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Soil Water Balance and Water Use  
Efficiency of Dryland Wheat in 
Different Precipitation Years in  
Response to Green Manure 
Approach
Dabin Zhang1, Pengwei Yao1, Zhao Na2, Weidong Cao3, Suiqi Zhang4, Yangyang Li4 & 
Yajun Gao1,5

Winter wheat (Triticum aestivum L.) monoculture is conventionally cultivated followed by two to three 
months of summer fallow in the Loess Plateau. To develop a sustainable cropping system, we conducted 
a six-year field experiment to investigate the effect of leguminous green manure (LGM) instead of bare 
fallow on the yield and water use efficiency (WUE) of winter wheat and the soil water balance (SWB) in 
different precipitation years in a semi-arid region of northwest China. Results confirmed that planting 
LGM crop consumes soil water in the fallow season can bring varied effects to the subsequent wheat. 
The effect is positive or neutral when the annual precipitation is adequate, so that there is no significant 
reduction in the soil water supplied to wheat. If this is not the case, the effect is negative. On average, 
the LGM crop increased wheat yield and WUE by 13% and 28%, respectively, and had considerable 
potential for maintaining the SWB (0–200 cm) compared with fallow management. In conclusion, 
cultivation of the LGM crop is a better option than fallow to improve the productivity and WUE of the 
next crop and maintain the soil water balance in the normal and wet years in the Loess Plateau.

Water deficiency is the main obstacle to the primary production in the dryland regions1. Natural rainfall is the 
sole water resource for most of the farmland in the Loess Plateau2. Most of the annual precipitation (50–60%) 
occurs from June to September3. Due to the large variation in the inter-annual precipitation, extensive soil erosion 
caused by wind or/and water is common in this typical dryland area. Meanwhile, unreasonable cultivation prac-
tices, including the shortage of organic fertilizer input and intensive soil cultivation, exacerbate the soil quality 
degradation, resulting in soil with a more fragile physical structure and low organic matter content (two-thirds 
of this region is below 1.0%)4. With the rapid development of intensive agriculture, crop production in dryland 
regions gradually faces the challenge of a scant water supply together with a nutrient deficit, not only in China but 
also in other countries1. Developing a sustainable cropping system to effectively improve crop productivity and 
water use efficiency and to maintain water balance is urgent for dryland farming in the Loess Plateau.

Winter wheat is one of the main food crops in the Loess Plateau. The cultivation area is nearly 4.3 million 
hectares, accounting for 40% of the food crops5. In this region, winter wheat monoculture is a common practice, 
followed by more than three months of summer fallow each year. The area of bare land during the summer fal-
low period is greater than two million hectares, accounting for nearly forty percent of the cultivated land in this 
dryland region6. The wheat yield depends not only on the growing season precipitation but also on the amount 
of water stored in the soil in the fallow season in the dryland cropping systems7,8. Mainly due to the large varia-
tions in both the annual and inter-annual precipitation amounts, the wheat yields have been unstable for a long 
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time, averaging 2.5 to 3.7 t/ha, which presents a substantial difference compared with the average yields in China  
(4.7 t/ha) and some European countries (averaging 6 to 7 t/ha)9,10. Moreover, summer fallow, a traditional cultiva-
tion measure whose original purpose was to store more water in the soil during the rainy season, results in a low 
utilization efficiency of natural resources1. The fallow efficiency under bare fallow is low, accounting for an aver-
age of 28% of the fallow precipitation11. Furthermore, bare fallow may lead to further degradation of the fertilized 
soil due to water or/and wind erosion, which poses another great threat to sustainable production. Therefore, it 
is critical to pursue methods to effectively use the natural resources during the rainy season to prevent the soil 
fertility from further degradation and to improve the wheat productivity and WUE in this dryland region.

Application of green manure in an agro-ecosystem is an alternative method to establish a sustainable cropping 
system12. Green manure, which is primarily used as a soil amendment and an added nutrient for subsequent 
crops, is a cleaner and more secure organic fertilizer source that has been the essence of traditional agriculture 
in ancient China13. Due to their unique ability to fix atmospheric N2 via root nodules and produce substantial 
biomass and nutrient accumulations, the legume green manure (LGM) has become one of the most common and 
widely studied crop in the worldwide various agro-ecosystems. It has been demonstrated in different regions of 
the world that LGMs within a cropping system can (i) improve the grain yield of the subsequent cereal crops14–16, 
(ii) provide net additions of N17,18, maintain soil fertility and biological activity19, and (iii) reduce N fertilizer 
application needs20,21. Consequently, growing the LGMs during the summer fallow period and incorporating 
them into the soil at a suitable stage is a viable method to maintain the nutrients, soil structure, and subsequent 
crop growth and yield. However, it should be noted that the application of cover crops (including LGMs) can have 
negative effects on the soil water supply for the next crop due to the extra water depletion during its growth, espe-
cially when the precipitation is limited and highly erratic, as in semi-arid and arid regions22. Vigil and Nielsen22 
and Nielsen and Vigil23, who replaced a portion of the fallow period with legumes in winter wheat–fallow systems 
in the central Great Plains, USA, observed that the wheat yield decreased substantially following the legumes. 
After testing different crop rotation systems, Li et al.24 showed somewhat inconsistent results. They reported 
that growing a crop for forage during the fallow period does not greatly influence the quantity of water stored in 
the soil to be used by the subsequent winter wheat in the middle-west Loess Plateau. Therefore, it is essential to 
investigate the effect of the LGM crop on the water use, productivity and WUE of winter wheat, as well as the soil 
water balance in different precipitation years in the Loess Plateau of China.

