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Small molecule dual-inhibitors of 
TRPV4 and TRPA1 for attenuation 
of inflammation and pain
Patrick Kanju1, Yong Chen1, Whasil Lee1, Michele Yeo1, Suk Hee Lee1, Joelle Romac2, 
Rafiq Shahid2, Ping Fan2, David M. Gooden3, Sidney A. Simon4, Ivan Spasojevic2, 
Robert A. Mook2,3, Rodger A. Liddle2, Farshid Guilak5 & Wolfgang B. Liedtke1,4,6,7

TRPV4 ion channels represent osmo-mechano-TRP channels with pleiotropic function and wide-
spread expression. One of the critical functions of TRPV4 in this spectrum is its involvement in pain 
and inflammation. However, few small-molecule inhibitors of TRPV4 are available. Here we developed 
TRPV4-inhibitory molecules based on modifications of a known TRPV4-selective tool-compound, 
GSK205. We not only increased TRPV4-inhibitory potency, but surprisingly also generated two 
compounds that potently co-inhibit TRPA1, known to function as chemical sensor of noxious and 
irritant signaling. We demonstrate TRPV4 inhibition by these compounds in primary cells with known 
TRPV4 expression - articular chondrocytes and astrocytes. Importantly, our novel compounds 
attenuate pain behavior in a trigeminal irritant pain model that is known to rely on TRPV4 and TRPA1. 
Furthermore, our novel dual-channel blocker inhibited inflammation and pain-associated behavior in a 
model of acute pancreatitis – known to also rely on TRPV4 and TRPA1. Our results illustrate proof of a 
novel concept inherent in our prototype compounds of a drug that targets two functionally-related TRP 
channels, and thus can be used to combat isoforms of pain and inflammation in-vivo that involve more 
than one TRP channel. This approach could provide a novel paradigm for treating other relevant health 
conditions.

Transient receptor potential Vanilloid 4 (TRPV4) ion channels were initially discovered as osmotically-activated 
channels1,2. Discussing the channel’s possible role as mechanosensor, and its expression in sensory neurons in 
the trigeminal and dorsal root ganglion1,3,4, led to postulation and eventual experimental validation of a pos-
sible function in pain sensing and signaling1,3–5. This medically-relevant role was corroborated over time6–15, 
as was the mechano-sensory role of TRPV411,16–20. The pro-nociceptive prostanoid PGE2, activation of PAR-2 
signaling, inflammation and nerve injury were found to augment TRPV4-mediated pain signaling in various 
systems5,6,9,12,21,22, including a novel model of temporo-mandibular joint (TMJ) pain14. In a shift of paradigm, 
TRPV4 was found to function as a relevant sensing molecule in epidermal keratinocytes for UVB overexposure15. 
UVB-exposed keratinocytes, depending on their TRPV4 expression and signaling, were functioning as organis-
mal pain generators, supported by the finding that deletion of Trpv4 exclusively in these cells sufficed to greatly 
attenuate the organismal pain response. TRPV4 was also found to play a role in visceral pain, e.g. of the colon 
and pancreas7,8,18,23–25, the latter two conditions also co-involving TRPA18,24,26–28. The co-involvement of TRPV4 
and TRPA1 was also noted in our TMJ model14, as well as in formalin-mediated irritant pain of the trigeminal 
territory, which serves as a generic model of cranio-facial pain13.

Importantly, blocking TRPV4 with selective inhibitors shows similar results as those obtained with genetic 
knockouts13,14,25,29–34, particular in models of TMJ pain or formalin-induced trigeminal formalin pain13,14. These 
findings suggest that TRPV4 could serve as a critical pain target, thus incentivizing the development of more 
potent and selective small-molecule inhibitors as new clinically-relevant therapeutic drugs. This direction has 
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advantageous features because genetic approaches are currently limited to experimental conditions and TRPV4 
inhibitors are not yet clinically available

The goal of this study was to develop TRPV4 inhibitors with increased potency over a previously used tool 
compound, GSK20532–34. Our results indicate that we have successfully developed compounds with significantly 
increased TRPV4-inhibitory potency as compared to the tool compound. Interestingly, our approach led to the 
development of two novel inhibitor molecules that simultaneously target TRPV4 and TRPA1, a potentially advan-
tageous property that we successfully applied in two exemplary in-vivo preclinical models of pain, irritation and 
inflammation.

Results
Chemical synthesis of GSK205 derivatives and assessment of their TRPV4-inhibitory potency 
in cell-based assays. We modified compound GSK205 by generating 7 primary modifications, as shown in 
Fig. 1. One additional compound (16-19) that had the combined respective modifications of the two most potent 
compounds, as defined in primary screens, was also synthesized. We assessed TRPV4-inhibitory potency of these 
synthetic compounds in a Ca+ +  imaging assay in neuronal 2a (N2a) permanent tissue culture cells with directed 
expression of mammalian (rat) TRPV4. TRPV4 channels were stimulated with a selective activator compound, 
GSK1016790A (GSK101), used at 5 nM. For first round assessment, all TRPV4-inhibitory compounds were used 
at 5 μ M (Fig. 2A). Compound 16-43C did not inhibit Ca+ +  influx, and its effect was similar to vehicle control. All 
other compounds inhibited TRPV4-mediated Ca+ +  influx, with compounds 16-8 and 16-18 emerging as the two 
most potent. Compound 16-19 which incorporated the modifications of both 16-8 and 16-18, was also effective in 
inhibiting TRPV4-mediated currents. However, we did not find a significant difference between compound 16-19 
and 16-8, both of which virtually eliminated Ca+ +  influx.

