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Using Network Dynamical Influence 
to Drive Consensus
Giuliano Punzo1,2, George F. Young3, Malcolm Macdonald1 & Naomi E. Leonard3

Consensus and decision-making are often analysed in the context of networks, with many studies 
focusing attention on ranking the nodes of a network depending on their relative importance to 
information routing. Dynamical influence ranks the nodes with respect to their ability to influence 
the evolution of the associated network dynamical system. In this study it is shown that dynamical 
influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer 
a network from one state to another. An example is provided where the “steering” refers to the physical 
change in velocity of self-propelled agents interacting through a network. Distinct from other works 
on this subject, this study looks at directed and hence more general graphs. The findings are presented 
with a theoretical angle, without targeting particular applications or networked systems; however, the 
framework and results offer parallels with biological flocks and swarms and opportunities for design of 
technological networks.

The investigation of collective behaviours and dynamics is often carried out through networks. A network is a 
powerful means to model the interactions in biological and social groups where individuals are represented by 
nodes and their interactions by edges. The information routing amongst social individuals is responsible for 
group behaviour and can in some cases explain complex phenomena. The Trafalgar Effect in marine insects and 
the Chorus Line Hypothesis in bird flocks are two biological examples of this kind1,2, where the information of a 
predator attacking is quickly and efficiently moved across the whole group, driving a coherent group response. 
The STARFLAG project represents one of the most dramatic examples of how mapping interactions in a biolog-
ical group provides the basis for understanding their complexity3–5. In a time where physical, cultural and social 
distances are often bridged by the internet, social sciences can also be abstracted from networks6. Engineering 
is also more often facing the challenges of complex group dynamics, as opposed to complicated systems (see 
examples like the space system proposed by O’Neil and Weigel7 or the discontinued DARPA F6 project8 aimed at 
exploring highly responsive satellite formations). As such, understanding and leveraging the fundamental mech-
anisms of consensus have become a priority. Algorithms, analytic proofs and empirical studies have been widely 
reported, shedding new light on this matter9–16.

It is intuitively clear why the identification of the most influential nodes in a network, those that have a key 
role in leading and routing information, is of fundamental importance. As such, investigations have been con-
ducted across different scientific areas17–20 with several measurements of node centrality being identified. Node 
Degree21,22 considers how many links are associated with a single node, while Betweenness Centrality23 ranks 
the nodes based on the number of geodesic paths (paths of minimum length between any two nodes) that pass 
through the node. Eigenvector Centrality identifies the nodes best placed in the network as either having many 
connections or connected to nodes that have many connections24. An interesting application of Eigenvector 
Centrality was proposed by Allesina as a means to measure the species co-extinction through food webs25. 
Estrada considered several centrality measures to investigate the role of peer pressure26, obtaining comparable 
results but showing how different measures of influence highlight alternative aspects of networks.

To understand the role of eigenvector-based analysis it is useful to describe the network as a matrix with 
binary entries, where nodes are indexed along the rows and columns. If there is a link between any two nodes, say 
i and j, meaning that node i observes node j, then the corresponding entry of the matrix is “1”, otherwise, it is “0”. 
Such a matrix is termed the adjacency matrix. The spectral properties of the adjacency matrix are fundamental 
to Eigenvector Centrality as well as other popular ranking methods such as Katz’s centrality27 and PageRank28.
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Consider a general dynamical system based on N interconnected nodes. These nodes pursue a final state by 
observing their neighbours and trying to minimise the relative differences. Such group dynamics are described 
through

∑= − + − .
=

dx
dt

a x x c w x( ) ( )
(1)
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Here aij is the ij entry of the adjacency matrix, where xi is the state of node i, and its evolution is described by 
the dynamical system. w is a target state that nodes perceive in terms of the difference with respect to their own 
state and ci is a gain reflecting the influence of the external driver towards the target state. If the system had no 
constraints, then a fast consensus to the target would be achieved by increasing the gain ci as much as possible, up 
to the point in which the social term of the agent dynamics could be neglected compared to the push towards the 
external signal. However, when ci is constrained, as in the present work, then ci should be cleverly assigned. This 
elementary form of network dynamical system can be put in vector form as

= − + −
d
dt

L Cx x w x( ) (2)

where L is known as the Laplacian matrix and, by construction, has elements in all rows summing to 0. C is a 
diagonal matrix of size N containing the ci gains, and w is a vector with identical elements representing the tar-
get state of the system. The zero row sum of the Laplacian matrix implies 0 is an eigenvalue of L, and its first left 
eigenvector (FLE) can be used to rank the nodes based on their ability to serve as initiators of some dynamics 
expressed through the Laplacian29,30. Such a measure was named Dynamical Influence31 and obtained with par-
ticular reference to the ability of a node to serve as initiator of some outbreak. Dynamical influence looks at the 
first left eigenvector of the Laplacian as opposed to Eigenvector Centrality, which concentrates on the FLE of the 
adjacency matrix.

A classification of the nodes in the dynamical system context can consider several parameters. One is the abil-
ity to achieve consensus by filtering information out of a noisy signal investigated by, amongst others, Poulakakis 
et al.32 and Fitch and Leonard33. Controllability can also be used as a measure to select nodes34.