For this purpose, we explored the temporal characteristics of precipitation (e.g., the decadal precipitation 
trend and seasonal distribution) for the winter wheat zone in the Loess Plateau, using 57 years of precipitation 
data. We also identified the impacts of the LGM crop on the subsequent wheat yield, WUE, and soil water balance 
in dry, normal, and wet years. The results of this study will be used to establish a LGM-based cropping system, 
providing a theoretical basis and guiding field management strategies for local and other similar dryland regions.

Materials and Methods
Experimental setup. A six-year field experiment was conducted at the Station of the Agricultural 
Technology Demonstration Center of Changwu County, Shaanxi Province (35°12′ N, 107°44′ E, with an altitude 
of 1,220 m), on the southern Loess Plateau, beginning in June 2008. The experimental site has a semi-arid and 
continental monsoon climate with an average annual sunlight of 2,230 hours and an average open pan evapora-
tion of 1,440 mm, measured from 1957 to 200925. The average annual temperature is 9.1 °C, with typically 171 
frost-free days each year. Agricultural production in this region is completely dependent on the natural precipi-
tation, with 50–60% of the annual rainfall occurring from June to September. The long-term (1958–2014) mean 
annual, summer fallow season, and wheat growing season rainfall in the experimental site was 578.9, 315.4, and 
263.5 mm, respectively.

The soil at the study site is classified as aridic and loamy, Cumulic Haplustoll26, with moderate fertility and 
high permeability, which developed from loess deposits. The soil pH, organic matter, total N, total P, mineral N, 
available P, available K, and the field capacity at the 0 to 20 cm depth were 8.11, 12.0 g/kg, 0.79 g/kg, 0.66 g/kg, 
13.7 mg/kg, 24.6 mg/kg, 161 mg/kg, and 22.4%, respectively, in June 2008. Prior to this experiment, the field had 
been cultivated with winter wheat for many years.

The experiment was arranged in a complete split-block design. The four main treatments were (1) summer 
fallow― winter wheat (FW, as the control), (2) Huai bean (Glycine ussuriensis Regel et Maack.)― winter 
wheat (HW), (3) soybean [G. max (L.) Merr.]― winter wheat (SW), and (4) mung bean (Phaseolus radiatus L.) 
― winter wheat (MW). The subplot treatments were N fertilizer rates applied in the wheat growth season: 0 
(N0), 108 (N108, 67% of N162), 135 (N135, 83% of N162), and 162 kg N/ha (N162, which was the typical rate of 
N fertilizer application in the study area). The main plots were 6 ×  20 m with a boundary of 0.3 m between each 
plot, and the subplots were 6 ×  5 m. Each main treatment had three replications. Results of the N108 and N135 
plots were not exhibited in this study.

Field management. The LGMs were sown from late June to early July and were terminated at approxi-
mately full bloom from the end of August to early September each year. The plots with mung bean, soybean, and 
Huai bean were seeded with a row seeder at seeding rates of 135, 150, and 165 kg/ha, respectively. To increase 
the aboveground biomass and nutrient accumulation, P fertilizer was added as triple superphosphate (TSP, 46% 
P2O5) at a rate of 40 kg/ha before planting in 2008 and 2009. After seven or eight weeks, the fresh aboveground 
biomass of LGMs was manually harvested from the entire plot and weighed. The aboveground portions of the 
legumes were cut into approximately 5-cm pieces using the blade of a local farmer and were immediately incor-
porated into the soil to a depth of 20 cm using a rotary tiller. After the LGMs decomposed for two to three weeks, 
winter wheat (Changwu 521) was planted at a seeding rate of 180 kg/ha with varying amounts of N fertilizer (urea, 
46% N) and 120 kg P2O5/ha (TSP, 46% P2O5) for each treatment in late September. After harvesting the wheat in 
late June, the field was plowed with a rotary tiller to prepare the LGM seedbed. Wheat stubble was removed from 
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the plots. Field management, including pest and weed control, were performed according to the local farming 
practices.

Field and laboratory measurements. The winter wheat yield was recorded by manually harvesting from 
a net plot area of 10 m2 in late June. The wheat samples, which were taken from 4 ×  1-m-long randomized rows 
of each plot, were dried at 95 °C for 0.5 h and at 65 °C for 24 h until a constant weight was achieved. The soil bulk 
density at the depth of 0–200 cm was measured in 2008 using the cutting ring method27. To test the soil moisture 
content, one or two soil samples in each plot were collected with an auger from 0–200 cm in 20-cm increments at 
the times of the winter wheat harvesting in each year. Soil samples at the depth of 0–200 cm were collected from 
16 specific plots of the experiment (e.g. all the N0 experimental plots) at the times of wheat planting in each year. 
All soil samples were immediately weighed and placed in a drying oven at 105 °C for 24 h until a constant weight 
was achieved. Precipitation data (including snow during the winter months) was measured using a rain gauge 
approximately 500 m far from the experimental site.

Data analysis. According to the periods of winter wheat growth, the fallow season precipitation (FSP) is 
identified as the precipitation that occurred from July to September, which is the summer fallow period for the 
winter wheat monoculture system in the experimental site. The growing season precipitation (GSP) is identified 
as the precipitation that occurred from October to June, which is the growing period for winter wheat. Hence, the 
annual precipitation was calculated as the sum of the precipitation from July to June, i.e., FSP plus GSP25.

The amount of soil water at the times of wheat planting (SWP) and harvesting (SWH) was expressed as the 
water stored in the 0–200 cm soil depth. Soil water depletion during the wheat growing season (SWD) was calcu-
lated as the difference between SWH (end of growing season) and SWP (beginning of growing season), whereas 
soil water storage during the fallow period (SWS) was taken as the difference between SWP (end of fallow) and 
SWH (beginning of fallow). Hence, the soil water balance (SWB) was calculated as the difference between SWD 
and SWS28.