We then conducted more detailed dose-response assessments for compounds 16-8, 16-18 and 16-19, which 
yielded an IC50 of 0.45, 0.81 and 0.59 μ M, respectively, vs. an IC50 of 4.19 μ M for parental compound GSK205. 
These findings represent an increased potency of the GSK205-derivative compounds by approximately 10-fold for 
16-8, 8-fold for 16-19 and 5-fold for 16-18. Surprisingly, compound 16-19 was not significantly more potent than 
16-8, whereas 16-8 was more potent than 16-18. Based on these results, we tested 16-8 and 16-19 vs GSK205 (as a 
control) in patch-clamp studies (Fig. 3). Our results indicate significantly increased potency of compounds 16-8 
and 16-19 as compared to the parental molecule, GSK205 (all applied at 5 μ M) in attenuating TRPV4-mediated 
currents.

We next decided to assess potency of the most potent compound 16-8 vs. parental compound GKS205 in 
two types of primary cells that are known to express TRPV4 and in which TRPV4 function has been demon-
strated in a relevant biological context. We examined articular chondrocytes, which have prominent TRPV4 
expression, where TRPV4 serves as the mechanotransducer of physiologic mechanical loads to regulate the 
cells’ anabolic response, and thus tissue homeostasis, in cartilage19. In addition, we studied brain astrocytes, 
where TRPV4 expression and relevant function has been previously demonstrated in regulating astrocyte 
cellular edema, in the coupling of neuronal activity to cerebral blood flow, and in mediating CNS traumatic 
injury35–37. Fulfilling our main objective, in both cell types we observed significantly increased potency of com-
pound 16-8 as compared to the parental molecule, GSK205 (Fig. 4). Evaluation of the inhibitory potency of 
GSK205 derivatives in these primary cells, which express functional and biologically-relevant TRPV4 without 

Figure 1. Modifications of tool compound GSK205 for improved targeting of TRPV4. The synthesized 
compounds differed in the highlighted part of the molecule, changed residue indicated with arrow. Compound 
16-19 compound was synthesized to incorporate two modifications from two compounds, 16-8 and 16-18, 
found most potent in anti-TRPV4 screening assays (see Fig. 2).
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directed over-expression of the channel (Fig. 4), directly corroborate the findings of more basic studies using 
heterologously TRPV4-overexpressing immortalized cell lines (Fig. 2), strongly supporting our conclusions 
on the increased potency of the newly derived compounds. Taken together, we identified compound 16-8 as 
a TRPV4-inhibitory compound with sub-micromolar potency in heterologous systems, with approximately a 
10-fold increase in potency as compared to its parental molecule, GSK205. Moreover, 16-8 proved more effective 
in TRPV4-expressing primary skeletal and CNS-derived cells. However, the rational modification to compound 
16-19, intended to further enhance potency, did not yield the intended effect.

Before testing these compounds in relevant in-vivo animal models, we next tested their cellular toxicity as well 
as the specificity of these compounds against other selected TRP ion channels.

Figure 2. Assessment of 16-… compounds in N2a cells with directed expression of TRPV4. (A) Ca+ +  imaging 
screening of all compounds in N2A cells with directed expression of TRPV4 (rat). The cells were stimulated 
with TRPV4-selective activator compound, GSK101 (5 nM) in the presence of 5 μ M of the respective inhibitor. 
The number on each bar corresponds to average peak ∆ Ca+ +  concentrations in ≈ 100 cells. Inset: micrographs 
of pseudo-colored cells before and after activation with 5nM GSK101, in addition note the corresponding time 
course of the averaged Ca+ +  signal (fura-2 Ca+ +  imaging). Except for compound 16-43C, the difference to vehicle 
control reach the level of statistical significance p <  0.01 (one-way ANOVA). (B) Dose-response of the most potent, 
“winner” compounds in TRPV4-expressing N2a cells. The IC50 were; 0.45 ±  0.05 μ M (16-8), 0.59 ±  0.12 μ M  
(16-18), 0.81 ±  0.1 μ M (16-19), 4.19 ±  0.71 μ M (GSK205). Plot generated from averaged peak ∆ Ca+ +  concentration 
of ≥75 cells per data-point.

Figure 3. TRPV4 channel inhibition by compounds 16-8 and 16-19 – patch-clamp e-phys. (A) Current-
voltage relationship of TRPV4-mediated currents after activation with 5 nM GSK101. Recordings were 
performed in TRPV4-GFP+  N2a cells. The representative traces represent an average of ≈ 12 sweeps. In all 
experiments, cells were pre-incubated with the respective compound (5 μ M) for 5 minutes. (B) Average current 
densities at −100mV/+100 mV were significantly diminished by inhibitors (* P <  0.05; one-way ANOVA; n ≥  5 
cells/group).
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Novel TRPV4 inhibitors are selective, with benign toxicity profile, yet display potent inhibi-
tion of TRPA1. In heterologously transfected permanent N2a cells, we did not observe inhibitory potency 
of compounds 16-8 or 16-19 toward TRPV1, TRPV2 and TRPV3 (Fig. 5A). However, we made the unexpected 
discovery of sub-micromolar inhibitory potency vs TRPA1 for compounds 16-8 and 16-19, micromolar potency 
for GSK205, and, remarkably, no significant activity for compound 16-18 (Fig. 5B). We recorded IC50 of 0.41, 0.43, 
5.56 μ M and >25 μ M for compounds 16-8, 16-19, GSK205 and 16-18, respectively.

