Fig. 1d).

Looking at the ranked ordered of the analyte blank distributions (Fig. 1e) shows a fairly continuous range of 
values. The ranked fluorescence responses for all the patient plasma samples (Fig. 1f) reveals a log2 value of 4 may 
indicate a potential lower level of detection. However, this is just the response level that most patients’ responses 
are actually above. This ordering also exposes the existence of a bend, or dog leg, near the fluorescence log2 value 
of 6 (Fig. 1e). While this bend is not discussed here, it is noted that it represent approximately the median fluo-
rescence response, as about 50% of the fluorescence responses fall below the log2 value of 6. As there are 8 of the 
37 analytes with a median blank response below the log2 value of 4 (Fig. 1d; dashed horizontal line), reveals that 
the Luminex100 instrument has the ability to distinguish fluorescence signal weaker than that observed for the 
majority of our test samples.

While, the above observations suggest that there is no detectable lower level-of-detection for the fluorescence 
responses given here, it doesn’t rule out the case that the signal observed for the low abundant analyte samples 
represents just noise. If this was the case then the p-value distribution obtained for the low-abundant analyte 
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Figure 1. Fluorescence LOD analysis. (a) Tissue test sample analyte fluorescence distributions against the 
associated standards (S1, … , S8) and blanks (B). Standards represent the fluorescence responses obtained from 
a set of standards of known concentrations for each analyte under investigation. The blank represents the test 
kits fluorescence response when its target analyte is missing. The background matrix used for the standards and 
blanks is typically, and as here is, the assay’s diluent. (b) Tissue fluorescence scatterplots for 4 analytes. The dashed 
horizontal line in each plot in (b) is the threshold (censor) determined by Bio-Rad’s Manager Software as the lower 
limit of detection. (c) Box plot Log2 distributions for the fluorescence response coefficient of variation (CV) above 
(A) and below (B) the associated LOD. The log of the values is used because there are two large outliers in the above 
(A) distribution. (d) The log2 of the rank differences as a function of rank; that is: rank.diff(r) =  Fl(r +  1) −  Fl(r); 
where r is a rank, an integer value, from the set: r∈ {1,… , n−1}, and where n is the number of ranks in the set 
1:n. Rank assigns to each unique fluorescence response an ordering from lowest to highest response such that 
Fl(rank) <  Fl(rank + 1) and where Fl(rank) is the fluorescence response associated by rank. (e) Analyte blank 
response distributions in rank order. The dashed horizontal line represents the level at which most if not all the 
patient fluorescence responses are above. (f) Patient sample fluorescence responses for plasma in rank order and 
according to condition. The lower and upper dashed horizontal lines represents the median response from the 
minimum (IL-8) and maximum (Light) blank responses. Abbreviations: Mono =  mononucleosis, and T2D =  type 
2 diabetes. (g) Histogram of 54 Mann-Whitney test p-values obtained from cytokine tissue pairwise comparisons 
for the 9 cytokines that have median test sample response less than its lowest standard (S8): IFN-g (21), IL-10 (56), 
IL-11 (39), IL-12p40 (28), IL-2 (38), IL-20 (30), IL-22 (18), IL-28 (66), IL-32 (35).
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pairwise tissue comparisons (Fig. 1g), should appear uniform35. However, as seen (Fig. 1g) there is an overrep-
resentation of the lowest p-values, indicating the presence of structure and grouping effects in the low abundant 
responses with respect to fixed analyte and pairwise tissue comparisons.

Differential analysis. For differential analysis of analytes across treatment, tissue or disease statuses, a 
variety of statistical approaches can be used, such as: t-tests36,37, ANOVA and ANCOVA37,38, and nonparamet-
ric tests12,24. However, mixed-effects modelling with fixed and random-effects are emerging as the preferred 
approach5,14,27,39. This is because of its ability to represent different experimental designs, to cope with unbalanced 
data sets, handle paired and longitudinal information and each random effect decreases the degrees of freedom 
less than the same effects when treated as fixed40, leaving more degrees of freedom for the additional effects and 
error term estimations41.

The most common method for employing these tests is to consider one analyte at a time using multiple statis-
tical models42. While this has the advantage of computational tractability, compared to a single global statistical 
model approach, it has the disadvantages of not incorporating the variances from all the analytes simultaneously, 
it will missing intrinsic expression similarities or differences and theoretically increasing false positive and nega-
tive rates27,42. Other advantages for including all the analytes in a single statistical model are that it allows for easy 
discovery of statistically significant interactions43, and provides a simple framework for extracting corrected and 
uncorrected probabilities for analyte differences across, or in pair-wise contrasts, between tissues/treatments and 
disease status.

