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Fiber-Type Random Laser Based  
on a Cylindrical Waveguide with  
a Disordered Cladding Layer
Wei Li Zhang1, Meng Ya Zheng1, Rui Ma1, Chao Yang Gong1, Zhao Ji Yang1, Gang Ding Peng1,2 
& Yun Jiang Rao1

This letter reports a fiber-type random laser (RL) which is made from a capillary coated with a disordered 
layer at its internal surface and filled with a gain (laser dye) solution in the core region. This fiber-type 
optical structure, with the disordered layer providing randomly scattered light into the gain region and 
the cylindrical waveguide providing confinement of light, assists the formation of random lasing modes 
and enables a flexible and efficient way of making random lasers. We found that the RL is sensitive to 
laser dye concentration in the core region and there exists a fine exponential relationship between the 
lasing intensity and particle concentration in the gain solution. The proposed structure could be a fine 
platform of realizing random lasing and random lasing based sensing.

Different from traditional lasers, random lasers (RLs) do not need a resonance cavity with high-quality reflection 
mirrors. Their working principle is based on amplified multiple scattering in disordered systems1–3. Thanks to 
relatively strong scattering, feedback loops of light might be formed, corresponding to special cavities of RLs. In 
this case, random lasing actions will emerge when gain of the laser cavity is larger than its loss. Since the pioneer 
works in 1990s, RLs have been realized with a wide range of materials, such as semiconductor, polymer, liquid 
crystal, biological material/tissue, and optical fiber, covering radiation wavelengths from UV to Mid-infrared2–7.

To enhance the emission efficiency, tailor the output spectrum, or control the emission directions of random 
lasing, gain materials and scatters of RLs were embedded into optical waveguide structures3,8–14, in which light 
amplification and scattering are confined and mediated by the waveguide, giving birth to partially regulated and 
still randomly formed positive feedback loops that support random lasing. Generally speaking, there are two 
ways of generating amplified multiple scattering to form positive feedback loops in RLs, i.e., 1) doping randomly 
distributed scatters into the gain material and 2) forming a random structure adjacent to the bulk gain material.

For the first type of RLs, the gain material and the scatter are mixed together, and they have been reported in 
semiconductor waveguides, filled-core or solid-core optical fibers, etc.8–14. For the second type of RLs, the gain 
material and the scatter are in separate regions and this facilitates controlling of light amplification and scattering 
process separately. The second type has been reported in photonic crystal membrane waveguides with engineered 
disorders, a polydimethylsiloxane waveguide with gain solution in a rough microfluidic channel, and dye solution 
between disordered structures3,15,16.

In this paper, a novel RL of the second type is proposed, making from a fiber-type cylindrical waveguide that 
is formed by coating a disordered dielectric film in the internal surface of a glass capillary, and filling the capillary 
with dye solution. Compared with previous work, the proposed RL is easier to be fabricated because its scattering 
and gain can be simply and separately controlled by changing the concentrations of scatter and gain materials. 
In addition, the proposed fiber-type waveguide with disordered cladding also provides guide/confinement of 
light that assists formation of random lasing modes, and enables random lasing with narrow linewidth and wide 
emission wavelength range. Taking advantage of the sensitive characteristics of RL to small particles17, a method 
of using random lasing to detect the concentration of particles in the dye solution is proposed for the first time to 
the best of our knowledge.
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Experimental Setup
The experimental setup of this work is given in Fig. 1(a). A Nd:YAG laser radiates 532 nm pulse with 10 ns pulse 
width and 20 Hz repetition rate is used to pump a sample of the RL. To guide the pump light, a transparent glass 
plate and a glass mirror is used as reflectors. The transparent glass plate reflects the pump light at both its front 
and back surfaces (i.e., two interfaces between the plate and air) and separates the pump light to two spots (each 
of the spot has a diameter of ~3 mm). Both the spots are reflected by the glass mirror and shine on the sample at 
slightly different regions so that the pumped area is about doubled and the lasing threshold is reduced (Here we 

Figure 1. Schematic diagram of the experimental setup and the RL structure. (a) Experimental setup, (b) 
RL structure, (c) Scanning electron microscope image of the cross-section of the cylindrical waveguide with 
coating.