In terms of cellular toxicity, we found first evidence of toxicity using a sensitive cell viability assay over a 
time-course of 2 days, at 20 μ M, and more pronounced effects at 40 μ M (Fig. 6).

Taken together, our results indicate that compounds 16-8 and 16-19 also inhibit TRPA1 at sub-micromolar 
potency, and their cellular toxicity vs their inhibitory potency against TRPV4/TRPA1 ranges at a factor of 50–100. 

Figure 4. Compound 16-8 inhibits TRPV4 in I˚ cells more potently than GSK205. (A) I˚ articular 
chondrocytes (pig); dose-response comparison between the most potent compound, 16-8, and GSK205 in 
response to stimulation with 5 nM GSK101. Inset: Chondrocytes responding to activation with GSK101, fura-2 
Ca+ +  imaging; right-hand image taken at 5 sec after GSK101 application. 16-8 was significantly more potent 
than GSK205 (mean ±  SEM, n =  6 independent expts, n ≥  25 cells/expt; * p <  0.05, t-test). Ordinate shows 
average peak ∆ Ca+ +  concentrations. (B) I˚ astrocytes (rat); dose-response comparison between 16-8 and 
GSK205 in response to 5 nM GSK101. Inset: Astrocytes responding to activation with GSK101; right-hand 
image taken at 5 sec after GSK101 application (mean ±  SEM, n =  5 independent expts, n ≥  200 cells/expt;  
* p <  0.05, t-test). Ordinate shows average peak ∆ Ca+ +  concentrations.

Figure 5. Compounds 16-8 and 16-19 also potently inhibit TRPA1, not TRPV1-3. (A) Specificity vs 
TRPV1-3. Both 16-8 and 16-19 (5 μ M each) compounds did not inhibit TRPV1, −2 or −3 channels (all mouse 
isoforms), directed over-expression in N2a cells and subsequent Ca+ +  imaging. Mean± SEM is shown, ≥ 100 
cells per condition. (B) Dose-dependent inhibition of TRPA1 (mouse, directed expression in N2a cells) by 
GSK 205, 16-8 and 16-19, activation with 100 μ M mustard oil, resulting in IC50 of 5.56 ±  0.4 μ M (GSK205), 
0.41 ±  0.37 μ M (16-19), 0.43 ±  0.3 μ M (16-8). Plot generated from averaged peak ∆ Ca+ +  concentration of ≥75 
cells per data-point.
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Assessment of specificity of 16-8, 16-18 and 16-19 against a wider spectrum of receptors and ion channels will be 
the subject of dedicated future studies directed toward translation of these compounds to the clinic.

We next evaluated these compounds to an in-vivo model of irritant pain known to rely on both, TRPV4 and 
TRPA1.

TRPV4/TRPA1 dual-inhibitors are effective in containing trigeminal irritant pain. We have 
previously described TRPV4 as a cellular receptor for formalin13, and demonstrated its involvement in forma-
lin irritant-evoked pain behavior, with a focus on trigeminally-mediated irritant pain behavior. In this recent 
study, we also demonstrate the co-contribution of TRPV4 together with TRPA1 in trigeminal formalin-evoked 
pain. We also showed the effective attenuation of trigeminal formalin-evoked pain behavior using GSK205 in a 
dose-dependent manner. Moreover, we found irritant pain behavior in response to selective activation of TRPV4 
in the trigeminal territory, which was blocked by GSK205, and the absence of such an effect in Trpv4−/− pan-null 
mice.

With this pertinent background as a rationale, we applied TRPV4/TRPA1 dual-inhibitory compounds 16-8 
and 16-19 systemically, using GSK205 as control, at 10 mg/kg dosage. We prioritized the dual-inhibitors over 
testing of compound 16-18 (TRPV4-only inhibitor) because (i) the trigeminal formalin pain model relies on both 
TRPV4 and TRPA1, (ii) we intended to develop TRPV4/TRPA1 dual-inhibitory molecules toward translational 
use in the first place. None of the compounds were effective at significantly diminishing pain behavior in the early 
phase after formalin whisker-pad injection, which represents an acute chemical tissue injury pain. In the delayed 
phase, which is understood as neurally-mediated pain indicative of early maladaptive neural plasticity, there 
was a significant attenuation of formalin-evoked pain behavior in response to compound 16-8 and 16-19, with 
compound 16-8 diminishing pain behavior at a remarkable >50%13, and compound 16-19 also showing a robust 
effect (Fig. 7A,B). Of note, at 10 mg/kg systemic application, there was no significant effect of GSK205, which 
was effective previously in a dose-dependent manner when applied by intradermal injection13. Thus, compounds 
16-8 and 16-19, upon systemic application, effectively attenuate the late, neurally-mediated phase of trigeminal 
formalin pain, and these compounds are more potent in-vivo than their parental compound, GSK205.