A common form of data reduction prior to statistical analysis is the stratification of results such that only the 
patients with conditions or tissues/treatments of interest are included in the statistical models. For example: to 
compare the Mononucleosis patients against the normal patients, Supplementary Table S1, two statistical models 
would normally be used, one including just the plasma data and other including just the serum data. However, 
doing so is overlooking the ability to correct for tissue and disease differences as needed; thereby, allowing more 
data into the analysis and increasing its underlying statistical power.

Here, two linear mixed-effects models are first examined (Fig. 2a), both use all the available data, but in 
one (the reduced model) not all the data associations are included. In both models the log2 of the fluorescence 
responses (Fl) are modelled with two fixed main effects (reduced model) or three fixed main effects (global model) 
plus 1st order interactions, Tissue:Cytokine and/or Condition:Cytokine. Both models include the same two scalar 
random-effects defined by the terms in brackets and which are conditional, ‘|’, on Plate:Condition:Tissue or on 
Patient. The first random-effect allows for tissues and conditions to associate across different plates, and from 
the data sets here there are 14 such associations, see Supplementary Table S1. The 2nd random effect accounts for 
patient-to-patient variations. Both these models adjust for extraneous variations due to plates, conditions, tissues 
and patient differences and because we have sparse data, Supplementary Table S1, we avoid overfitting by not 
including higher order fixed-effects interactions such as, Cytokine:Tissue:Condition.

Cytokine Tissue LOD N Above Below CV-A CV-B Ratio p.value Sig.

IFN-g (21) plasma 17.418 11 80 11 0.025 0.076 0.327 0.001 * * 

IFN-g (21) serum 17.418 28 52 28 0.059 0.081 0.724 0.064

IL-10 (56) plasma 34.966 29 29 62 0.161 0.129 1.248 0.472

IL-10 (56) serum 34.966 32 48 32 0.116 0.133 0.873 0.319

IL-11 (39) plasma 27.995 33 33 58 0.14 0.123 1.136 0.945

IL-11 (39) serum 27.995 37 37 43 1.239 0.146 8.469 0 * * * 

IL-22 (18) plasma 27.463 12 79 12 0.016 0.092 0.173 0 * * * 

IL-22 (18) serum 27.463 24 56 24 0.082 0.108 0.759 0.188

IL-27 (13) plasma 24.529 9 82 9 0.027 0.101 0.271 0.001 * * 

IL-27 (13) serum 24.529 23 56 23 0.157 0.155 1.013 0.461

IL-29 (33) serum 18.187 19 61 19 0.045 0.078 0.574 0.018 * 

IL-32 (35) plasma 58.531 37 37 54 0.262 0.204 1.282 0.867

IL-32 (35) serum 58.531 39 41 39 0.322 0.284 1.131 0.902

IL-34 (15) plasma 60.664 16 16 75 0.229 0.177 1.296 0.868

IL-34 (15) serum 60.664 24 24 56 1.319 0.176 7.509 0 * * * 

Light (51) plasma 136.28 29 62 29 0.059 0.116 0.505 0.001 * * 

Light (51) serum 136.28 8 72 8 0.049 0.106 0.465 0.056

Table 1.  Comparison of point scatter above and below the level of detection (LOD) for various analytes 
and tissues combinations. LOD represents the fluorescence level associated with the concentration determined 
as the lower level of detection, N the number of responses above and below the associated LOD used in the 
analysis. Above and Below give the actual number of observed responses above and below the LOD. The 
columns CV-A and CV-B give the coefficient of variation (CV) of the samples, each of size N, above and below 
the respective LOD. Ratio gives the value of CV-A/CV-B. P.value represents the uncorrected probability of an 
F test statistic. The number of * ’s in the Sig. column indicates the significance of the associated p-values for each 
analyte and tissue combination.
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For fluorescence, the advantage of including more data associations in the statistical analysis can be tested eas-
ily; by testing if the global model adds explanatory value over the reduced model and where the NULL hypothesis 
is no explanatory value added. From such analysis (Fig. 2b) we see while the global model uses nearly 3 times the 
degrees of freedom (Df) there is good statistical reasons (p-value <  2.2e-16) to use a global model over a reduced 
model as in this case it helps explain more variation in the data. This can also be visualized using regression 