Figure 2. Refractive and light intensity distribution at 595 nm. (a–d) are the refractive index and normalized 
light intensity (in logarithmic scale) distribution of the vertical (parallel) section respectively.
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use this simple method to increase the pump area without using additional components to tune the waist of the 
pump light). Emission of the sample is collected, through a collimator, by a bunch of fibers that are connected 
with an optical spectrum analyzer (OSA), and the acquisition time of the OSA is 1 s (thus, the spectra obtained in 
the successive studies are average outputs other than statistical ones18,19).

The sample is prepared in two steps. Firstly, UV-Cured adhesive mixed with TiO2 nano particles (mass ratio 
of the TiO2 particles and the adhesive is 1:4) is injected into a capillary (with outer and inner diameters of 170 
and 100 μ m, respectively). The filled capillary is then inflated with steady flow of air for 3 minutes, coating a dis-
ordered thin film (i.e., about 3 μ m thick) on the inner surface of the capillary, as shown by Fig. 1(b,c). To solidify 
and stabilize the coating layer, an ultraviolet light is used to irradiate the capillary. Secondly, Rhodamine B solu-
tion (the concentration of Rhodamine B in deionized water is 1 mol/ml) is filled into the coated capillary as the 
gain material. The coating layer has higher refractive index (~1.5), and the filled core has lower refractive index 
(~1.39). The coating layer with randomly distributed TiO2 particles can scatter light back into the gain region. 
Thus, light localization and positive feedback loops of light might form randomly close to interface of the gain 
region and the coating layer1, giving birth to random lasing actions.

Numerical Analysis
Light distribution in the proposed structure is analyzed through Finite Difference Time Domain (FDTD) 
method20,21. To simplify the simulation, sections vertical to and parallel to the axial direction of capillary are sim-
ulated. Figure 2(a) shows the refractive index distribution of the vertical section. To mimic light emission in the 
radial direction, an electric dipole light source is added at the center of the vertical section. From Fig. 2(b) we can 
find that the emitted light is multiply scattered and partially confined in the core by the coated layer. Figure 2(c) 
shows the refractive index distribution of the parallel section, and four plan wave sources (i.e. with radiation 
direction of 45, 135, 225 and 315 degrees respectively) set at the axis of the parallel section are used to mimic light 
emission in both the radial and the axial directions. Similarly, Fig. 2(d) indicates that, the emitted light will be 
multiply scattered and partially confined in the core. Thus, the proposed structure performs like a fiber that assists 
formation of random laser modes in the core region, and random lasing might be supported if gain mechanism 
is provided.

Experimental Results
To verify our assumption, Fig. 3(a) compares the emission spectra between two different samples under same 
pump conditions. When there are no TiO2 particles doped in the coating layer (Sample 1), the output spectrum is 
wideband amplified spontaneous emission (ASE). Besides, there is no whisper gallery mode (WGM) observed in 
the spectrum, indicating that the coated layer is neither fine enough to support lasing of WGMs nor nonuniform 
enough to provide strong scattering for random lasing17. When the TiO2 particles are doped in the coating layer 
(Sample 2), strength of light scattering is enhanced greatly, and random lasing with narrow linewidth is obtained.

We also repeated the experiment of Fig. 3(a) by irradiating the pump at different axial positions of the samples, 
which is realized by changing the relative position of the samples, while the pump and the collection positions 
keep unchanged. For Sample 1, no lasing action is observed, and the output is still ASE, which further verifies 
that only the waveguide effect is not enough to support laser emission. For Sample 2, lasing at different wave-
lengths has been observed when changing the pumping positions (e.g. from positions 1–4 as shown in Fig. 3(b)). 
Such pump-position-depended output is a typical characteristic of RLs, which corresponds to the formation of 
different cavity modes through multiple scattering at different part of the sample. In our case, the RL wavelength 
can be tuned in a relative large bandwidth, i.e., from ~570 to ~600 nm, without changing parameters of its gain 