Seasonal evapotranspiration (ET) was calculated using the soil water balance equation in each growing season 
for each year of the study as follows29

= + + +– –ET P I D W R SWD (1)g

where ET is the evapotranspiration (mm); P the total seasonal precipitation (mm); I the amount of irrigation 
(mm); D the soil water drainage (mm); Wg the amount of water used by the crop through capillary rise from 
groundwater (mm); R the surface runoff; and SWD the change of soil water content from planting to harvest 
in the measured soil depth (mm). When the groundwater level is more than 4 m below the ground surface, the 
capillary rising of groundwater is considered negligible. The irrigation and runoff are also ignored because there 
is usually limited water to irrigate and no runoff in the flat farmland of the Loess Plateau. Based on the infrequent 
frequency of extreme high rainfall occurred in this dryland region, the probability of soil water drainage below 
the measurement depth was not considered in the current research. Therefore, I, D, Wg, and R were regarded as 
zero in this experimental condition.

Water use efficiency by crop was calculated as follows11

=WUE Y ET/ (2)

where WUE is the water use efficiency (kg/m3); Y the grain yield; and ET the evapotranspiration (mm), which is 
calculated from Eq. (1).

Similar to WUE, the water productivity (WP), expressed as the dry biomass of summer legumes per unit ET, 
was calculated for the LGMs30.

The fallow precipitation storage efficiency (PSE) was calculated using the following equation31

= − ×PSE SWP SWH FSP( ) 100%/ (3)

Statistical analysis. The analysis of variance (ANOVA) for the complete split-block design was performed 
to determine the LGM, N fertilizer (N), and interactive effects of treatments and year (Y) on the parameters using 
SAS software32 (Table 1). A mixed model with the LGM and N as the fixed effects and year as the random effect 
was applied to check the significance of the main factors (LGM and N or Y), of their interactions, and a means 
comparison using Duncan’s test. A one-way ANOVA was applied to check the significance of the treatments in 
each year and a means comparison using Duncan’s test. A linear regression analysis was performed to predict the 
decadal-mean precipitation trends during the 57 years. A multiple regression analysis was performed to assess the 
probability of precipitation throughout the annual year, the FSP, and GSP. A correlation analysis was conducted to 
contrast the relationships between the annual precipitation, FSP, and GSP and the wheat grain yield for the LGM 
treatments. The P value at significance levels of 0.05 and 0.01 was marked with one asterisk and two asterisks, 
respectively, whereas the case of “not significant” was expressed as NS.

Results
Characteristics of precipitation. The long-term annual precipitation measured at the Changwu County 
Meteorological Station ranged from 318 (1995) to 891 mm (2004), with a 57-year average of 578.9 mm and a 
coefficient of variation (CV) of 21% (Fig. 1a). The GSP ranged from 140 (1977) to 425 mm (1983), with an average 
of 263.5 mm and a CV of 25%. The average FSP was 19% greater than the GSP, with a wider range (140–609 mm) 
and a higher variability (33%). The slope of the decadal-mean GSP versus time was significantly different to zero 
(− 10.08), however, there were no significant differences between the slopes of the decadal-mean FSP (8.32) as 
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well as the annual precipitation (− 1.76) versus time and zero (Fig. 1b). The annual mean precipitations in the 
1960s, 1970s, 1980s, 1990s, 2000s, and 2010–14 were 584.6, 591.7, 607.4, 531.7, 565.5, and 603.2 mm, respectively.

From the analysis of the probability of annual year precipitation from 1958 to 2014, three types of normal, 
dry, and wet years were obtained (Fig. 1c). The precipitations with exceedance probabilities of 25% and 75% for 
a single year were 671 and 481.1 mm, respectively. Compared with the normal years (with precipitation ranged 
from 481.1 to 671 mm), the annual mean precipitation in dry years (less than 481.1 mm) was decreased by 24%, 
whereas that in wet years (more than 671 mm) increased by 30%. Based on the probabilities of GSP and FSP, three 
types of normal, dry, and wet seasons were also distinguished. Precipitations with exceedance probabilities of 25% 
and 75% for the winter wheat growing season were 305.2 and 215 mm, respectively. The corresponding precipita-
tions for the summer fallow season were 381.4 and 237.6 mm, respectively.

During the test years, the annual precipitations in 2008–09, 2009–10, 2010–11, 2011–12, 2012–13, and 2013–
14 were 480.5, 474.5, 664.5, 722.2, 476.8, and 677.9 mm, respectively. According to the annual precipitation, dry 
years occurred in 2008–09, 2009–10, and 2012–13, accounting for 50% of the six years. Wet years occurred in 
2011–12 and 2013–14, accounting for 33.3% of the experimental years. The only one normal year occurred in 
2010–11. The frequencies of normal, dry, and wet seasons were not consistent with those of the three correspond-
ing types of the past 57 years. There was no dry fallow season or wet growing season during the experimental 
years. Normal fallow seasons occurred in 2008–09, 2009–10, and 2012–13, and wet seasons occurred in the 
other three years. Except for 2011–12 and 2013–14, the other four years experienced dry wheat growing seasons, 
accounting for 66.7% of the study years.

ET, WP, and PSE in the summer fallow season. The ET, WP, and PSE during the summer fallow season 
varied significantly from year to year. However, they were not influenced by LGM (P >  0.05) (Table 1). There was 
no linear relationship between the annual precipitation and the ET and WP of the fallow season. The mean ET 
in the normal years was the highest, 25% and 31% greater (P <  0.01) than those in the dry and wet years, respec-
tively. Moreover, it was 7.7% greater (P >  0.05) in the dry years than in the wet years. The mean WP was the high-
est in the dry years (1.07 kg/m3), the lowest in the normal years (0.94 kg/m3), and intermediate for the wet years 
(0.98 kg/m3). There appeared an obvious upward tendency in the PSE with the precipitation increase. The mean 
PSE in the wet years was 16% and 34% greater (P <  0.05) than those in the normal and dry years, respectively. In 
addition, it was also 22% greater (P >  0.05) in the normal years than that in the dry years (Table 2).