Figure 2. Statistical model for analyte expression. (a) Two linear mixed-effects models in R-notation. Main 
fixed effects are Cytokine, 37 levels, Tissue, 4 levels, and Condition with 8 levels. (b) Gives the results of a 
statistical comparison of the reduced model against the global model. AIC Akaike’s Information Criterion, 
BIC Bayesian Information Criterion, and the smaller they are the better the model fit. Comparisons between 
reduced, (c), and global mixed-effects models (d) for selected analytes using regression conditional plots. 
Conditional plots show the relationship between the outcome and explanatory/conditional variables to be 
viewed as other effects are held constant. Note for the global model, (d), the cluster of points (residuals) around 
each conditional mean response (dark horizontal line) is tighter than that seen in the reduced model, (c). 
Both models contain the same number of samples per tissue. For brevity, only results for 9 of the 37 analytes 
are given, however, the same comparison but for all 37 analytes are given in Supplementary Fig. S2. Since the 
conditional residuals are reasonably scattered above and below their respective means, implies that either model 
is a reasonable fit to the data.
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conditional plots44 and in terms of a reduced spread in the partial residuals about the conditional means for 
each analyte obtained from the global model compared to the same results obtained from the reduced model 
(Fig. 2c,d). Therefore, all statistical analysis here will use the global model (Fig. 2a).

Statistical significance of analyte differences. For the fluorescence responses there are no issues when 
applying the above statistical models (Fig. 2a) because of a reasonable number of patient readings for each analyte 
against tissue and conditions (Supplementary Fig. S3). In contrast, for the concentration analysis there were major 
problems due to zero readings per analyte against tissue or condition (Supplementary Fig. S3). For the concen-
tration data set there are 4 analytes IL-11, IL-34, Light, and MMP-3 that have at least one cell with zero patient 
readings (Supplementary Fig. S3) and the mixed-effects models in (Fig. 2a) need at least 1 entry per cell to avoid 
matrix-rank deficiency problems during analysis. Therefore, these 4 analytes were removed from consideration 
for the concentration analysis, but not from the fluorescence based analysis.

The probabilities of analyte abundance changing across tissue types are easily obtained from a mixed-effects 
model and are given in Table 2. For completeness, the probabilities for the 6 pairwise comparisons between tissue 
types per analytes, for all analytes, are given in Supplementary Table S2. The Sig. column, Table 2, highlights the 

Analyte

Fluorescence Concentration

Chisq Pr(>Chisq) Sig. Chisq Pr(>Chisq) Sig.

April (42) 29.9083 3.17E-05 * * * 16.7169 0.007832 * * 

Baff (37) 113.643 < 2.2e-16 * * * 62.002 4.39E-12 * * * 

CD163 (46) 238.8243 < 2.2e-16 * * * 203.1032 < 2.2e-16 * * * 

CD30 (53) 211.2805 < 2.2e-16 * * * 85.6809 < 2.2e-16 * * * 

Chitinase (72) 424.5781 < 2.2e-16 * * * 317.3054 < 2.2e-16 * * * 

gp130 (14) 103.0032 < 2.2e-16 * * * 131.1003 < 2.2e-16 * * * 

IFN-a2 (20) 6.3883 0.84757 16.7829 0.007832 * * 

IFN-b (44) 7.8082 0.5516 11.4468 0.047698 * 

IFN-g (21) 8.8317 0.41099 33.9826 3.40E-06 * * * 

IL-10 (56) 3.907 1 4.4864 0.640518

IL-11 (39) 0.8161 1

IL-12p40 (28) 3.2292 1 12.739 0.031419 * 

IL-12p70 (75) 1.0107 1 1.356 1

IL-19 (29) 358.3435 < 2.2e-16 * * * 167.5504 < 2.2e-16 * * * 

IL-2 (38) 2.5195 1 35.0154 2.18E-06 * * * 

IL-20 (30) 8.292 0.48416 17.9174 0.005032 * * 

IL-22 (18) 14.932 0.03001 * 29.4719 2.85E-05 * * * 

IL-26 (22) 12.2377 0.09918 . 13.608 0.024432 * 

IL-27 (13) 16.4034 0.01781 * 20.5327 0.00158 * * 

IL-28 (66) 1.7238 1 10.1141 0.070482 .