The present study concentrates on the role of the FLE of the Laplacian to distribute tracking of the external 
driver across all the nodes so as to obtain the fastest convergence possible towards that driver. The tracking effort 
is considered to be globally limited, that is, only a fixed amount of attention can be paid to an external driver 
across the whole network (this constrains ∑ = ci

N
i1 ). Under this hypothesis, the best distribution of effort across the 

nodes is sought to drive the network towards rapid consensus without allowing additional resources to be 
required. In contrast, the scenario in which all the nodes apply the same amount of effort would not take advan-
tage of the group. A natural environment analogy would be to identify the key individuals within a group that 
should focus their effort on keeping a lookout for predators, allowing others to focus most of their effort on for-
aging. By exploiting the connections in the group it is possible to allocate duties efficiently amongst all of the 
group members.

We investigated and extended the concept of dynamical influence to cover not only which nodes should be in 
charge to lead the dynamics, but also how much effort they should invest in doing so. The model in Eq. (1) is used 
to identify the gain matrix C that guarantees the nodes achieve consensus about the external driver, whilst doing 
so in the shortest time possible.

A change of coordinates (see Methods) can be applied to Eq. (2) to isolate the matrix L +​ C as

= − + .
d
dt

L Cy y( ) (3)

This model is used to find the diagonal matrix C that makes the dynamical system exponentially stable, with 
maximal rate and fixed effort. That is, all node states converge towards the same value with time and do so in 
the fastest way possible given a limited amount of effort. In contrast to the empirical approach taken by Klemm  
et al.31, here we consider an analytic approach providing mathematical proof of fast convergence. We show that 
the problem posed is solved by selecting the diagonal entries of C proportional to the entries of the FLE of L. 
Shang and Bouffanais35 used an analytic approach as well, concentrating their work on the number of interacting 
neighbours in a consensus problem with no external inputs. Instead we consider an external input, similar to the 
work by Shi et al.36. However, unlike Shi et al. this work looks beyond node selection towards the share of attention 
paid to the external input. The FLE of L is hence fed back into the system dynamics as a diagonal matrix to weight 
the control inputs towards tracking a uniformly fed external signal. As an eigenvector can be arbitrarily scaled the 
entries of the C matrix are scaled so that their sum is unitary. This allows comparison of the distribution with any 
other distribution summing to the same total, reflecting at the same time the global limitation considered.

Results
The first result presented here guarantees that the nodes paying attention to the external signal are always able 
to drive the network to consensus. From a mathematical point of view this means proving that the eigenvalues 
of the matrix −​(L +​ C) in Eq. (3) all have negative real part. A matrix with such characteristic is also known as a 
“Hurwitz matrix”. The matrix −​L, on its own, is not Hurwitz due to the presence of the zero eigenvalue. By add-
ing weights to its diagonal entries some nodes are effectively put in charge of tracking the external driver; hence, 
influencing the other nodes that observe them. It is then logical that the nodes in charge should be observed by 
all the others, or more generally are observed by some other nodes, which are in turn observed by the rest of the 
network. Nodes presenting this characteristic are called “globally reachable” or “globally observed”. Putting these 
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nodes in charge, that is, assigning positive diagonal elements of C corresponding to the indices of globally reach-
able nodes, makes −​(L +​ C) Hurwitz and guarantees the network will converge towards the desired state. This 
characteristic is illustrated through two examples in the Supplementary Information S3.

Choosing the elements of C proportional to the FLE of L makes the system Hurwitz since the elements of the 
FLE are positive in the indices corresponding to the globally reachable nodes. We note that as long as even just a 
single globally reachable node is provided with tracking capabilities the network will achieve consensus. Thus, any 
vector, having at least one positive component, where the same-indexed FLE entry is positive, would then pro-
duce a Hurwitz system matrix and a convergent system. The last statement is summarised and proven in Theorem 
S1 in the Supplementary Information S2.

It is now possible to show that distributing signal pursuing abilities so that they are proportional to the FLE 
entries for each node also provides near maximal consensus speed (see Methods for details). The speed of consen-
sus is governed by the eigenvalue of −​(L +​ C) that is the smallest in magnitude. The larger the magnitude of this 
eigenvalue, the greater the consensus speed. Our choice of C is particularly effective when the strength of interac-
tions amongst the nodes are dominant with respect to the strength of the external driver. This is captured by a 
difference in magnitude between the Laplacian matrix L representing inter-node interactions and the matrix C 
weighting the external driver, i.e., for 

L C .
To show this, consider again the system in Eq. (3) with an arbitrary diagonal matrix D with small nonnegative 

entries such that 
L D :

= − + .
d
dt

L Dy y( ) (4)

Let the matrix M be defined by adding a constant positive value to the diagonal entries of −​L, such that  
M =​ −​L +​ kI with k a real, positive scalar and I the identity matrix of appropriate dimension. As detailed in the 
Methods, the eigenvalues of M are equal to k added to each of the eigenvalues of −​L, but the two matrices keep 
the same eigenvectors. For k large enough the matrix D that maximises the consensus speed also minimises the 
spectral radius ρ(M −​ D), which is the largest eigenvalue in magnitude of M −​ D. For 

L D  we get37

ρ ρ− ≈ −M D M Dv u
u v

( ) ( )
(5)

T

T

where u and v are the right and left eigenvectors of M relative to the spectral radius of M, respectively. Since the 
eigenvectors of M are the same as those of −​L and the spectral radius of M corresponds to the zero eigenvalue 
of −​L, then u =​ 1, which is the vector of all ones, and v is the FLE of L. Thus, Du =​ D1 is the vector of the diagonal 
elements of D and uTv is the L1 norm of v.