Growing Huai bean, soybean, and mung bean as the LGM crop during the fallow period resulted in significant 
increases of the seasonal ET (12–22%) in the dry years, whereas the ET in the LGM systems were comparable 
with or even less than that in the fallow system in the normal and wet years, mainly due to the increasing rainfall 
during the fallow period (Fig. 1). This indicates that the LGMs would not cause extra water use compared with 
the traditional bare fallow management in the normal and wet years. The PSE was 13–25% less (P <  0.05) for the 
LGM systems than that for the summer fallow system in the dry years because of the greater ET in the LGM sys-
tems. However, there was no significant difference in PSE between the LGM and FW systems in the normal and 
wet years. Growth of the LGMs increased the WP in the fallow season. Although the WP of the LGM treatments 
varied with the year, the mean WP of Huai bean during the six tested years was 6.4% and 15% greater than those 
of mung bean and soybean, which can be ascribed to its greater fresh biomass with a lower ET rate during the 
summer fallow season.

Grain yield and WUE in the wheat growing season. The wheat grain yield, ET, and WUE were signifi-
cantly affected by year and year ×  LGM (Table 1). Notably, there appeared a significant increase in the wheat yield 
as the annual precipitation increases. The mean yield in the wet years was 5,894 kg/ha with a CV of 14%, almost 
two times and 55% greater (P <  0.05) than those in the dry and normal years, respectively. Moreover, the yield 
in the normal years was 32% greater (P <  0.05) than that in the dry years. The mean ET was the highest in the 
wet years the lowest in the normal years, and intermediate for the dry years. Similar to the wheat yield, the mean 

Source ETF
a WP PSE Yield ETG

a WUE SWS SWD SWB

Year (Y) 0.002** 0.0058** 0.0005** < 0.0001** < 0.0001** < 0.0001** 0.0002** 0.002** < 0.0001**

Leguminous 
green manure 
(LGM)

0.641NS 0.1039NS 0.2504NS < 0.0001** < 0.0001** < 0.0001** 0.4931NS 0.4385NS 0.2792NS

N fertilizer (N) – – – < 0.0001** < 0.0001** < 0.0001** – – –

LGM ×  N – – – 0.0403* < 0.0001** 0.123NS – – –

LGM ×  Y 0.2213NS 0.0191* 0.1002NS < 0.0001** 0.0005** < 0.0001** 0.206NS 0.4679NS 0.0584NS

N ×  Y – – – 0.042* 0.0011** 0.0577NS – – –

Y×  LGM ×  N – – – 0.7369NS 0.0763NS 0.7466NS – – –

Table 1.  Probability levels from the analysis of variance (ANOVA) for seasonal evapotranspiration 
(ET), water productivity (WP), fallow precipitation storage efficiency (PSE), soil water storage during 
the summer fallow season (SWS), grain yield, evapotranspiration (ET), water use efficiency of wheat 
(WUE), soil water depletion during the wheat growing season (SWD), and soil water balance (SWB) at a 
depth of 0–200 cm. aETF and ETG represent the ET during the fallow season and growing season, respectively. 
*, **indicate statistically significant differences at P= 0.05, 0.01, respectively (Duncan’s test). NS, not significant.
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WUE in the wet years was the highest, almost two times and 55% greater than those in the dry and normal years, 
respectively. In addition, it was also 33% greater (P <  0.05) in the normal years than that in the dry years.

Mainly due to the extra water consumption in the fallow season, the LGM crop decreased the wheat yield by 
6.3–14% (P <  0.05) in the dry years compared with FW, with the highest for mung bean and the lowest for soy-
bean. The opposite was true in the normal and wet years. The wheat yields for the LGM systems were increased by 
19–39% (P <  0.05) and by 4.2–28% (P <  0.05) compared with those for the fallow system in the normal and wet 
years, respectively. Compared with FW in the wheat growing season, the ET of HW, SW, and MW were reduced 
by 8.3–14% in the dry years, by 2.1–9.1% in the normal years, and by 4.3–12% in the wet years, respectively 
(P <  0.05). Consequently, WUE was 4.8–5.7%, 33–62%, and 16–46% greater in the LGM systems than that in the 
fallow system in the dry, normal, and wet years, respectively, except for the MW in the dry years.

Application of N fertilizer not only increased the wheat yield and ET (P <  0.01), but also increased the WUE 
(P <  0.01) despite the different precipitation through the test years (Table 3). There was no obvious interaction 
effect between the LGM and N fertilizer treatments on the ET in the dry years or the yield, as well as the WUE in 
the normal and wet years.