IL-29 (33) 5.8678 0.9458 26.1033 0.000127 * * * 

IL-32 (35) 76.6646 3.66E-15 * * * 73.4943 1.60E-14 * * * 

IL-34 (15) 11.9239 0.10708

IL-35 (34) 15.7757 0.02143 * 15.6706 0.010597 * 

IL-6RA (19) 233.956 < 2.2e-16 * * * 208.3386 < 2.2e-16 * * * 

IL-8 (54) 544.3097 < 2.2e-16 * * * 223.1665 < 2.2e-16 * * * 

Light (51) 29.2716 4.12E-05 * * * 

MMP-1 (43) 7.5231 0.56967 56.0105 7.94E-11 * * * 

MMP-2 (26) 244.5459 < 2.2e-16 * * * 180.0698 < 2.2e-16 * * * 

MMP-3 (45) 228.2042 < 2.2e-16 * * * 

OCN (65) 255.3559 < 2.2e-16 * * * 233.1102 < 2.2e-16 * * * 

OPN (77) 717.7917 < 2.2e-16 * * * 225.871 < 2.2e-16 * * * 

Pentraxin (48) 131.4268 < 2.2e-16 * * * 136.3573 < 2.2e-16 * * * 

TNFR1 (73) 28.7805 4.98E-05 * * * 29.273 2.94E-05 * * * 

TNFR2 (67) 274.9578 < 2.2e-16 * * * 193.6078 < 2.2e-16 * * * 

TSLP (52) 1.3719 1 0.5499 1

Tweak (62) 16.2958 0.01781 * 21.084 0.001315 * * 

Table 2.  Comparison of analyte expression across tissue types. The probability values (Pr(> Chisq)) of 
the Chi-square result have been multiple test corrected using Holm’s methods48. The number of * ’s in the Sig. 
column gives an indication of the analytes significance across each tissue. Note the empty rows associated with 
the concentrations results represents the analyte that couldn’t be analysed because of missing values. Degrees of 
freedom for all tests is 3.
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analytes that have significant abundance changes across tissue types according to either fluorescence responses or 
concentration values. The concentration analysis shows that nearly every analyte except for IL-10, IL-12p70 and 
TSLP, are significant at the 0.05 level. Seven analytes (IFN-a2, IFN-b, INF-g, IL-12p40, IL-2, IL-26 and MMP-1) 
are significant according to concentration but not according to fluorescence, Table 2. By looking at the adjusted 
means and the 95% confidence limits against tissue (Fig. 3a) for these analytes it’s seen for fluorescence that all 
confidence limits for each of the 7 analytes, across tissues, overlap each other. This is not so for the concentration 
responses and this is why theses analytes show up as being significant according to concentration but not accord-
ing to the fluorescence analysis.

In Table 3, analyte pair-wise comparisons between normal patients and diseased patients (COPD, Mono, 
Myeloma, Psoriasis, RA, Sepsis and T23) are given. For brevity, Table 3 shows only those comparisons that are 
significant according to either the fluorescence or concentration based analysis at the 0.05 level. There are 56 com-
parisons in Table 3, 39 are significant according to fluorescence, but 45 according to the concentration results. The 
largest difference between the fluorescence and concentration results is seen for the pair-wise differences between 
normal and T2D patients. For this comparison: the fluorescence result shows only April as being differentially 
expressed, while from the concentration analysis IFN-g, IL-12p40, IL-2, IL-28 and IL-29, are identified as being 
differentially expressed. From the adjusted means and the 95% confidence limits according to the fluorescence 
and concentration responses for these analytes (Fig. 3b), it is clear from the concentration data that these analytes, 
except for April, are differentially expressed between normal and T2D patients, but equally clear from the fluores-
cence analysis is, that these same analytes are not differentially expressed (Fig. 3b).

We believe that the differences between the relative analyte abundances seen between the concentrations and 
fluorescence responses (Fig. 3) can only come about if the mapping from fluorescence to concentration changed 
the relative abundances and differences between the analytes from that given by the fluorescence responses.

Mapping the fluorescence response into concentration values. It should be noted that the differ-
ences between the fluorescence and concentration results shown above are mostly highlighting low abundant 
analytes (Fig. 3). Yet it is the low abundant analytes that at times are the most interesting to the life scientists 
and can occupy most of the analysis. Therefore, simulation is used to confirm our understanding of the differ-
ences between the analyte abundance profiles seen in (Fig. 3). Mapping a hypothetical fluorescence response 
distribution to concentration values through a simple sigmoidal curve (Fig. 4a) at low (0.05), middle (0.5; the 
EC50 response) and high (0.95) response levels, reveals that the resulting concentration distributions are skewed 
either to left for low fluorescence response, or skewed right at high fluorescence response level (Fig. 4b). EC50 
represents the effective concentration that produces 50% of the maximum fluorescence response. Note also, not 
all input responses were mapped to concentration values because the maximum (top) and minimum (bottom) 
log2 fluorescence responses that can be mapped via the inverse sigmoidal curve in this simulation is 1 and zero 
respectively. Also note, the variances, as measured by the standard deviation, sd, increases as the output distri-
bution moves away from the EC50 location. This implies that any resulting statistical test on the concentration 
distributions when the fluorescence distribution is normally distributed but not centred at the EC50 response will 
have less statistical power and hence higher p-values compared to the input fluorescence responses.