Now suppose the vector of the diagonal elements of D is restricted such that its L1 norm is equal to a generic 
positive scalar α. Taking D =​ C =​ diag{v}, with the FLE v scaled such that its L1 norm is α, all the eigenvalues 
of −​(L +​ C) will be negative, and the dynamical system described by Eq. (4) will converge as per Theorem S1. 
Moreover, since Du =​ C1 =​ v is in the direction of the gradient of the spectral radius of M, −​vT, the choice of 
D =​ C provides a minimisation of the approximation (5) of the spectral radius of M −​ D and thus a near maximi-
sation of the consensus speed of the system described by (4). The smallest eigenvalue in magnitude of −​(L +​ C) is

λ
α

− − ≈ − .L C
v

( ) (6)1
2
2

The magnitude of the smallest eigenvalue of −​(L +​ D) cannot, in general, be maximised for D =​ C =​ diag{v} 
if the relative magnitude of C is large with respect to the magnitude of L. The FLE represents a (near) optimal 
choice when its magnitude is considerably smaller than the magnitude of the Laplacian such that Eq. (5) is very 
good approximation.

Equation (6) is obtained under the hypothesis that the diagonal vector of D has fixed L1 norm. If instead a fixed 
Frobenius matrix norm for the matrix D is assumed, a similar argument can be used to show that D =​ C =​ diag(v) 
maximises the spectral radius38 of −​(L +​ C). This is shown in the Supplementary Information S5. Finally, if the 
fixed trace of the diagonal matrix D, as opposed to fixed norm, is considered, the optimal solution can be found 
independent of the magnitude of D, as described in the Supplementary Information S10. This is not done here as 
the fixed trace optimisation includes the possibility of negative weights, which would not be compliant with the 
present framework.

Figures 1–4 illustrate the theoretically proven effectiveness of the FLE v as a means to distribute tracking 
resources. The illustrations are obtained by numerically integrating the network dynamical system. The evolution 
of the system is shown for three distributions of the tracking resources assigned through the matrix D. The net-
works used are a non-symmetric lattice, a periodic lattice (ring), a random network, and a small world network. 
These are further illustrated in Methods.

In the figures, the distribution of resources proportional to the FLE is compared to a distribution obtained 
numerically, through a routine that searches for a distribution maximising the magnitude of the first eigenvalue. 
A third, uniform distribution of the tracking resources is also compared.

In the case of a ring graph, the FLE, the numerically optimised distribution, and the uniform distribution 
coincide. Indeed, for normal graphs like the ring the optimal resource allocation is a uniform one, regardless of 
the total amount of resources. For all the other cases the numerical optimal and the FLE distribution are biased 
towards nodes being observed more than observing others, hence their capability to efficiently influence the 
dynamics. In all these cases the convergence speed provided by a non-uniform distribution of the resources 
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clearly surpasses that of the uniform distribution. In particular, the random network case presents only one glob-
ally reachable node. This is awarded all the resources by the FLE although the numerical optimiser finds a dif-
ferent resource allocation favouring two non-globally reachable nodes. However, both strategies quickly drive 
the network to converge. As shown in Table 1, the FLE achieves a consensus speed, measured by the smallest 
eigenvector in magnitude of −​(L +​ D), comparable to the numerically optimised solution and significantly better 
then the uniform distribution.

The resource distribution based on the FLE offers performance independent of the number of nodes, when 
compared to a numerically optimised distribution. Figure 5 illustrates this. In the figure, the same kind of lattice 
network used in Fig. 1 is considered, and extended to 50 and 100 nodes. The average state, that is the average over 
the node states at each time step, is plotted against time. As for Fig. 1, this is done for the FLE and the optimised 
resource distribution. Scaling the time with the nodes shows how the behaviour is unaffected by the size of the 
network. In particular the difference with respect to the numerically optimised result is small enough to observe 
that the plots are superimposed almost everywhere.

Extension to second order dynamics.  The prior results are extended to more closely replicate real world 
dynamics where the network nodes are agents moving in a three-dimensional space. The agents attempt to align 
their velocity with the external driver, whilst keeping relative spacing. Consensus happens on two variables for 
each agent: one is the velocity, the other is the relative position, which vary with the trajectory taken. It is then a 
second order system that describes the dynamics of the generic ith agent:

∑ ∑= − − +





−



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+ − +




−


.

= =

d x
dt

C a x x d C a
dx
dt

dx
dt

C z x C w dx
dt

( ) ( )
(7)

i
i
d

j

N

ij j i ij i
v

j

N

ij
j i

i
z

i i i
w

i
i

2

2
1 1

The symbols are the same as those used for the first order system and the coefficients ci of the first order system 
are substituted by the constants Ci

d, Ci
v, Ci

z, Ci
w that weigh the relative importance of the terms of the equation. The 

parameter zi represents the goal for the actual position xi and dij is a desired gap between the positions of any two 
agents i and j connected in the network. For cooperative agents, dij should equal −​dji, although this is not strictly 
necessary. The second order system is evaluated using a numerical simulation of the dynamics, physical intuition, 
and an analysis of the spectral properties of the system matrix.