Figure 1. Summer fallow season precipitation (FSP) and wheat growing season precipitation (GSP) (a), the 
decadal-mean precipitation (b), and the probability of precipitation throughout the annual year, FSP, and GSP 
(c) at the Changwu County Meteorological Station from 1958 to 2014. The bars in (b) show the standard errors. 
The solid heavy lines in (c) represent the probabilities of 25% and 75% for precipitation.
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Treatments

ETa (mm) WP (kg/m3) PSE (%)

Dryb Normal Wet Dry Normal Wet Dry Normal Wet

FWc 169 bd 265 167 – – – 44.9 a 46.4 60.0

HW 206 a 246 178 1.21 a 0.86 b 1.15 a 33.5 b 50.1 57.4

SW 202 a 239 174 0.78 b 0.88 b 1.07 a 34.4 b 51.6 58.1

MW 188 ab 269 186 1.22 a 1.09 a 0.71 b 39.1 ab 45.4 55.2

Average 191 255 176 1.07 0.94 0.98 38.0 48.4 57.7

Table 2.  ET, WP, and PSE in different precipitation years under LGM treatments in the summer fallow 
season from 2008 to 2013. aET evapotranspiration, WP water productivity, and PSE fallow precipitation storage 
efficiency. bDry years include 2008–09, 2009–10, and 2012–13; normal year is 2010–11; wet years include 
2011–12 and 2013–14. cThe LGM treatments are FW for summer fallow–winter wheat (CK), HW for Huai 
bean–winter wheat, SW for soybean-winter wheat, and MW for mung bean-winter wheat. dWithin the same 
column, different lowercase letters indicate significant differences at P <  0.05 (Duncan’s test) between the LGM 
treatments.

Factors

Yield (kg/ha) ET (mm) WUE (kg/m3)

Drya Normal Wet Dry Normal Wet Dry Normal Wet

Leguminous green manure (LGM)

 FWb 3109 ac 3187 c 5152 b 362 a 339 a 386 a 0.83 ab 0.85 c 1.38 c

 HW 2826 b 4427 a 6478 a 311 c 308 b 341 c 0.88 a 1.38 a 2.01 a

 SW 2912 ab 3790 b 6576 a 332 b 332 a 368 b 0.87 ab 1.13 b 1.97 b

 MW 2676 b 3832 b 5370 b 327 b 320 ab 369 b 0.80 b 1.14 b 1.60 b

N fertilizer (N)

 0 2512 b 3102 b 5195 b 326 b 309 b 343 b 0.75 b 0.93 b 1.55 b

 162 3055 a 4074 a 6212 a 333 a 328 a 377 a 0.89 a 1.20 a 1.83 a

ANOVA

 LGM * * * * * * * * * * NS * * * * 

 N * * * * * * * * * * * * * * * * * 

 LGM ×  N * * NS NS NS * * * * * * NS NS

Table 3.  Grain yield, ET, and WUE for different precipitation years under the LGM and N fertilizer 
treatments from 2008 to 2013. aDry years include 2008–09, 2009–10, and 2012–13; normal year is 2010–11; 
wet years include 2011–12 and 2013–14. bThe LGM treatments are FW for summer fallow-winter wheat (CK), 
HW for Huai bean-winter wheat, SW for soybean-winter wheat, and MW for mung bean-winter wheat. cWithin 
the same column, different lowercase letters indicate significant differences at P <  0.05 (Duncan’s test) between 
the LGM treatments. *, **indicate statistically significant differences at P = 0.05, 0.01, respectively (Duncan’s 
test). NS, not significant.

Figure 2. Relationships between annual precipitation (a), FSP (b), and GSP (c) with wheat grain yield under 
the LGM treatments from 2009 to 2014 (n =  288). The LGM treatments are as follows: FW for summer fallow-
winter wheat (CK), HW for Huai bean-winter wheat, SW for soybean-winter wheat, and MW for mung bean-
winter wheat. Each value is presented as the mean for the same LGM treatment each year. The bars show the 
standard errors (n =  12). Linear regression models and correlations between the different characteristics and the 
yield are presented in each upper corner. R2 corresponds to the correlation coefficient.
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Correlation coefficients of the wheat grain yield with the annual precipitation, FSP, and GSP for the LGM sys-
tems are presented in Fig. 2. No apparent relationship was found between the FSP and yield. However, there was 
a significant positive correlation between the yield and the annual precipitation and GSP, indicating the key role 
of GSP, rather than FSP, in grain yield production under the rain-fed cropping system. For the regression of yield 
versus GSP, the slopes of the LGM systems (ranged from 23.7 to 34.1) are greater than those of the fallow system 
(19.2). Similar results can observed for the wheat yield versus the annual precipitation and FSP.

Soil water status and balance. The distribution of soil water in the 0–100, 100–200, and 0–200 cm depths 
at the times of winter wheat planting and harvesting from 2008 to 2014 showed that the water content in the 
upper 0–100 cm soil depth fluctuated more severely than that in the 100–200 cm depth (Fig. 3). At the times of 
wheat planting, the mean soil water contents in the 0–100 cm and 100–200 cm depths were 256 mm (CV, 18%) 
and 193 mm (CV, 28%), representing 56% and 44% of the total available water in the 0–200 cm soil depth, respec-
tively. The mean water contents in the 0–100 cm and 100–200 cm soil depths decreased to 123 mm (CV, 18%) and 
147 mm (CV, 13%), which represented 46% and 54%, respectively, of the 0–200 cm soil water depth at the times 
of harvesting.

The LGM approach significantly affects the water contents in the 0–100, 100–200, and 0–200 cm soil depths at 
the times of wheat planting and harvesting (Fig. 3). Compared with bare fallow, inclusion of the LGM crop in the 
traditional wheat cropping system decreased the mean soil water content at the depth of 0–200 cm by 47.6 mm 
(P <  0.05), by 3.2 mm (P <  0.05), and by 46.5 mm (P <  0.05) at the times of wheat planting in the dry, normal, and 