Figure 3. Comparison of analyte expression fluorescence and concentration levels. Adjusted means 
obtained for selected analytes from the global mixed-effects models. (a) Analyte means adjusted for condition, 
plate and patient differences across tissue. (b) Analyte means adjusted for tissue, plate and patient differences 
across conditions: Normal and T2D (Type 2 Diabetes). Error bars represent 95% confidence.
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Analyte Contrast

Fluorescence Concentration

Value Chisq Pr(>Chisq) Sig. Value Chisq Pr(>Chisq) Sig

April (42) Normal-COPD − 0.908 14.060 0.040 * − 0.656 4.678 1.000

April (42) Normal-Mono 1.383 69.060 0.000 * * * 1.484 54.024 0.000 * * * 

Baff (37) Normal-Mono − 0.907 29.659 0.000 * * * − 0.319 2.492 1.000

CD163 (46) Normal-Mono − 0.775 21.684 0.001 * * * − 0.760 14.180 0.032 * 

CD30 (53) Normal-Mono − 0.878 27.833 0.000 * * * − 0.861 18.190 0.004 * * 

IL-20 (30) Normal-Mono − 0.398 5.717 1.000 − 0.779 14.901 0.022 * 

IL-26 (22) Normal-Mono − 0.695 17.416 0.007 * * − 1.031 26.082 0.000 * * * 

IL-27 (13) Normal-Mono − 1.417 71.749 0.000 * * * − 1.796 58.714 0.000 * * * 

MMP-1 (43) Normal-Mono 0.341 4.204 1.000 1.550 49.783 0.000 * * * 

MMP-3 (45) Normal-Mono 1.043 39.227 0.000 * * * 

OCN (65) Normal-Mono 0.645 15.010 0.024 * 0.468 5.368 1.000

OPN (77) Normal-Mono 0.948 32.415 0.000 * * * 0.841 17.349 0.006 * * 

TNFR2 (67) Normal-Mono − 0.741 19.828 0.002 * * − 0.606 9.008 0.473

April (42) Normal-Myeloma 1.831 70.681 0.000 * * * 2.055 53.370 0.000 * * * 

IL-32 (35) Normal-Myeloma − 1.014 21.689 0.001 * * * − 1.428 16.454 0.010 * * 

MMP-1 (43) Normal-Myeloma 0.317 2.114 1.000 1.529 24.371 0.000 * * * 

OCN (65) Normal-Myeloma 0.804 13.632 0.049 * 0.760 7.302 1.000

OPN (77) Normal-Myeloma 3.864 314.651 0.000 * * * 2.665 89.768 0.000 * * * 

MMP-1 (43) Normal-Psoriasis − 1.286 29.022 0.000 * * * − 1.945 41.329 0.000 * * * 

OPN (77) Normal-Psoriasis 1.669 48.862 0.000 * * * 1.067 12.881 0.063 .