In view of these in-vivo findings, taken together with the results from heterologous cellular expression sys-
tems that indicate an additional TRPA1-inhibitory effect of compounds 16-8 and 16-19, we decided to assess 
effectiveness of these compounds in a setting of genetically-encoded absence of Trpv4 (Trpv4−/− mouse), in 
order to better define their TRPA1-inhibitory potency in-vivo. We observed significant residual irritant-pain 
behavior in all phases of the formalin model in Trpv4−/− mice, consistent with our previous report13 (Fig. 7C,D). 
Immediate-phase pain behavior was virtually eliminated with compounds 16-8 and 16-19, both applied again at 
10 mg/kg body-weight. Late-phase pain behavior was strikingly reduced when applying compound 16-8, and still 
significantly reduced vs vehicle-treated Trpv4−/− when applying compound 16-19, although not as potently as 
16-8. A reference TRPA1-inhibitory compound, A967079, was used at 25 mg/kg body weight as a positive control 
to inhibit TRPA1, based on a previous report38. Reduction of pain behavior in Trpv4−/− mice was striking, more 
than 50% in the late neural phase. We noted equal potency of compound 16-8 at 10 mg/kg body weight vs. refer-
ence TRPA1-inhibitory compound A967079 at 25 mg/kg body weight, both reducing formalin-evoked trigeminal 
pain behavior to similarly robust degree (Fig. 7C,D). We conclude that compound 16-8 also functions as a potent 
TRPA1-inhibitor in an in-vivo irritant pain model specifically designed to assess the contribution of TRPA1 to 
trigeminal irritant pain, and at least as potent as an established reference TRPA1-antagonistic compound.

Potent TRPV4/TRPA1 dual-inhibitor, 16-8, is effective at controlling inflammation and pain in 
acute pancreatitis. These findings define compound 16-8 as a potent TRPV4/TRPA1 dual-inhibitor mol-
ecule, based on cell-based and live-animal results. We therefore decided to test it in a more specific preclinical 
pain model that relies on both, TRPV4 and TRPA1, in order to establish proof-of-principle that a dual-inhibitor 
can effectively treat pain and inflammation in pancreatitis. We used a pancreatitis model because it provides high 

Figure 6. Cellular toxicity studies of compounds 16-8 and 16-19. N2a cells were subjected to increasing 
concentrations of compounds 16-8 and 16-19, resulting cell viability was analyzed for the next 48 h. (A) Time 
course of cell viability in the presence of various concentrations of 16-8. Note clear reduction at 40 and 80 μ M. 
(B) As in (A), for compound 16-19, with similar outcome. Representative result of 2 independent experiments.
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translation potential due to unmet clinical need for new effective treatments in this condition39, as well as the 
known role of both TRPV4 and TRPA1 in pancreatitis pain and inflammation8,25,40.

Pancreatitis was induced with caerulein, a well-characterized model for acute pancreatitis41. Animals were 
treated with 10 mg/kg bw 16-8 by intraperitoneal injection, 30 min before induction of inflammation. We found 
significant attenuation of inflammatory parameters, namely edema, which was virtually eliminated in 16-8 
treated animals. Furthermore, serum amylase, a marker of inflammatory injury of the pancreas, was significantly 
reduced by 16-8 treatment, as was myelo-peroxidase content of the pancreas, as a marker of inflammatory cell 
infiltration of the pancreas. The histopathological score for pancreas inflammation was also significantly reduced 
(Fig. 8A–E). Of note, pain behavior, similar to the effect of 16-8 on pancreas edema, was virtually eliminated upon 
treatment with compound 16-8. Thus, compound 16-8 was found to be highly effective in attenuating pain and 
inflammation of acute chemically-evoked pancreatitis.

Benign preliminary toxicity and pharmacokinetics of novel TPRV4/TRPA1 inhibitors. Promising 
properties of potent 16-…  compounds prompted us to attempt to define their initial preliminary features in terms 
of in-vivo toxicity and pharmacokinetics, which will be followed by more extensive and in-depth investigations 
in future studies. For this, we chose compound 16-8 as the all-around most potent dual TRPV4/TRPA1 inhibitor, 
and also compound 16-19 with its potentially increased lipophilicity (Suppl Table 1). We measured compound 
concentration in several organs and plasma, and detected micromolar/submicromolar concentrations in liver 
and kidney, less than 100 nM concentrations in heart, brain, brainstem, trigeminal ganglion and skin. Of note, 
compounds were virtually undetectable in plasma (Suppl Fig. 1A). We detected higher concentrations of 16-19 
in non-nervous tissue, especially liver and kidney, a pattern perhaps related to compound 16-19’s increased lipo-
philicity. Based on this finding, we next examined 6 and 24 h time-points and detected 10-20 fold higher con-
centrations of 16-19 at the 6 h time-point, compared to the 1 h time-point, indicative of compound sequestration 