Figure 3. Distributions of soil water content (mm) in the 0–100 (a), 100–200 (b), and 0–200 cm (c) depths 
under the LGM treatments at the times of winter wheat planting and harvesting from 2008 to 2014. The LGM 
treatments are as follows: FW for summer fallow-winter wheat (CK), HW for Huai bean-winter wheat, SW for 
soybean-winter wheat, and MW for mung bean-winter wheat. SWP and SWH are the soil water contents at the 
times of the full bloom stage of winter wheat planting and harvesting, respectively. Each value is presented as the 
mean for the same LGM treatment. “*” indicates significant differences at P <  0.05 (Duncan’s test) between the 
LGM treatments.
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wet years, respectively. Overall, the mean soil water content at the depth of 0–200 cm under the LGM systems 
was 32.4 mm less than that in the FW system at the times of wheat planting, with 70% of the total water deple-
tion occurring in the top 100 cm, and 30% in 100–200 cm. Similarly, the mean reductions in soil water content 
caused by the LGMs in the 0–200 cm depth were 20.4 mm (P <  0.05), 40.3 mm (P <  0.05), and 33.1 mm (P <  0.05) 
at the times of wheat harvesting in the dry, normal, and wet years, respectively. On average, the LGM approach 
decreased the soil water content by 28 mm compared to bare fallow in the 0–200 cm depth, with 43% of the total 
water depletion occurring in the top 100 cm, and 57% in 100–200 cm at the times of wheat harvesting during the 
test 6-years.

The SWS, SWD, and SWB in the 0–200 cm depth were significantly affected by the year. However, they were 
neither influenced by LGM nor year ×  LGM (P >  0.05) (Table 1). In the dry years, the SWS for the LGM systems 
were 11 to 19% (P <  0.05), 18 to 78% (P <  0.05), and 12 to 26% (P <  0.05) less than those for the fallow system 
in the 0–100, 100–200, and 0–200 cm soil depths during the fallow season, respectively. Despite the depth, there 
was no significant difference in the SWS between the LGM approach and the FW in the normal years. There were 
0.3 to 5.9% and 3.5 to 5.8% (P >  0.05) increases in SWS for the LGM systems compared with those for the fallow 
system in the 0–100 and 0–200 cm depths in the wet years, respectively. A similar tendency in SWD during the 
growing season was found in the 0–200 cm soil depth. Based on SWB, the soil water in 0–200 cm was almost the 
same or greater for the LGM systems than for the bare fallow system in the normal and wet years, whereas soil 
water depletion was found in the upper depths in the dry years, which might bring negative effects on the growth 
and productivity of the subsequent crop in the rain-fed cropping system. On average, the LGM decreased the soil 
depletion by 13.3 mm (0–200 cm) during the growing season, while it decreased the soil water storage by 10.2 mm 
(0–200 cm) during the fallow season, thus increasing the soil water balance by 3.1 mm (0–200 cm) (P >  0.05) 
compared with conventional fallow.

Discussion
Soil water balance for the LGM systems. During the 6-yr period, we found that planting the LGM crop 
does not greatly affect the efficiency of precipitation storage and the quantity of water stored in the 0–200 cm soil 
depth during the summer fallow season in the normal and wet years (Table 2). Few differences in ET between the 
FW and LGM treatments suggest that the soil water evaporation rate of the fallow treatment was almost equal to 
the ET rate of the LGM treatments when the legumes were terminated at approximately full bloom, especially in 
the wet years. These findings are consistent with the results from other investigators24,30. Zhang et al.3 reported 
that there was no significant difference in the soil water storage level under catch cropping treatment compared 
with the conventional practice for all the three years. Moreover, the water balance and fallow efficiency under the 
green manure treatments would be similar to that of the conventional practice if the black bean (Aphis faba) were 
incorporated into the soil at a proper stage (45 days before sowing winter wheat)33. O’Dea et al.34 demonstrated 
in north-central Montana, USA, that green manure crops likely did not limit the soil water available to wheat, 
mainly resulting from the small soil water depletions in the green manure treatments below fallow at wheat seed-
ing (17%; 30 mm) and near-record high rainfall during the wheat growing season (280–380 mm).

However, it should be noted that the application of the LGM approach could result in a further water depletion 
in a dry year with deficient rainfall or when termination date of fallow crops was late30,33. In this research, the ET 
(0–200 cm) was increased whereas PSE and SWS (0–200 cm) were decreased significantly under LGM than under 
FW in the dry years. This result is in accordance with the results presented by Zhang et al.11. They introduced the 
green manure crop in the conventional management in a 3-yr study, indicating that growing a green manure crop 
decreased the soil water storage at the times of wheat planting during a dry year than in a wet year. In rotations, 
deep-rooted legumes may use water at depth, thus obviating access by the subsequent crop and diminishing yield, 
especially in a year with low rainfall35.

Notably, the LGM approach increases the WP in the summer fallow season, suggesting that growing legumes, 
which produce high quantities of biomass, can achieve better natural resource use efficiencies. This is in line with 
Allen et al.30, who took a 12-yr study and found that the green manure crops, under proper management, main-
tains water productivity about three cropping cycles compared with traditional wheat–fallow rotations during the 
fallow period in the North America northern Great Plains.

According to the six-year results in the present study, the incorporation of the LGM crop had considerable 
potential for maintaining the soil water balance versus the conventional fallow approach in the normal and wet 
years (Table 4). Applying LGMs in the fallow season was an available option to keep the soil water balance because 
it adds an amount of high-quality organic material to the soil, thereby increasing the amount of soil organic mat-
ter (SOM) that could probably increase the porosity, infiltration and water-holding capability of the soil36. Similar 
with PSE and ET, there showed a strong negative influence in the soil water balance when LGMs were planted 
during the fallow season when the rainfall is not adequate (Fig. 3 and Table 4). This is consistent with some previ-
ous studies22,33. Furthermore, the LGMs reduced the downward water transport, leading to less deep percolation 
and lower amounts of water stored in the deeper soil profile3. Therefore, the specific climate condition should be 
considered when the LGM approach was applied to the water-limited agricultural system.