April (42) Normal-RA − 0.737 13.852 0.044 * − 0.759 10.660 0.198

IFN-a2 (20) Normal-RA − 0.512 6.689 1.000 − 1.025 19.217 0.002 * * 

IFN-b (44) Normal-RA − 0.750 14.350 0.034 * − 1.334 32.520 0.000 * * * 

IFN-g (21) Normal-RA − 0.194 0.958 1.000 − 1.256 13.492 0.046 * 

IL-10 (56) Normal-RA − 1.357 47.009 0.000 * * * − 1.789 31.465 0.000 * * * 

IL-11 (39) Normal-RA − 1.140 33.178 0.000 * * * 

IL-12p40 (28) Normal-RA − 0.608 9.423 0.450 − 1.413 36.518 0.000 * * * 

IL-12p70 (75) Normal-RA − 1.481 56.015 0.000 * * * − 2.429 107.861 0.000 * * * 

IL-19 (29) Normal-RA − 1.152 33.862 0.000 * * * − 1.218 27.458 0.000 * * * 

IL-2 (38) Normal-RA − 1.037 27.469 0.000 * * * − 2.470 105.001 0.000 * * * 

IL-20 (30) Normal-RA − 1.563 62.396 0.000 * * * − 2.669 131.993 0.000 * * * 

IL-22 (18) Normal-RA − 1.722 75.713 0.000 * * * − 3.814 148.767 0.000 * * * 

IL-26 (22) Normal-RA − 0.536 7.335 1.000 − 0.959 17.045 0.007 * * 

IL-27 (13) Normal-RA − 1.532 59.846 0.000 * * * − 2.300 65.341 0.000 * * * 

IL-28 (66) Normal-RA − 0.543 7.523 1.000 − 1.271 29.110 0.000 * * * 

IL-29 (33) Normal-RA − 0.621 9.838 0.362 − 2.215 53.627 0.000 * * * 

IL-35 (34) Normal-RA − 1.006 25.855 0.000 * * * − 1.432 37.969 0.000 * * * 

IL-8 (54) Normal-RA − 1.320 44.442 0.000 * * * − 1.076 21.460 0.001 * * * 

TSLP (52) Normal-RA − 0.633 10.234 0.295 − 1.225 27.796 0.000 * * * 

April (42) Normal -Sepsis − 1.106 22.188 0.001 * * * − 0.747 6.568 1.000

Baff (37) Normal -Sepsis − 1.795 58.436 0.000 * * * − 1.115 14.626 0.025 * 

Chitinase (72) Normal -Sepsis − 0.530 5.087 1.000 − 1.111 13.591 0.043 * 

IL-10 (56) Normal -Sepsis − 0.870 13.724 0.047 * − 0.903 6.364 1.000

IL-2 (38) Normal -Sepsis − 0.311 1.753 1.000 − 1.314 19.372 0.002 * * 

IL-8 (54) Normal -Sepsis − 2.288 94.906 0.000 * * * − 1.581 29.423 0.000 * * * 

MMP-1 (43) Normal -Sepsis − 2.248 91.631 0.000 * * * − 2.083 48.468 0.000 * * * 

MMP-3 (45) Normal -Sepsis − 0.903 14.798 0.027 * 

Pentraxin (48) Normal -Sepsis − 0.952 16.419 0.012 * − 0.860 8.694 0.555

TNFR1 (73) Normal -Sepsis − 0.975 17.250 0.008 * * − 1.355 21.622 0.001 * * * 

TNFR2 (67) Normal -Sepsis − 1.282 29.817 0.000 * * * − 1.611 30.543 0.000 * * * 

April (42) Normal -T2D − 0.751 17.352 0.007 * * − 0.600 8.819 0.522

IFN-g (21) Normal -T2D − 0.329 3.340 1.000 − 1.090 23.031 0.000 * * * 

IL-12p40 (28) Normal -T2D − 0.184 1.044 1.000 − 0.827 16.684 0.009 * * 

IL-2 (38) Normal -T2D − 0.094 0.272 1.000 − 0.756 13.738 0.040 * 

IL-28 (66) Normal -T2D − 0.222 1.510 1.000 − 0.807 15.846 0.013 * 

IL-29 (33) Normal -T2D − 0.256 2.022 1.000 − 1.044 21.131 0.001 * * * 
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Simulations for mapping the fluorescence responses from two hypothetical tissues/treatment groups A and 
B to concentrations are used to see how censoring and mapping fluorescence responses to concentration values 
effects statistical comparisons (Fig. 4c,d). Three input distribution pairs are used and they differ only with respect 
to level of skewness (Fig. 4c). The resulting p.values from two-sample t-tests, performed on the input fluores-
cence responses after translation, along the fluorescence axis, and on the corresponding output concentration 
distributions after the translated fluorescence responses are mapped to concentration values. This was carried 
out in a stepwise fashion (stepsize =  0.01) across the range of responses from 0.05 to 0.95 inclusively (Fig. 4d). 
The left plots (Fig. 4c,d) gives the case when the input distributions are normally distributed (skew =  0), and 
shows that the resulting concentration p.values, increase with distance from EC50 location (0 on the log2 scale). 
However, the expected p.values as obtained from the translated fluorescence responses remains constant. The 
middle plots (Fig. 4c,d) gives the case when both input distributions are skewed left (skew =  − 5) and reveals that 
below the EC50 concentration the concentration p.values increase, but above the p.values decrease. The right plots 
(Fig. 4c,d) show the opposite case, when the input distributions are skewed right (skew =  5), and below the EC50 
the concentration p.values are seen to decrease but above they increase.