Equation (12), the vector form of Eq. (7), describes the evolution of the network of agents achieving consensus 
about relative position and velocity. For the extension to the second order system, only the regular lattice case is 
considered. For this case, the sharing of the finite amount of resources should include tracking an external driver, 
a desired velocity but not a desired position ( =C 0i

z  for all i =​ 1, 2…​.n, see Methods). Moreover, the sharing of 
resources should also include the social terms producing consensus about relative distances and velocities, that is 
Ci

d and Ci
v. Only one sharing ratio amongst Ci

d and Ci
v is considered, with the relative importance being quantified 

by the parameter κ, as explained in the Methods. More cases are considered in the Supplementary Information S9.
The system behaviour is reported in Fig. 6, where the consensus about the common desired velocity along the 

three axes, the standard deviation about the targeted inter-agent distance for each agent, and a representation of 
the motion in three-dimensional space are shown. The rise time and the settling time were considered as well. 
These are reported in Table 2. Note that the change in y and z velocities are the same and are hence combined 
together in the plot and the Table.

Figure 1.  Consensus in a lattice and performance comparison. (a) Comparison among the values of the 
diagonal entries of matrix D for the matrix composed of the first left eigenvector, a vector obtained through 
numerical optimisation and one obtained by distributing evenly the tracking characteristics. All these vectors 
are scaled to have a unitary L1 norm. (b) Time evolution of the first order system driven to consensus about 
x =​ 1 by the diagonal perturbation of the Laplacian.
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The state space description provides a unified matrix for the relative positions and velocities. This gives a meas-
ure of the system convergence speed, as for the first order system. Unlike the first order system, the second order 
matrix keeps the zero eigenvalue as a consequence of the indefinite agent positions, which are set only in terms of 
relative distances. Consensus speed is again evaluated through the smallest in magnitude, non-zero eigenvalue of 
matrix S (See Eq. S14 in the Supplementary Information). This is reported in Table 3 while the effects on stability 
properties and the existence of the zero eigenvalue are covered in the Supplementary Information S6–S8.

Discussion
Assigning tracking resources proportionally to the entries of the FLE enhances the pursuit of an external signal 
and nearly maximises the speed of consensus about it. In proposing and investigating this resource allocation 
strategy the present work reveals features of this method and makes a comparison with classical optimization 
techniques. The comparison can be made in terms of time, computational effort and accuracy.

While the effort in computing the FLE is a function of the number of nodes and their connections, the effi-
ciency of the numerical optimization process relies on the initial guess and the algorithm used. This is true in case 
of centralised computation and even more relevant when distributed strategies are adopted. Moreover, possible 
poor conditioning of the numerical optimisation problem should be taken into account. A resource assignment 
proportional to the FLE provides performance very close to the numerical optimal, with the advantage of not 
requiring an initial guess and achieving a guaranteed, near optimal consensus speed.

If the FLE were to be used in the context of distributed engineering systems (e.g. mobile robotic agents), 
then its calculation could be achieved in a distributed way. The distributed, on-line calculation of the FLE is 
beyond the scope of this paper. There are a number of methods proposed in the literature, which could be applied 
to computing the FLE on-line. These methods are well suited for moderately sized distributed networks; how-
ever, they are not yet practical for implementation in large distributed systems. For example, the power iteration 
method has served as the basis for several algorithms39–43. These algorithms, in most implementations, make the 
network nodes achieve a consensus about the FLE and the Fiedler value of the Laplacian matrix. They require 
the graph connectivity, as in our case, and a network topology changing more slowly than the convergence time. 
In particular Di Lorenzo and Barbarossa41 include the possibility of link failures through a stochastic approach. 
The algorithm proposed by Qu et al.43 offers good performance against the presence of possible communication 
delays. Finally, Bertrand and Moonen40 provide a measure of the complexity of their algorithm with a num-
ber of floating point operations per node increasing linearly with the size of the node’s neighbourhood. These 

FLE Uniform Optimised

Lattice 0.2994 0.05 0.3256

Ring 0.05 0.05 0.05

Small World 0.2416 0.05 0.2466

Random 0.6765 0.05 0.7098

Table 1.   First eigenvalues of the system matrix (L + D). L is the network graph Laplacian, D is a diagonal 
matrix whose nonzero entries are either the first left eigenvector (FLE), a uniform vector or a vector numerically 
optimised to maximise the correspondent eigenvalue. All these have unitary L1 norm.