Figure 3. Output spectra of the RL. (a) Output spectra of the samples with and without scatters in the coating 
layer, (b) Output spectra of the RL for different pump positions. The Rhodamine B concentration is 1 mol/l, and 
the pump intensity is 0.645 W/cm2.
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material or scatters. This is because, 1) large length to volume ratio of the RL (i.e., quasi-one dimensional struc-
ture) increases nonuniform distribution of light localization along its axial direction, and 2) the waveguide effect 
of the proposed structure assists/mediates the formation of localized modes apart from random scattering, so 
laser modes within wider wavelength region might be formed with positive net gain. For example, random lasing 
is observed not only at the maximum of the gain profile, because lasing wavelength is determined not only by 
the gain maximum of the dye solution but also by the loss of the randomly formed laser mode (i.e., the filtering 
effect of the waveguide together with the gain mechanism determines the wavelength of maximum net gain). 
In our experiment, we also tested the cases when either one of the two pump spots is blocked, and no random 
lasing is observed. This reflects that the random lasing mode extends in the axial direction of the sample, and the 
waveguide certainly takes effect.

Taking the random lasing action when pump is at position 4 as an example, output characteristic of the RL 
is given in Fig. 4. It is observed that the output intensity increases with the pump intensity, and clearly exhibit a 
threshold behavior when the pump intensity is ~0.36 W/cm2, as seen in Fig. 4(a). The laser spectra corresponding 
to different pump intensities are shown in Fig. 4(b–e). It is observed that lasing peaks around 594 nm start to 
emerge when pump intensity is larger than the threshold. With increase of the pump intensity, more and more 
lasing peaks emerge, which is also one typical phenomenon of random lasing action.

In our experiment, the gain solution is filled into the coated capillary by a micropump through connection of 
a plastic tube. It is very convenience to change the gain solution using the same coated capillary. Thus, an open 
random microcavity is formed wherein the gain medium is replaceable, offering a promising way for optical 
microfluidic applications based on random lasing.

In the following study, we investigate emission wavelength of the RL by changing concentration of the gain 
solution. It is observed (Fig. 5) that random lasing peaks change from 560 to 600 nm when concentration of the 
gain solution changes from 0.4 to 2 mol/l. This is due to wavelength blue-shift of the gain maximum22.

We also mix polyethylene particles of different concentrations into the gain solution. It is observed that the 
maximum photon counts (i.e., average value of 10 measurements) decreases exponentially with increase of par-
ticle concentration, as seen in Fig. 6(a). Spectra of the RL indicate that the emission wavelengths also vary with 
particle concentration in the gain solution, as shown by Fig. 6(b–d). This is because that the particles added to the 
gain solution will scatter light and change trajectories of light propagation. As a result, the chance to form laser 
cavities with positive net gains is reduced, and different laser cavities might be formed, giving birth to different 
lasing modes with reduced output intensity.

Discussion and Conclusion
It is worth mentioning that the proposed method may be easily applied for RLs using other gain materials/solu-
tions, by replacing the core solutions and the appropriate pump source. Hence it provides a simple and flexible 
platform using microfluid techniques for developing RLs of different gain materials for “on-chip” sensing appli-
cations. The proposed structure can also be incorporated in traditional optical fibers (e.g. adding a random clad-
ding layer to the core), which can provide scattering much stronger than merely Rayleigh scattering in the fiber 
core10–13, and could be an efficient way to reduce threshold and cavity length of traditional random distributed 
feedback lasers. It is worth of noting that the above simulation results indicate that the proposed structure can 
perform like a waveguide to trap most of the light in the core, however, part of the light will be scattered out of the 
core in random directions. When using this structure to make real fibers, stronger scattering is helpful to provide 

Figure 4. Output characteristics of the RL. (a) Output power versus pump intensity, (b–e) Output spectra for 
pump power of 0.645 W/cm2, 0.529 W/cm2, 0.382 W/cm2 and 0.275 W/cm2 respectively.
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light feedback, but this will also increase loss. Thus, balance between useful and harmful scattering should be 
considered by selecting dimension and refractive of each layer of the fiber.

In conclusion, a fiber-type random laser based on a cylindrical waveguide with a disordered coating layer is 
proposed and demonstrated. The waveguide effect together with the amplified light scattering of the proposed 
structure provide efficient mechanism to form RL modes, and contribute to random lasing with narrow linewidth 
and wide wavelength tunability. The random lasing intensity decreases exponentially with increase of particle 
concentration in the core, providing a potential way of small particle sensing using RLs.
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