The plots in (Fig. 4d) reveal that the concentration t-tests results changed with respect to concentration, 
implying that the effect-size between the inputs must also be changing with respect to concentration. Therefore, 
the underlying relative abundances determined from concentration based analysis can be different from that 
obtained from a fluorescence based analysis. Also note, that the expected p.values (Fig. 4d), obtained from the 
input fluorescence responses remained constant with respect to translation along the fluorescence axis, telling us 
that the results of t-tests are invariant under translation and more importantly, that differential analysis performed 
on the raw fluorescence values don’t actually require any form of background correction prior to analysis.

Discussion
Here we have added evidence that there is no need to specify a limit of detection for the fluorescence response. That 
a global statistical model has more statistical power than a reduced statistical model, and this we believe extends 
to the cases of looking at single analytes at a time or via stratifying the results into logical groupings and analysing 
these groups individually. It was demonstrated that the observed concentration values and resulting p.values from 
comparative concentrations based analysis are affected by the shape of the input fluorescence response distribu-
tions and the actual location on the concentration curve these input distributions map through. Because of these 
relationships the exact output probabilities after mapping fluorescence responses to concentration values is to 
some extent unpredictable, even if the input fluorescence comparative probability is known. The output proba-
bilities according to concentration comparisons can be less than obtained from the same comparisons using the 
fluorescence responses. This then leads to false conclusions and claims of greater effect size and significance. In 
other instances the output concentration comparisons probabilities can actually be greater than that obtained from 
the input fluorescence distributions leading to the false conclusion of little or small observable effect size.

Here it was seen that the analyte blanks showed varying response levels, suggesting that non-specific binding 
of multiplexed detector antibody complexes might be contributing to this variations. Some bead types appear to 
be inherently stickier, such as Light (51), while other bead types appeared much less sticky, for example IL-8 (54). 
We suggest that this non-specific binding observed in the blanks maybe blocked by agents found in the test sam-
ple14. These blocking agents could be lipids, cholesterol, proteins, or heterophilic antibodies. However, the common 
approach of subtracting the blank from the test sample responses to correct for nuisance background levels must 
assume no blocking is occurring in the test samples, yet it’s not unusual to find sample responses for low abundant 
analytes less than the associated blank and this would not be the case if this assumption was true. Alternatively, by 
not subtracting the blank, as done here, assumes 100% of the non-specific binding sites are blocked by agents in the 
test samples. The reality, perhaps, will be between these two extremes. Of concern, for the analyst, is that individual 
estimates of the background levels will be mixed in with noise. Subtracting these estimates especially from the low 
abundant analytes will result in values with even more noise. Alternatively, the effect of no background subtraction 
will mean slightly higher response values for the low abundant analytes and will underestimate slightly any fold 
change measurements. Yet for differential analysis this isn’t a problem because it was shown here via simulation that 
background levels should have no impact on differential analysis when using the fluorescence responses. This is 
because our simulations revealed that t-tests were invariant under translation; that is, t-test(x,y) =  t-test(x +  b, y +  b); 
where x, y represent two groups of values and b represents the background level.

The use of fluorescence response in the case of xMAP technology permits data analysis to be performed inde-
pendently from a standard curve. As a general guideline, for data points collected in duplicate or triplicate wells, 
intra fluorescence responses %CV reflects actual well-to-well variation in reading. This %CV value is typically 
smaller than intra-observed concentration %CV14, which is dictated by the precision of the entire standard curve. 
As a result, a poor between-plate %CV on a standard curve will have a larger impact on data interpretation if sam-
ple analysis is concentration driven. This is not an issue if data analysis is performed using fluorescence response. 
In addition, sample analysis in the absence of a standard curve will also help to maximize the number of samples 
to analyse per 96-well plate, from 39 to 47 samples (run in duplicate wells).