Wheat grain yield for the LGM systems referring to precipitation. To better understand the patterns 
of the wheat yield and water use efficiency under the LGM system in different precipitation years, it is important 
to investigate the temporal characteristics of precipitation, such as the annual precipitation trends and seasonal 
distribution. In our study, the mean GSP, FSP, and annual precipitations during the 57-year period were com-
parable with the corresponding results stated in a report in the same region of the Loess Plateau25. According 
to the decadal-mean precipitations from 1960s to 2010–2014, there showed an obvious downward trend in 
the GSP (R2 =  0.628*) with an average decreasing rate of 2.5 mm/year in the study area. However, no apparent 
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changes were observed in the annual year precipitation (R2 =  0.014NS) and FSP (R2 =  0.159NS) from 1958 to 2014 
(Fig. 1a,b). This is in line with the results of a long-term (15-year) field experiment carried out in the Loess Plateau 
of China by Huang et al.37, who reported that there showed a marked decrease in the rainfall during the wheat 
growing season, however, no significant changes could be detected in the total rainfall from 1985 to 1999.

As the natural precipitation is the sole source of water in rain-fed cropping systems, winter wheat growth and 
productivity was closely related with the precipitation on the Loess Plateau of China25. In this study, the wheat 
yield was one to two times greater in the normal and wet years than that in the dry years, indicating that the 
crop productivity was significantly depressed in the years with low rainfall. There was no apparent relationship 
between FSP and yield, whereas there appeared an obvious positive correlation between yield and GSP, implying 
the key role of GSP, instead of FSP, in grain yield production under the rain-fed cropping system (Fig. 2). This 
result is consistent with Li et al.24, who found that the variation in the yield for wheat was not only associated with 
the pre-sowing soil water storage but also closely related to the growing season precipitation. According to the 
regressions of yield versus GSP, FSP, and annual precipitation, the greater slopes for the LGM systems than fallow 
system suggested that the wheat yield was more sensitive to the variations of the rainfall following the LGMs 
compared with bare fallow. In the dry years, the LGMs depressed the mean wheat yield by 9.8% (304 kg/ha) com-
pared with bare fallow (Table 3), which may be related to the less precipitation in the growing season and extra 
water requirements of the LGMs during the summer fallow period. This result agrees with that presented by Vigil 
and Nielsen38 and Nielsen and Vigil23, who replaced a portion of the fallow period with legume production in the 
winter wheat–fallow systems in the central Great Plains, observing that the subsequent wheat yields substantially 
decreased following the legumes, mainly due to the extra water depletion caused by the cover crop growth. Unger 
and Vigil22 demonstrated that a consequence of growing cover crops (including green manure crops) is that they 
use soil water, which can have negative effects on the soil water supply and productivity for the next crop when 
the precipitation is limited and highly erratic, as in semiarid to arid regions.

Upon increasing the precipitation in the normal and wet years, there appeared a significant improvement in 
the wheat yield for the LGM systems (Table 3), suggesting that the positive effects of LGMs on the subsequent 
crop yield begun to occur when the natural rainfall is adequate under this dryland region. This is consistent with 
Zhang et al.33, who found that there appeared an increase in the following winter wheat yield under the green 
manure treatment compared with the conventional practice treatment during a relatively wet year. There were 
more visible beneficial effects of LGMs on the subsequent crop growth, production, and economic benefits in the 
wet years21. Previous studies also demonstrated that legumes could play a role in the maintenance of soil produc-
tivity in cropping systems through N2 fixation18, the recovery of soil nutrients39,40, and increases in the soil biolog-
ical activity and microbial biomass accumulation41. In addition, these benefits to subsequent crops will persist42.

ET and WUE of wheat for the LGM systems. Considerable variations in seasonal ET of wheat were 
recorded due to the large variation in the amount of precipitation received during the six years. Our six-year 
study found that growth of the LGM crop tended to decrease the ET in the wheat-growing season. This conflicts 
somewhat with the results of a short-term (three-year) field study in the semi-arid region of the northwest China 
by Li et al.24, who found that there showed a marked increase in evapotranspiration when fallow crops were 
added to the rotation cropping systems. Huang et al.31 also reported that involving peas in traditional winter 
wheat rotations markedly decreased the seasonal ET of wheat. The decrease in ET in the wheat-growing season 
for the LGM systems may be related with the improved soil fertility due to the inclusion of the fresh LGM biomass 

Soil depth (cm) Treatments

SWSa (mm) SWD (mm) SWB (mm)