Figure 2.  Consensus in a ring and performance comparison. (a) Comparison among the values of the 
diagonal entries of matrix D for the matrix composed of the first left eigenvector, a vector obtained through 
numerical optimisation and one obtained by distributing evenly the tracking characteristics. All these vectors 
are scaled to have a unitary L1 norm. (b) Time evolution of the first order system driven to consensus about 
x =​ 1 by the diagonal perturbation of the Laplacian. As the three distributions coincide the plots overlap.
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algorithms, however, do not scale well in performance when the number of nodes increase beyond a few tens. 
The time needed to converge makes the distributed calculation not suitable for the time scales of many real world 
applications. The algorithm proposed by Salahi et al.42 exploits the wave equation to extract the components of 
the FLE through a Fast Fourier Transform and this way provides a very fast algorithm. However the methods can 
easily be affected by noise, which cannot be disregarded in the context of real engineering systems. In this respect 
Di Lorenzo and Barbarossa41 argue that the stochastic power iteration in their algorithm asymptotically reduces 
the noise variance, i.e. the detrimental effects of noise. The noise problem is a general one as this would affect all 
computations taking place over the network, including any optimization routine used in place of the FLE.

The present study work considers nodes receiving an undisturbed external signal and communicating with 
their neighbours without any interference. As such, the problem considered does not take into account the effect 
of noise in communication on the dynamics. However, if noise were considered, the global limited resource 
framework is even more compelling. Suppose that each agent can only measure a noisy version of the true signal. 
Suppose further that the amount of noise agents receive is inversely proportional to their investment, or at least 
monotonically decreasing for an increasing investment, which could relate to power usage in the sensors or the 
sensor cost itself. In this case, agents with a higher investment (and higher cost) receive a better signal, and so can 

Figure 3.  Consensus in a Small World network and performance comparison. (a) Comparison among the 
values of the diagonal entries of matrix D for the matrix composed of the first left eigenvector, a vector obtained 
through numerical optimisation and one obtained by distributing evenly the tracking characteristics. All these 
vectors are scaled to have a unitary L1 norm. (b) Time evolution of the first order system driven to consensus 
about x =​ 1 by the diagonal perturbation of the Laplacian.

Figure 4.  Consensus in a random network and performance comparison. (a) Comparison among the 
values of the diagonal entries of matrix D for the matrix composed of the first left eigenvector, a vector obtained 
through numerical optimisation and one obtained by distributing evenly the tracking characteristics. All these 
vectors are scaled to have a unitary L1 norm. (b) Time evolution of the first order system driven to consensus 
about x =​ 1 by the diagonal perturbation of the Laplacian.
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allocate a higher gain to tracking that signal. Then, to maximise the efficiency of the group, it is advisable to keep 
the total investment, i.e., the sum of the investments of each agent, as low as possible, or, alternatively (as is done 
here), achieve the maximum possible performance for a given level of total investment. In this scenario, having 
tracking gains sensibly smaller than the social term, where the FLE allocates them optimally, makes sense in the 
case of a very poor/noisy signal relative to the inter-agent communication. Collective migratory behaviours influ-
enced by noise have been analysed using graph theory20, while the complementary aspect of minimizing noise 
effects on the steady state variance of the group through leader selection has recently been tackled33. However, 
neither work considers the convergence speed as we do in the present paper.

The second order system presented is a more compelling case for the problem of resource allocation as it pre-
sents, for the same agents, more dynamics to control and hence sets a limit on the amount of resources each agent 
can provide. The second order system, not surprisingly, shows how the optimization of the consensus speed about 
an externally fed velocity contrasts with the achievement of consensus about inter agent distances. Consequently, 
concentrating more social interaction towards the speed consensus, i.e. reducing κ, pushes the system behaviour 
towards that of the first order system. κ =​ 0 would eliminate the oscillatory behaviour visible in Fig. 6a,b, but 
would also imply no control of inter-agent distances. The increase of the inter-agent distance social term makes 
the system more rigid as the lower left partition of the matrix in Eq. (16) prevails over the lower right partition. 
Considering the simplified case of coupled damped oscillators, this would make the rigidity terms progressively 
larger with respect to the damping term, hence the faster, more oscillatory behaviour.

A general consideration emerges by comparing the performance of different graphs. Unbalanced graphs can 
have significantly improved performance in terms of convergence speed compared to balanced ones, which, 
aside from the biological motivation, demonstrates why directed, and unbalanced directed, graphs should be 
favoured for fast convergence. A noteworthy consequence is that the optimal diagonal matrix with fixed L1 norm 
of a complete graph on N nodes will have entries 1/N, which is also the magnitude of the dominant eigenvalue 
of the resulting system. This leads to the associated dynamical system becoming slower in achieving the goal as 
the number of nodes increases. Conversely, reducing the number of connections and targeting just a few leading 
nodes can produce faster dynamics. The class of balanced graphs is not restricted to the circulant graphs (an 

Rise/settling times [s] FLE Uniform Optimised

κ =​ 0.1

  x velocity 9.55/27.65 −​/53.70 9.55/27.55

  y and z velocities 10.75/29.55 −​/59.90 9.55/28.85

  distance 42.40 >​80 42.10

κ =​ 0.5

  x-velocity 7.25/44.75 −​/53.70 6.95/45.35

  y and z velocities 7.25/45.65 −​/59.90 6.95/45.95

  distance 48.60 >​80 48.80

κ =​ 0.8

  x-velocity 6.45/>​80 −​/53.70 6.05/>​80

  y and z velocities 6.45/>​80 −​/59.70 6.05/>​80

  distance 53.75 >​80 63.15

Table 2.   Rise time and settling time for the system in Eq. 7 subject to a step input along all three axes. The 
accuracy is ±​0.05 s. The inter-agent distance performance is evaluated through the time taken by the average 
of all the mean deviations of the agents from their intended inter-agent distances to stabilise within 5% of its 
peak value. In the “uniform” case, the relative distance does not reach the 5% of its maximum value because it is 
nearly constant as a result of all the agents being provided with the same input. At κ =​ 0.8 the rise time is short, 
but the system takes a long time to settle. In the numerical tests this was not achieved within the 80 seconds over 
which the system dynamics was simulated.