Figure 7. 16-8 and 16-19 effectively attenuate formalin-evoked trigeminal irritant pain. (A) Time-course of 
nocifensive behavior in WT mice following whisker-pad injection of 4% formalin. The mice were pre-injected 
(i.p., 10 mg/kg; 15 min before formalin) with GSK205, 16-8 or 16-19. Note effective reduction of nocifensive 
behavior in the late “neural” phase by compounds 16-8, 16-19, not by GSK205. (B) Cumulative response 
binned into 3 phases: acute phase (0–5 min), interphase (5–15 min), and late “neural” phase (15–45 min). Note 
significant reduction of nocifensive behavior in the late phase by 16-8, 16-19, not GSK205 (* P <  0.01 vs vehicle 
and GSK205, one-way ANOVA). (C) As in (A), but also including Trpv4−/− mice. Compounds were applied 
i.p. 15 min before formalin challenge, at 10 mg/kg except established TRPA1 blocker, A967079 (25 mg/kg). 
Previously-established attenuated nocifensive behavior in early and late phase in Trpv4−/− mice was recapped, 
which was reduced further by TRPA1 blocker, A967079. (D) As in (B), plus inclusion of Trpv4−/− mice. Robust 
effects of TRPA1-blocker, A967079, were mimicked equi-potently by 16-8 and 16-19 for early phase, and by 
16-8 for late phase, partially by 16-19 for late phase. (A,C) show averaged behavioral metrics per time-point, 
bars in (B,D) represent mean ±  SEM; for (D) *P <  0.05; #P <  0.005, one-way ANOVA; for all panels n =  5–8 
mice/group.
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into solid organs (Suppl Fig. 1B–D). Values at the 24 h time-point were lower than at the 6 h but higher than at the 
1 h time-point, indicating ongoing protracted compound clearance. We next confirmed that low/non-detectable 
concentrations in plasma were not caused by compound denaturation/degradation in plasma, as indicated in 
Suppl Fig. 1E, which shows no loss of detectable compound after 4 h incubation in plasma at 37 °C, conducted 
using compound 16-19.

We next performed basic preliminary in-vivo toxicity studies for compounds 16-8 and 16-19, both at 10 mg/
kg bw, which was the effective concentration in both in-vivo pain models. We did not detect first evidence of 
cardiac, hepatic and renal toxicity, when comparing compounds 16-8 and 16-19 with vehicle (Suppl Fig. 2). For 
cardiac assessment, we did not detect differences and changes in heart rate over 1 h, conducted by EKG at the 
6 h time-point. Serum creatinin as marker of renal function and alanine-amino-transferase (ALT) as marker of 
hepato-cellular integrity were not significantly elevated in animals treated with compounds 16-8 or 16-19. Thus, 
initial evidence for potent 16-…  compounds highlights their acceptable preliminary pharmacokinetics proper-
ties as well as lack of gross systemic toxicity. Future studies will be necessary for more detailed assessment of the 
pharmacokinetics and toxicity of these compounds.

Discussion
Here we describe novel compounds that simultaneously inhibit both TRPV4 and TRPA1 ion channels. Both 
targets were inhibited by the novel “dual-inhibitors” at sub-micromolar potency in heterologous cellular channel 
activation assays. Furthermore, these compounds showed potent activity against TRPV4 in primary cells with 
native TRPV4 expression, and were more potent than their related parent-compound. The most potent com-
pound identified here, compound 16-8, also showed a favorable activity profile in two pain-inflammation models, 
one of them a general irritant-pain model in the trigeminal system, the trigeminal formalin model, the other a 
visceral pain and inflammation assay with specificity for the pancreas, the caerulein-induced acute pancreatitis 
model. Of note, both in-vivo pain models have been shown previously to rely on co-contribution of TRPV4 and 
TRPA1. In this regard, several other relevant medical conditions, discussed in more detail below, also rely on 
TRPV4/TRPA1 and represent important unmet clinical needs that need to be addressed by translational-medical 
approaches. Therefore a potent “dual-inhibitor” for a specific combination of TRP ion channels, such as TRPV4 
and TRPA1, could be highly beneficial in these indications.

Figure 8. Compound 16-8 attenuates acute pancreatitis and improves pain behavior. (A) Caerulein-evoked 
acute pancreatitis causes pancreatic edema, which is eliminated by compound 16-8 (10 mg/kg, applied at 30 min 
before first exposure to caerulein). (B) Caerulein-evoked acute pancreatitis strongly elevates cellular toxicity 
marker amylase in serum. Amylase is reduced, but not significantly, in 16-8 treated animals. (C) caerulein-
evoked acute pancreatitis causes elevated myelo-peroxidase (MPO) activity in serum, a marker for infiltration of 
inflammatory cells into the pancreas. MPO activity is significantly reduced in 16-8 treated mice. (D) caerulein-
evoked acute pancreatitis can be readily demonstrated histologically, exemplified in the micrograph panels 
shown. Note increased pancreas inflammation in the middle-panel vs non-inflamed pancreas in vehicle-control 
challenged mice, and its attenuation by treatment with compound 16-8. (E) Bar diagram shows quantitation of 
inflammatory histologic parameters as shown in (D). Note significant increase of inflammation-index in caerulein 
acute pancreatitis mice, and its significant reduction upon treatment with compound 16-8. (F) Caerulein-evoked 
acute pancreatitis causes pain behavior, significantly reduced by compound 16-8. Note greatly reduced activity 
over the 6 h test period in caerulein-induced acute pancreatitis. This nocifensive behavior is greatly improved in 
response to systemic application of compound 16-8. Results are expressed as mean ±  SEM; n =  6 mice/group;  
* P <  0.05 (one-way ANOVA).
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More specifically, primary chondrocytes represent a cellular model for joint disease with involvement of 
TRPV4 in cartilage maintenance as well as arthritis/osteoarthritis. Recent evidence also suggests a potential role 
for TRPA1 in mediating joint pain in osteoarthritis42. In addition, TRPV4-expressing astrocytes are involved in 
many neurologic and psychiatric diseases such as pain, epilepsy, multiple sclerosis and other CNS autoimmune 
conditions, stroke, traumatic brain/spinal cord injury, brain edema, CNS infections, and more35–37. TRPA1 expres-
sion in astrocytes has also been reported43. Therefore, novel dual TRPV4/TRPA1 inhibitors might be suitable  
compounds for treatment of a number of diseases, from a spectrum of disorders affecting the nervous system 
as well as degenerative or inflammatory musculoskeletal conditions. For both types of disorders, we view com-
partmentalized application of compounds, i.e. intra-thecal or intra-articular delivery, as feasible future routes of 
delivery, in order to affect target cells more directly without affecting - TRPV4 and TRPA1 systemically.