Dryb Normal Wet Dry Normal Wet Dry Normal Wet

0–100

FWc 125 ad 149 b 154 147 a 130 141 − 22.3 b 19.2 12.2

HW 101 b 167 a 160 126 b 143 140 − 24.4 ab 24.8 20.0

SW 100 b 164 a 163 129 b 139 144 − 28.0 a 24.8 19.1

MW 111 b 156 b 154 128 b 138 142 − 17.3 b 18.8 12.3

100–200

FW 15.5 a 86.2 111 24.4 74.6 100 − 8.94 11.5 11.2 b

HW 3.65 b 83.8 94.2 15.7 75.2 70.5 − 12.1 8.62 23.7 a

SW 3.46 b 88.7 92.6 14.5 84.4 73.7 − 11.1 4.29 18.8 ab

MW 12.7 ab 77.3 94.9 23.9 71.6 75.1 − 11.2 5.77 19.8 ab

0–200

FW 140 a 236 264 171 a 205 241 − 31.2 30.7 23.4 b

HW 105 b 251 254 141 b 218 210 − 36.5 33.4 43.7 a

SW 104 b 253 255 143 b 224 217 − 39.1 29.1 38.0 ab

MW 123 ab 234 249 152 b 209 217 − 28.5 24.6 32.1 ab

Table 4.  SWS, SWD, and SWB in the 0–100, 100–200, and 0–200 cm depths in different precipitation years 
under LGM treatments from 2008 to 2013. aSWS soil water storage during the summer fallow season, SWD 
soil water depletion during the wheat growing season, and SWB soil water balance. bDry years include 2008–09, 
2009–10, and 2012–13; normal year is 2010–11; wet years include 2011–12 and 2013–14. cThe LGM treatments 
are FW for summer fallow-winter wheat (CK), HW for Huai bean-winter wheat, SW for soybean-winter wheat, 
and MW for mung bean-winter wheat. dWithin the same column, different lowercase letters indicate significant 
differences at P <  0.05 (Duncan’s test) between the LGM treatments.
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for continuous six years (data not shown). Applying the LGM approach was an available option to increase the 
amount of SOM, which could probably increase the porosity and water-holding capability of the soil36. Besides, 
Olness and Archer43 demonstrated that a 1% increase in soil organic carbon induce a 2–5% increase in the soil 
available water-holding capacity depending on the soil texture. Consequently, continuous inclusion of LGMs 
might have the positive effects on reducing the evapotranspiration compared with bare fallow system.

In rain-fed cropping systems, water for evapotranspiration was derived partly from soil water storage before 
wheat planting and partly from growing season precipitation. However, the relative contributions to ET from the 
two sources varied significantly with the annual precipitation and LGMs. In this trial, winter wheat for the LGM 
systems consumed 36–41% of the available water that came from soil water storage at planting for ET, whereas 
59–64% came from growing season precipitation. For the bare fallow system, the mean available water consumed 
by wheat was 44% and 56% derived from soil water storage and growing season precipitation, respectively (Fig. 1 
& Table 3). These results indicate that the application of the LGM approach has considerable potential for reduc-
ing the depletion of soil water storage and increasing the utilization efficiency of the growing season rainfall, thus 
helping to keep the water balance compared with bare fallow. One explanation about saving the soil water storage 
under the LGM systems compared with fallow system was probably related to the increased the porosity and 
water-holding capability of the soil due to the apparent improvements in SOM and soil bulk density over the six 
years (data not shown)43,44. Besides, the incorporation of high-quality organic material into the soil could not only 
enhance root growth but also improve crop water status and its tolerance to drought45, which may be favorable to 
alleviate water stress and improve the productive transpiration, especially in arid and semi-arid regions28.

WUE, the grain yield per unit of seasonal ET, varied greatly between LGM crops and the amount of precipita-
tion received during the six years. The mean WUE of wheat grain in this trial (1.24 kg/m3) was close to the mean 
WUE value of wheat (1.20 kg/m3) in a 24-year fertilization study in the northeast part of the Loess Plateau46. 
Zhang et al.47 compiled a data base of 39 sets of experiments spanning 20 years and demonstrated that the average 
WUE value of winter wheat across all practices is 1.21 kg/m3 in the dryland area of the Loess Plateau of China. 
However, the value was 13% greater than the global average WUE of 1.09 kg/m3 for wheat48. With a greater 
grain yield in the normal and wet years, there was a significant increase in the WUE for the LGM systems over 
bare fallow. For the HW and SW systems, it is particularly noteworthy that the lowered grain yields in the dry 
years were not concomitant to substantially lowered WUE values. This is not in line with the reports presented 
by Zhang et al.33, who demonstrated that less available soil water for wheat transpiration caused an apparent 
decrease in the wheat yield and WUE for fallow crops versus conventional practice. Nielsen and Vigil49 stated that 
field pea (Pisum sativum L.) grown ahead of wheat did not improve the wheat yield and WUE compared with 
wheat preceded by wheat, proso millet (Panicum miliaceum L.), or fallow in the central Great Plains. Notably, the 
decrease in WUE under alternative practices can be attributed to the corresponding decrease in the grain yield, 
addressing the strong positive relationship between the WUE and yield47. Moreover, the inconsistent results in 
WUE for the LGM approach in the previous studies might be related to the short period of the field trials (less 
than three years) or the specific climate conditions with extremely low annual precipitation (< 350 mm). Mainly 
due to their poor growth and low adaptabilities to the dryland condition, mung bean and soybean produced 
less biomass during the fallow period and led to greater reduction in wheat yield in the dry year than Huai bean. 
Cherr et al.12 reported that establishment of large-seeded LGMs such as soybean may be particularly dependent 
on timely rainfall in low-rainfall climates when irrigation is not available. Therefore, low emergence rate of seeds 
resulted in the less total biomass of soybean during the most test year. Overall, Huai bean performed the best 
among the three tested legumes, not only because of its lower ET during the growing season, but also due to its 
greater improvement in the productivity and WUE in the normal and wet years.

Conclusions
Water deficiency is the major obstacle to the crop productivity of the dryland agriculture in the Loess Plateau of 
China. The results from this six-year study confirm that planting the LGM crop (Huai bean, soybean, and mung 
bean) consumes soil water during the fallow season which can bring varied effects on the following wheat growth 
and productivity. The effect is positive or neutral when the annual precipitation is adequate, so that there is no 
significant reduction in the quantity of soil water supplied for the next crop. If this is not the case, the effect is 
negative. Consequently, it is a viable option to plant the LGMs instead of summer fallow to improve the yield and 
WUE of wheat and maintain the soil water balance in the normal and wet years. Among the three tested legumes, 
Huai bean was more suitable than soybean and mung bean under our experimental dryland conditions. Future 
efforts are needed to find the appropriate field management to alleviate the negative effects of the LGM approach 
on the next crop in the dry years. These findings will hopefully (i) develop a LGM-based cropping system with a 
theoretical basis and field management strategies, and (ii) enhance the agricultural productivity, environmental 
sustainability, and economic profitability, not only in the Loess Plateau of China but also in other similar dryland 
regions.
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