Table 3.  Significant analyte pair-wise condition (contrast) differences. The probability values (Pr(> Chisq)) 
of the Chi-square result have been multiple test corrected using Holm’s methods48. The number of * ’s in the Sig. 
column indicates significance levels. Note the empty rows associated with the concentrations results represents 
analyte comparisons that couldn’t be analysed because of missing concentration values. COPD =  chronic 
obstructive pulmonary disease, Mono =  mononucleosis, RA =  rheumatoid arthritis, T2D =  type 2 diabetes. 
Degrees of freedom =  1 for all tests.
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Figure 4. Modelling the mapping of fluorescence responses to concentration values. (a) A Simulations 
of mapping a hypothetical fluorescence response (Fl) distribution to concentration values (pg/ml) through 
a sigmoidal curve. (a) Gives the concentration response curve (sigmoidal curve), the corresponding inverse 
sigmoidal curve and the input fluorescence distribution. Note, the log2(Fl) responses are normalized to lie 
between 0 and 1. The boxplots overlaid on the sigmoidal curve show the relative fluorescence range/scale of 
the input distribution at low (0.05), middle (0.5; EC50 response) and high (0.95) responses levels against the 
concentration curve (for comparison see Supplementary Fig. S1). The dashed horizontal and vertical lines on 
the sigmoidal and the inverse curve respectively highlight these levels. (b) Shows the corresponding output 
concentration distributions after mapping the input distribution in (a) to pg/ml when the input distribution is 
centred at low, middle, or high log2(Fl) responses. The vertical dashed lines overlaid on the output distributions 
represent the expected mean concentration as obtained from the input mean fluorescence response.  
(c) Simulations of mapping the log2(Fl) responses from two hypothetical tissues A and B to pg/ml is given. 
Three input distribution pairs that differ only with respect to their level of skewness (0, − 5, and 5 respectively). 
The distance between the input means in each pair was set to achieve a Cohen’s effect size of 0.8. (d) Gives the 
resulting p-values obtained from two-sample t-tests on the output concentration distributions, as the input 
distributions (c) are mapped to concentration values from low (0.05) to high (0.95) response levels; step size 
approx. 0.01 log2(Fl) units. Note, the expected p-values in (d) represent the results obtained from t-tests on the 
input fluorescence distributions after each translation along fluorescence axis.
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Methods
From 169 patients, a total of 191 samples, for either one or two of four possible sample types (plasma, saliva, 
serum and urine) were purchased from Bioreclamation Inc (Hicksville, NY). All blood specimens were collected 
at clinical locations using standard vacutainer-type blood collection tubes and processed to plasma or serum by 
the vendor. The samples were aliquoted and stored frozen at − 80 °C for single use. Bioreclamation Inc. collects 
every sample under IRB approved protocols, where ethical guidelines are followed to protect patient confidential-
ity and safety. Each sample has the patients consent for use in a wide range of research including the development 
of commercial products or services.

Patients were classified as either normal or as having one of seven possible disease states (COPD, 
Mononucleosis, Myeloma, Psoriasis, Rheumatoid Arthritis, and Type 2 Diabetes). Patient personal record and 
medical history were blinded and their sample identification was randomized prior to analysis. Samples were 
analysed across three 96-well plates, labelled here as Plate =  (plate1, plate2, plate3), for the presences of 37 ana-
lytes (April, Baff, CD163, CD30, Chitinase, gp130, IFN-a2, IFN-b, IFN-g, IL-10, IL-11, IL-12p40, IL-12p70, IL-19, 
IL-2, IL-20, IL-22, IL-26, IL-27, IL-28, IL-29, IL-32, IL-34, IL-35, IL-6RA, IL-8, Light, MMP-1, MMP-2, MMP-3, 
OCN, OPN, Pentraxin, TNFR1, TNFR2, TSLP, and Tweak). The actual number of patients associations between 
sample types, conditions and plates are given in Supplementary Table S1. Note, the 16 mononucleosis patients 
across plasma and serum are paired, as is the 6 myeloma patients across plasma and serum. All other patient 
groups represent different patients. All samples were diluted 4-fold with sample diluent prior to data acquisition.

The fluorescence responses and concentrations of analytes were obtained using a Bio-Plex Pro™  Human 
Inflammation Panel 37-Plex assay kit with magnetic beads (171AL1001M, Bio-Rad, Hercules, California, USA) 
and analysed with a Luminex100 system and the accompanying Bio-Plex ManagerTM Software 6.1(Bio-Rad, 
Hercules, California, USA).

The concentration values and detection limits were determined from standard curves generated from each 
kit’s standards using the Bio-Plex Software ManagerTM weighted 5PL curve fitting procedure. To maximize the 
number of concentrations values available for analysis we included the Bio-Plex extrapolated values. Therefore, 
the definition of out-of-range here, and unless otherwise stated, refers to concentration values that cannot be 
obtained from the 5PL logistic curve; that is beyond extrapolation.

All statistical analysis was performed using R version 3.1.0 (2014-04-10)45 via RStudio Version 0.98.50746. The 
mixed-effects modelling were done using lmer47. The visualization of regression results was done using visreg44, 
and the significance of interactions terms and interaction means were determined using Phia package43. Unless 
otherwise stated all p-values have been multiple test corrected according to Holm’s method48. For simulation 
experiments normal distributions were obtained from rnorm and skewed distribution were obtained using skew 
normal distribution methods, rsn, from the R package sn49.
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