In terms of in-vivo pain models, the trigeminal formalin model is rather a general model, not a direct 
pre-clinical translational-medical model. However, formalin models have a very robust track record in the iden-
tification of efficacious new compounds against pain44. Our findings with compound 16-8 in the trigeminal for-
malin model can be interpreted along these lines, especially for trigeminal pain including headaches45,46. In the 
context of these most prevalent neurological diseases, involvement of TRPV4 and TRPA1 has been reported 
previously in preclinical models, underscoring the case for their involvement with some compelling preclinical 
insights for both channels47–50.

Pancreatitis in mice represents a more specific preclinical visceral inflammatory pain model, helpful to elu-
cidate pathophysiology of this specific pain in order to better address a significant unmet medical need. In the 
current study pain and edema were strongly reduced by compound 16-8, the compound identified as showing 
the most advantageous features when tested in the trigeminal formalin pain model vs another high-potency 
dual-inhibitor, 16-19, and vs parent molecule, GSK205. This is in keeping with previous studies which demon-
strated that both TRPA1 and TRPV4 contributed to pancreatic inflammation and pancreatic pain25. More pre-
cisely TRPA1 was shown to contribute to both pain and inflammation while TRPV4 contributed more selectively 
toward pain8. In our current study, there was significant attenuation of inflammatory parameters, but the reduc-
tion was not as robust as for pain and edema. This finding begets two important issues, namely (i) this could be 
a feature of the 2 targeted TRP channels, that they are more significant for pain than for inflammation (as con-
cluded from experimental evidence in14), and (ii) edema of the pancreas, which is readily measurable by imaging 
techniques in patients, could possibly serve as a bio-marker for pancreatic pain. Beyond its role as biomarker, 
pancreas edema could sustain pancreas pain. At the pathophysiological level, edema will encompass edematous 
distension of the inflamed organ causing mechanical pain. This pain, amplified by inflammation of the painful 
organ, will in turn cause neurogenic inflammation, which will give rise to increased level of edema. This could 
evolve into a detrimental feed-forward mechanism. The specific effect of compound 16-8 on pancreatitis pain 
could be due to the compound interfering potently and efficiently with such a feed-forward mechanism as in (ii), 
by potently inhibiting both channels, as laid out in (i).

Beyond the two pain-inflammation conditions tested, TRPV4/TRPA1 co-involvement appears to play a role 
in several health-relevant conditions, such as colitis, itch, injury to airway and lungs via the inhalatory route and 
chronic cough28,34,51–58. In addition, interesting recent findings point toward a prominent role for TRPV4 in con-
ditions as diverse as fibrotic disorders, UVB skin injury, and premature birth15,59,60. In these conditions, possibly 
via TRPA1-expressing innervating sensory neurons, a co-contribution by TRPA1 could be an important element. 
For such cases, 16-…  compounds represent attractive candidates for effective treatment, to address the signifi-
cant underlying unmet clinical need. Except pancreatitis, compound access to relevant target cells could also be 
readily accomplished by topical, non-systemic delivery via transdermal, transmucosal, inhalatory, intra-articular 
or intra-thecal formulations.

Our study presented here was strongly geared toward a translational medical agenda, meaning demonstration 
of effect of TRPV4/TRPA1 dual inhibitors, combined with a first-pass at pharmaco-tox assessment were our 
priority, rather than in-depth mechanistic studies. In addition, our goal was to demonstrate that modified 16-…  
compounds were more potent than the parent compound, GSK205. For future studies, in addition to continua-
tion of a translational-medical agenda based on 16-…  compounds, e.g. in-depth assessment of 16-…  compounds 
at human isoforms of TRPV4 and TRPA1, effect of 16-…  compounds in TRPV4/TRPA1-expressing primary 
human cells, our current results raise the following important questions/issues, namely a mandate to conduct 
mechanistic studies that address how TRPV4/TRPA1 dual inhibitors act on their respective target channels, and 
whether there is perhaps a shared mechanism between TRPV4 and TRPA1 of channel inhibition by potent 16-…  
compounds. In this context, it will be rewarding to zero in on a potential mechanism as to why compounds 16-8, 
16-19 and to minor degree GSK205 are active against TRPA1 whereas compound 16-18 interestingly is not. 
Furthermore, the question why compound 16-19 fails to show increased potency over 16-8 will be an interesting 
one to address in future studies.

Materials and Methods
Compound synthesis. Compound synthesis is explicitly described in Supplementary Information  
(Suppl Fig. 3 and Suppl Tables 2–5).