FLE Uniform Optimised κ value

Lattice

0.0931 0.05 0.1142 ±​ 0.0007i κ =​ 0.1

0.1110 ±​ 4525i 0.05 0.1104 ±​ 0.4520i κ =​ 0.5

0.0460 ±​ 5877i 0.05 0.0461 ±​ 0.5857i κ =​ 0.8

Ring 0.05 0.05 0.05 κ =​ 0.1

Small World 0.1006 0.05 0.1140 ±​ 0.0004i

Random 0.1136 ±​ 0.0002i 0.05 0.1137

Table 3.   Smallest (in magnitude) eigenvalues of the system matrix for the second order system in its state 
space form. As for the first order system the allocation of the tracking resources is considered according to the 
first left eigenvector (FLE), a numerical optimised distribution and a uniform one. All these have unitary L1 
norm.
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Figure 5.  Time history of the average node state for the first order system driven to consensus about 
x = 1 by the diagonal perturbation of the Laplacian. 50 and 100 node systems are considered. Scaling the 
integration time with the nodes returns very similar time histories, regardless the size of the systems. For each 
system both the dynamics given by the FLE and by a numerically optimised resource distribution are plotted. 
The blue curves refer to the 50 node system and are plotted against the blue horizontal axis at the top. The red 
curves are plotted against the red horizontal axis at the bottom.

Figure 6.  Consensus in a lattice network, for a second order system for κ = 0.1 (see Methods). (a) Consensus 
about x velocity. (b) Consensus about y or z velocity. (c) Standard deviations of the agent relative distances over 
time showing consensus about common reciprocal separation. (d) Trajectories in a physical space of the agents 
from the initial random state (initial position in a sphere of radius N/2 and initial velocities in the unit sphere) to 
consensus about a common direction and relative distances. Step change in target velocity produces the bend and 
the alignment to the direction 





, ,3
3

3
3

3
3

 at time 0. The low value of the parameter κ guarantees low overshoot.
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example of which was also detailed in the Results section), nor to highly symmetric graphs. Other, less intuitive, 
balanced graphs produce the same slow convergence observed in the ring case whereas the uniform distribution 
indicated by the FLE remains the one maximising the convergence speed.

In limiting the amount of resources across the group, we take the perspective that it is costly for an agent to 
obtain information directly from the environment and considerably less costly to rely on social cues. This is con-
sistent with studies in the literature on collective animal behaviour. For example, Guttal and Couzin44 used this 
perspective to study collective migration and the evolution of effort across the collective in obtaining information 
on a migratory direction; they assumed that to obtain the migratory direction, individuals pay for example in 
energy expenditure and reduced predator vigilance. We have shown that under the constraint of such a cost, 
fastest consensus is achieved with a non-uniform distribution of reactivity to the external signal. In the case of 
the second order, spatial system, for instance, a uniform distribution of signal pursuit duties over-constrains the 
swarm’s ability to manoeuvre and results in slower responses to threats or manoeuvres towards a target. Instead, 
it is sensible to exploit the group dynamics so that the more reactive agents drive swarm manoeuvres. Such a 
targeted distribution of resources releases some agents from signal pursuit duties leaving them free to allocate 
resources to other tasks, such as predator vigilance or foraging. This consequently relaxes the constraints on the 
system while it results in faster responses to threats or manoeuvres towards a target.

In the present study, only time invariant networks have been considered. When looking at real systems, in par-
ticular those comprising mobile agents, these would continuously rewire their connections based on “who sees 
whom”. The role of the changing network topology on system behaviour has been the subject of recent research; 
see the review by Gross and Blasius45. However, deriving analytical results on performance of a system deter-
mined by a changing network topology remains an open, challenging problem. In the present work, we account 
for a changing network topology by assuming a time scale separation in which the evolution of the network topol-
ogy is slower than the time required to compute and update the resource allocation. In particular, we assume that 
the near-optimally of the FLE allocation remains during the period of time between allocation updates. This may 
be particularly true during collective manoeuvres. Consider, a fish school following a faint chemical plume or a 
warm subsea stream. When the school manoeuvres, the graph of interactions changes continuously, however, it 
is conceivable that from the time the manoeuvre is initiated to the time the school has engaged with it, the graph 
of interactions has not changed significantly. That is the graph that matters may be the one that agents consider 
when weighting their attention towards the signal. In this respect a parallel with the biological world can be jus-
tified in some cases.

The spectral approach proposed here lends itself well to engineering exploitation, although the challenges aris-
ing in real time applications must be addressed. On the other hand, this approach finds inspiration and mirroring 
in the natural world. While it is unlikely that biological flocks rationally choose the amount of attention to pay to 
their neighbours, it is conceivable that evolution has provided good solutions. This has been verified for the num-
ber of topologically interacting individuals in starling flocks; analysis suggests that evolution may have produced 
a number maximising the robustness of consensus to noise46. In the same way, it would be interesting to compare 
the evolutionary solution to the limited resource allocation in the pursuit problem.

Methods
General Methods and First Order Dynamics.  Directed graphs (digraphs) with general typology, on N 
nodes, are considered. The network dynamics are expressed through the classical Laplacian matrix of the digraphs. 
With no external input the system would evolve reducing the differences in the states of the connected nodes and, 
eventually, achieving a final state, common to all the nodes. We consider the case in which a constant external 
input signal w is received by each node i with different magnitudes determined by the gains ci ≥​ 0, i =​ 1, …​, N.  
This is modelled by Eq. (1). For the sake of clarity, in the first order system, a one-dimensional state is considered 
although the results can be extended to an n-dimensional state without loss of validity.

If a parallel was made with biological or engineering swarms, the allocation of a fixed amount of resources 
across the group is equivalent to electing individuals for signal pursuing and leaving others to look after other 
tasks. Another fundamental assumption in this analysis is that ∑ ci i , known as the L1 norm, is a fixed, given 
value. This implies that the signal pursuing duty is limited at the group level rather than the individual level. Since 
ci ≥​ 0, the L1 norm is equivalent to ∑ ci i.

The Laplacian matrix is defined as

=






− ≠

=
L

a if i j
d if i j (8)

ij
ij

i

where di is the outdegree of node i, that is the number of edges that have origin in i. Eq. (2) is transformed to 
Eq. (3) through the change of coordinates

= − + .−L C Cy x w( ) (9)1

This eliminates the term Cw, or equivalently, sets the origin as the input.
The results on the consensus speed are obtained by investigating the eigenvector corresponding to the spectral 

radius, that is the largest eigenvalue in magnitude, of a matrix M −​ D, where M =​ −​L +​ kI, I is the identity matrix, 
and D is a diagonal matrix with nonnegative diagonal elements. The spectrum of any matrix is shifted by the 
constant quantity k if a uniform, diagonal perturbation kI is added. Hence the spectrum of M is shifted by k with 
respect to the spectrum of −​L. The same applies to the matrices −​L −​ D and M −​ D. The eignevectors, however, 
are not affected by the shifting.
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Assume that the matrix −​(L +​ D) is Hurwitz, that is all its eigenvalues have negative real part, and that the 
scalar k is real, positive and larger than the largest eigenvalue in magnitude of −​(L +​ D). This makes M−​D = 
​ −​L −​ D +​ kI a strictly positive matrix with the smallest eigenvalue in magnitude of −​(L +​ D) corresponding to 
the spectral radius of −​L −​ D +​ kI, namely ρ(M −​ D). Hence the D that minimizes ρ(M −​ D) corresponds to the 
D that maximizes the smallest eigenvalue in magnitude of −​(L +​ D) and thus maximises consensus speed. In 
particular, given a generic N ×​ N matrix B its spectral radius is an always increasing function of each entry of B, 
and in particular the expression

ρ ρ∂
∂

= ∇ =
B

b
B

v u

u v
( ) ( )

(10)ij

i j
T

holds, where u and v are the first right and left eigenvector respectively of B associated to its spectral radius37. The 
entries of both u and v are nonnegative.

Using Eq. (10) the linearisation of the spectral radius of M −​ D can be expressed as a function of the matrix 
entries as in Eq. (5). The linearisation is a good approximation of the spectral radius of M −​ D when 

L D .
Now let D =​ C =​ diag{v}, where v is the FLE of L with L1 norm equal to positive scalar α. Let u =​ u1, u =​ β/N, 

then u is the first right eigenvector of L with L1 norm equal to positive scalar β. Let u and v be the same vectors 
scaled such that each has unitary L1 norm, i.e.,

∑ ∑

∑ ∑

α α α

β β β

= = =

= = = .

 



v v

u
N

v

u 1
i

i
i

i

i
i

i

1

1

Further assume that the system has high coupling gains, that is 
L C  for some norm ||·||. Then,

ρ ρ ρ

ρ
α

ρ
α

− ≈ − = − ∑

∑

≈ − = − .

β

β

β

M C M C M
v u

v

M M

v u
u v

v v

( ) ( ) ( )

( ) ( )
(11)

i i i

N i i

N

N

T

T

2

2
2

2
2

In particular, as the rightmost eigenvalue of −​L is zero, Eq. (11) implies Eq. (6).