Animals. 8–12 week old mice were used throughout the experiments. Trpv4−/− mice3 have been outcrossed 
to WT (C57BL/6J) background and genotyped by PCR3,15. Animals were housed in climate-controlled rooms on 
a 12/12 h light/dark cycle with water and standardized rodent diet that was available ad libitum. All experiments 
were conducted in compliance and accordance with the guidelines of the NIH and the Institutional Animals’ Care 
and Use Committee (IACUC) of Duke University, and under a valid IACUC protocol of the Duke University 
IACUC. All animal methods described in this publication were approved by the Duke University IACUC.
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Trigeminal formalin irritant behavior – mouse model. Implementation of this model was conducted 
as described previously13.

Video-taped nocifensive behavior was assessed by investigators blinded to genotype and treatment.

Acute pancreatitis mouse model. C57BL/6J male mice 8–10 weeks of age were subjected to acute pan-
creatitis by intraperitoneal injections of supramaximal doses of caerulein (50 μ g/kg) every hour for a total of 6 h, 
as previously described in61. Control animals received 25% DMSO-saline solution by intraperitoneal injection 
every hour for 6 h. Compound 16-8 was dissolved in this vehicle (10 mg/kg) and injected i.p. 30 min prior to the 
first injection of caerulein. Animals were sacrificed 1 h after the last injection. Blood was collected and pancreatic 
tissue was promptly isolated, weighed for determination of pancreas wet weight/body weight ratio. Samples of tis-
sues were fixed overnight in 10% neutral-buffered formalin, paraffin embedded and H&E-stained, or pancreatic 
tissue was quickly frozen and assessed for myeloperoxidase (MPO) activity. Serum amylase, MPO and histologic 
evaluation were conducted as described previously61.

Assessment of nocifensive behavior8: Mice were housed in individual cages and video-recorded during the 
entire experiment. Two mice at a time were observed. Linear movement was measured as one event when mice 
passed through the median plane of the cage. Analysis began immediately after the first caerulein/vehicle injec-
tion and continued until the end of the experiment. Results were expressed as the sum of the movement events 
spanning the 6 h time-period following the first injection.

Cell cultures. N2a cells were used for directed expression of TRP ion channels as described previously13. 
TRPV4-eGFP from rat was used, previously found to respond to stimulation with GSK101 and hypotonicity in 
similar manner as native, non-fused TRPV4. All other channels were native channels from mouse, eGFP was 
co-transfected. Stimulation of over-expressed TRPV4 was conducted with GSK101 (5 nM), TRPV1 with capsaicin 
(10 μ M), TRPV2 with hypotonicity (270 mosmol/L), TRPV3 with camphor (100 μ M) and TRPA1 with mustard 
oil (100 μ M). eGFP control-transfected N2a cells did not respond to these stimuli. Ca+ +  imaging was performed 
as described previously13,14,34.

To visualize dose-response relationships, Hill plots were conducted using the Igor Pro software program, 
which derived the plots based on the following equation:

= + −





+

















y Base Max Base x half

x
( )/ 1

(1)

rate

Primary porcine chondrocytes derived from femoral condyles of skeletally mature pigs were cultured and 
subjected to Ca+ +  imaging as described previously19,32,62,63.

Astrocyte cultures were conducted following established protocols64–66. Astrocytes were prepared from 
Sprague Dawley rat embryos (E18). Briefly, the isolated cortices were minced, and then incubated with trypsin 
and DNase. Dissociated cells were suspended in Dulbeccco’s Modified Eagle’s Medium (DMEM) supplemented 
with 10% fetal calf serum and penicillin/streptomycin (100 U/ml and 100 μ g/ml, respectively). Thereafter, cell sus-
pensions were plated in 75 cm2 tissue culture flasks (10 ×  106 cells/flask) which were pre-coated with poly-L-lysine 
(10 μ g/ml). The cells were maintained in a 10%CO2 incubator at 37 °C. After 10–12 days, the media was removed 
and adherent cells were trypsinized (0.25%) and plated out onto coverslips for subsequent Ca+ +  imaging34,67.  
> 95% of the cells were found to express astrocyte marker, glial fibrillary acidic protein (GFAP)68.

Cell viability in culture. N2a cells were cultured in 96 well plates for 24–48 h. Cell viability studies relied on 
metabolic capability monitored with the indicator dye resazurin. Its reduction to resorufin (indicated by color 
change dark blue to pink) was monitored over time. Changes in absorbance at λ  =  570 nm were recorded using a 
microplate reader (Molecular Devices). Metabolically active and viable cells shared the ability to reduce resazurin 
to resorufin whereas dead cells did not. Eight replicate cultures per experimental point were studied.

Assessment of hepatic, renal and cardiac function in mice treated with 16-… compounds.  
Mice were treated i.p. with compounds 16-8 and 16-19 (10 mg/kg). Hepatic and renal integrity were analyzed 
by alanine amino-transferase- and creatinine assays (Sigma), both relying on measurement of absorbance at 
λ  =  570 nm in 96-well micro-titerplates. 8 technical replicates per animal were performed.

For heart rate assessment in mice treated with 16-8 and 16-19, animals were fitted with two electrodes, one to 
the ear, via clip, one to the rib-cage, using firm adhesive. Heart rate was monitored and analyzed using axoscope 
and clampfit 9.2 software (Molecular Devices)

Liquid Chromatography – Tandem Mass Spectrometry (LC-MS/MS). Mice were treated with 10 mg/
kg i.p. of the respective inhibitor. Post-euthanasia harvested tissue was frozen in liquid nitrogen and stored at 
− 80 °C for further analysis.