Second order system.  Eq. (7) can be written in vector form to evaluate the consensus speed of the second 
order system. Assume that agents do not have a preference, or a driving input for their positions in absolute terms, 
that is =C 0i

z , for all i =​ 1, 2…​.N. Then, Eq. (7) can be written in vector form as

= − − − +




−




d
dt

C L C H C Ld
dt

C d
dt

x x 1 x w x
(12)

d d v w
2

2

where, Cd, Cv and Cw are diagonal matrices, w =​ w1 as before, with w a desired common speed. H is a matrix of the 
edge-weighted desired distances between any two connected agents. For illustrative purposes, H can be defined 
so that the physical distance between two agents tracks the topological distance, that is

= = −{ } { }H a d a j i( ) (13)ij ij ij

where aij is the entry of the adjacency matrix, as previously stated. Note that H can have negative entries as this is 
the distance with sign between the indices of two connected nodes in the graphs (e.g. if there is an oriented edge 
from node 4 to node 1, then H(4, 1) =​ −​3). Matrices Cd, Cv and Cw are chosen so as to comply with the bound on 
the total amount of resources allocated. Moreover, agents are forced to seek velocity consensus by ensuring that 
not all the resources are allocated to the inter-agent distance keeping task only. This is expressed by the relation

Figure 7.  Sketch of the lattice network. Each node in the inner section has 3 outgoing and 3 incoming 
edges. Nodes at the left hand side have more outgoing than incoming edges, while nodes at the right hand side 
end have more incoming than outgoing edges. Note that an outgoing edge implies that the node where the edge 
is originated “observes” the node where the edge ends.
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+ + = = ….C C C i n1 1, 2 (14)i
d

i
v

i
w

with the condition

< ∀ ∈ … .C i n1 {1, , }i
d

This second order model can be translated into the state space using the variables r and s such that x =​ r and 
dx/dt =​ s. The resulting state space form is

=

= − + − + − .

d
dt
d
dt

C L C C L C C H

r s

s s r w 1( )
(15)

v w d w d

Using matrix notation, Eq. (15) becomes

=




− − +







+
−{ }{ } { }d

dt
I

C L C L C C C H
r
s

r
s

0
w 1

[0]

( ) (16)d v w w d

where I is the identity matrix of appropriate dimension, while Cd, Cv and Cw are diagonal matrices weighting the 
social and external contributions. The system matrix in Eq. (16) has one zero eigenvalue as a consequence of the 
fact that just the relative distances between the agents are fixed but not the positions in absolute terms. This is 
proved in the Supplementary Information S6. The stability analysis was performed numerically for the second 
order system and restricted to the case of an asymmetric lattice. The analysis includes an assessment of the influ-
ence of the resource sharing between the social terms of position and velocity and is reported within the 
Supplementary Information S7 and S8.

For the rise time and the settling time considered in Table 2, the accuracy is ±​0.05 s. The inter-agent dis-
tance performance is evaluated through the settling time for the agents’ mean deviations from their intended 
inter-agent distances. The inter-agent distances are considered settled when this value drops within 5% of the 
peak value achieved during the simulation. As the change in velocity requested in the motion along y and z axes 
is the same, their dynamical response is identical and are hence combined together in the plot and the Tables.

Graphs.  The graphs considered here are directed, “sensing graphs”: an edge ij implies that node i senses, or 
gathers information on, the state of node j. Whilst the analytic development is independent of the graph and just 
based on the hypothesis of connectedness, the numerical simulations are run using four graphs of interactions. 
The first one, on which the second order dynamics simulations are based too, is an asymmetric lattice. This can 
represent individuals all looking in the same directions (say forward), and focussing their attention on a restricted 
number of neighbours found in their field of view. This finds justification in the preferential direction of view 
found in animal groups and in the attention being concentrated on a restricted group of individuals in particular 
areas within their sensing range46. Here it was chosen to give preference to the forward sensing more than the 
backward sensing within a maximum sensing range of two subsequent individuals. A lattice is a plausible, though 
somewhat rigid, representation of the sensing links in groups where sensing range is limited. The sketch in Fig. 7 
represents the linking scheme.

The ring graph and the small world graph are derived from the asymmetric lattice by either transforming the adja-
cency matrix of the asymmetric lattice into a circular one or rewiring, with probability 0.1, the links of the asymmetric 
lattice. The random graph is created by setting links between any two agents with a probability arbitrarily set to 0.15.

Numerical Simulations.  The dynamics are integrated using the Dormand-Prince method47. The numeri-
cally optimised resource distribution is obtained through a constrained nonlinear optimization, using an interior 
point method. The initial guess for the optimization is the first left eigenvector, so that the optimizer cannot per-
form any worse than the result obtained through the FLE. In the second order system, to study the sensitivity of 
the outcome to a simple parametrization of the Ci

d and Ci
v values, these are defined as

κ κ= − = − −C C C C(1 ) and (1 )(1 ) (17)i
d

i
w

i
v

i
w

using the free parameter κ ∈​ [0, 1], which limits to unity the total amount of resource allocated to each single 
agent.

In test cases the system is allowed to relax, starting from random initial positions distributed on a sphere of 
radius N/2, with velocities on the unit sphere. The agents achieve uniform distances from their neighbours and 
uniform velocity along the positive x-axis, both set to be unitary in magnitude. The swarm is then subject to a 
step-like input in speed along the vector 





, ,3
3

3
3

3
3

 at time 0. The simulations are run for 200 s prior to time 0 
during which the system evolves from random initial conditions to achieving a uniform velocity distribution 
along the x-axis and uniform spacing. Then the stimulus is fed to the system and the simulations are run for a 
further 80 s.

The rise time is defined as the time elapsed for the average group velocity to match the target value, regardless 
of the overshoot. The settling time is defined as the time to stabilise the average of either the group velocity or the 
inter-agent distance, both within 5% of their target value.
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