Frozen tissue samples were partially thawed and cut into 1 mm slices, 5–15 mg tissue, 2-fold excess water 
(mass/vol.), 6-fold excess acetonitrile (16-…  compounds) or methanol (GSK205) containing appropriate amount 
of internal standard, and 2.5 mm zirconia/silica bead (Biospec Products Inc.) were added to 500- μ L polypropyl-
ene (PP) conical tube, homogenized in a Fast-Prep apparatus (Thermo-Savant) at speed “4” for 20 sec at room 
temp, and centrifuged at 13,600 g for 5 min at room temp. Depending on the expected concentration range of 
the measured compound, the supernatant was diluted 1/4–1/20 (in Mobile phase A, see below) and placed in 
autosampler for LC-MS/MS analysis.

The LC-MS/MS assay for 16-…  compounds and GSK205 was developed on an Agilent 1200 series LC system 
interfaced with Applied Biosystems API 5500QTrap, a hybrid triple quadruple-linear trap MS/MS spectrometer. 
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Analyst (version 1.6.1) software was used for mass parameters tuning, data acquisition, and quantification. LC 
column: 3 ×  4 mm RP C18 (Phenomenex, AJ0-4287) was operated at 35 °C. Mobile phase A: 0.1% formic acid, 2% 
acetonitrile, in LC/MS-grade water; mobile phase B: acetonitrile; flow rate: 1 mL/min, 1:1 MS/MS:waste split. Run 
time was 4 min. Diverter valve was used to send flow to MS/MS only between 1.2 and 2.5 min. The elution gradi-
ent was: 0–0.5 min, 1%B; 0.5–1.2 min, 1–95%B; 1.2–1.5 min, 95%B; 1.5–1.6 min, 95–1%B. Autosampler was oper-
ated at 4 °C; injection volume was kept at 10–50 μ L. Electrospray ionization (ESI) source parameters were: positive 
ionization mode, curtain gas flow =  30, ionization potential =  5500 V, temperature =  500 °C, nebulizing gas 1 
flow =  30, nebulizing gas 2 =  30, declustering potential =  20 V. 16-…  compounds and GSK205 were individually 
infused as 100 nM solutions in 50%A/50%B at 10 μ L/min flow rate and parameters optimized to provide maximal 
ion count for “parent” and collision-produced (“daughter”) MS/MS ions. Parent/daughter quantifier [qualifier] 
ions utilized: GSK205 (401.1/280[370]), 16-8 (400.1/279.1[91.1], 16-16 (387.1/280[105]), 16-18 (415.2/280[370], 
16-19 (414.1/279.2[91.1]. Standard (analyte of interest)/internal standard pairs utilized: GSK205/16-16, 16-8/16-
16, 16-18/GSK205, 16-19/16-8.

Calibration samples (n =  6) were prepared by adding pure standard of the measured compound to tissue 
homogenate (tissue +  2-fold excess water, mass/vol) in the appropriate range needed for the particular dosing 
regime. Organs studied were analyzed alongside the study samples. The following are typical ranges used (the 
lower value representing also the LLOQ at 80% accuracy limit, all other calibrator levels at 85% accuracy limit): 
0.38–6 nM (plasma), 6–100 nM (skin), 6–48 nM (heart), 7.5–120 nM (brain), 19–300 or 1500–24000 nM (liver), 
56–900 or 1500–12000 nM (kidney), 500–8000 nM (fat). Peak integration, calibration, and quantification was 
performed within Analyst software. The response of the peak area standard/int. std. to nominal concentration 
was linear with r =  0.999 or better.

Patch Clamp Recordings. Heterologously transfected N2a cells were subjected to patch clamp electrophys-
iological recordings. Briefly, 24 h after transfection cells were prewashed with extracellular fluid (ECF) which 
contained (in mM) 1 MgCl2, 10 Glucose, 10 HEPES, 145 NaCl and 2 CaCl2 (pH 7.4, 310mOsM). Cells were then 
incubated with or without TRPV4 inhibitors in ECF for 5 min before whole cell recording. Cover slips were 
transferred to a recording chamber mounted on the stage of a Leica inverted microscope that was equipped with 
fluorescent filters. Transfected cells were identified before patching by their green florescent color. Cells were 
patched with a 2.5–3.0 MΩ  glass electrode pulled from borosilicate glass capillaries using pipette puller (Sutter 
instruments). The intracellular solution contained (mM) 140 CsCl, 10 HEPES, 1 EGTA, 0.3 Na-GTP, 2 Na2-ATP, 
and 2 MgCl2 (pH 7.4, 295 mOsm). Whole cell currents were recorded using pclamp 9.2 software and Axopatch 
200B amplifier (Molecular Devices). The cells were first clamped at − 65 mV before applying a 1 s voltage ramp 
from − 110 mV to + 120 mV. The voltage ramp was applied every 2 seconds for 15 to 20 sweeps. Capacitance was 
monitored throughout the experimental recordings. Reported data was within ±3 pF.

Statistical Analysis. Data are expressed as mean ±  SEM. Two-tail t-tests or one-way ANOVA followed by 
Tukey post-hoc test were used for group comparisons. P <  0.05 indicated statistically significant differences
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