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An efficient algorithm to identify 
the optimal one-bit perturbation 
based on the basin-of-state size of 
Boolean networks
Mingxiao Hu1, Liangzhong Shen2, Xiangzhen Zan2, Xuequn Shang3 & Wenbin Liu1

Boolean networks are widely used to model gene regulatory networks and to design therapeutic 
intervention strategies to affect the long-term behavior of systems. In this paper, we investigate the 
less-studied one-bit perturbation, which falls under the category of structural intervention. Previous 
works focused on finding the optimal one-bit perturbation to maximally alter the steady-state 
distribution (SSD) of undesirable states through matrix perturbation theory. However, the application 
of the SSD is limited to Boolean networks with about ten genes. In 2007, Xiao et al. proposed to search 
the optimal one-bit perturbation by altering the sizes of the basin of attractions (BOAs). However, 
their algorithm requires close observation of the state-transition diagram. In this paper, we propose an 
algorithm that efficiently determines the BOA size after a perturbation. Our idea is that, if we construct 
the basin of states for all states, then the size of the BOA of perturbed networks can be obtained just by 
updating the paths of the states whose transitions have been affected. Results from both synthetic and 
real biological networks show that the proposed algorithm performs better than the exhaustive SSD-
based algorithm and can be applied to networks with about 25 genes.

From a translational perspective, modeling gene regulatory networks provides a mathematical basis for 
system-based optimal therapeutic strategies. Boolean networks (BNs) and the more general class of probabilistic 
Boolean networks are one of the most popular approaches for modeling gene networks. In Boolean models, 
gene expression is quantized into only two levels: on or off, and the expression level of each gene is functionally 
determined by the expression states of some other genes using logical rules. The formalism of Boolean networks 
emphasizes the fundamental principles rather than quantitative biochemical details. It provides a nature frame-
work to capture the dynamics of regulatory networks and the regulation of cellular states. From any initial state, 
the network will eventually settle down to one of a limited set of stable states, which are called attractors. The 
states that flow into the same attractor state make up a basin of attraction (BOA) of that attractor. The long-term 
behavior of BNs can be characterized by the size of all the BOAs. Generally speaking, attractors with larger BOAs 
tend to be more stable. Probabilistic Boolean networks (PBNs) extend the classical Boolean networks by intro-
ducing uncertainty in the rule structure. This uncertainty is motivated by randomness in the inference procedure, 
inherent biological randomness, and model stochasticity owing to latent variables1. PBNs are actually a family of 
constituent BNs that reflect the different contexts of the system. At each time, only one constitute BN is selected 
to determine the running of the network. Additionally, each gene is allowed to flip its value with a positive prob-
ability to reflect the perturbations of gene state caused by various environmental factors. This perturbation prob-
ability makes the Markov chain of a PBN irreducible and ergodic. Therefore, the long-term dynamical behavior 
can be described by a steady-state distribution (SSD). Those models have been used to study a number of bio-
molecular systems, such as the yeast-cell cycle, mammalian-cell cycle, Drosophila segment polarity network, 
regulatory networks of E. coli metabolism, and Arabidopsis flower morphogenesis2. It has been argued that the 
long-term behavior of such dynamic networks determines the phenotype or state of cell development, such as cell 
proliferation and apoptosis3.
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The ultimate objective of gene-regulatory-network modeling and analysis is to design effective intervention 
strategies so that the dynamics of the network evolves toward desirable cellular states. Following the two seminal 
papers by Shmulevich in 20024,5, the control of gene regulatory networks has been intensively studied within the 
framework of PBNs. Current control strategies can be classified into two categories: external control and struc-
tural intervention. External control “persuades” the system to move toward desirable states by flipping (or not 
flipping) the value of a control gene or genes over time. In biology, an example of external control is the activation 
of the well-known tumor-suppressor gene p53 in response to radiation which can rapidly inhibit cell growth and 
lead to apoptosis in a few hours5. The optimal control policies aim to maximally increase the steady-state distri-
bution of desirable states and decrease that of undesirable states. Solving the optimal control problem requires 
applying a dynamic programming algorithm. However, it quickly becomes computationally infeasible as network 
size increases because the size of the search space for this optimization problem is O(2n). Several approximate 
and greedy algorithms have been proposed to find suboptimal solutions, such as the mean-first-passage-time 
control policy, the BOA control policy, the SSD control policy, and the conservative SSD control policy6. All 
these policies aim to reduce the risk of entering undesirable states that correspond to aberrant phenotypes of the 
modeled cells by some heuristic criterion. Recently, Yousefi et al. proposed to solve the optimal control prob-
lem by a linear-programming approach. Depending on whether desirable states are constrained, they presented 
the unconstrained optimal-intervention policy and the phenotypically constrained optimal-intervention policy, 
which can lead to the maximal phenotype alteration7.

Structural intervention directly changes the underlying network structure (wiring) to alter the long-term 
behavior (steady state) of the network8. In biology, this can be accomplished by introducing a transcription factor 
or drug that may affect the state of the target genes in some specific situations. For example, in developing coun-
tries, estrogen is often taken by women after menopause to slow down the aging process. However, the estrogen 
dose is critical because an overdose may increase the risk of developing breast or ovarian cancer. The simplest 
structural-intervention strategy is one-bit perturbation, which alters one output bit of the Boolean function for 
a specific gene. After a function perturbation, the original state transition matrix and SSD are both changed. The 
optimal structural intervention is to determine which perturbation on the truth table governing a BNp (where 
BNP is a Boolean network with perturbation p) or PBN would result in the maximal long-term effect on the 
dynamic behavior of the network. In 2007, Xiao et al. first studied how perturbation functions impact the BOA of 
Boolean networks9. In 2008 and 2012, Qian et al. adapted perturbation theory in finite Markov chains to derive an 
analytic solution to compute the shifted mass after a function perturbation10,11. In 2011, Bouaynayal formulated 
optimal intervention as an inverse-perturbation problem that can be solved by using standard convex optimiza-
tion methods12. Although these approaches can find the optimal one-bit perturbation, their application is still 
limited to networks with about 10 genes. For example, the method in ref. 12 can only deal with BNs consisting of 
10 to 15 genes, even when applying the current-best semi-definite program solvers. The main obstacle for meth-
ods based on matrix perturbation theory is that operations on the probability transition matrix (2n ×  2n) are too 
time consuming. Structural intervention can permanently change the SSD of the network because the fundamen-
tal functions have been changed. However, external intervention changes the SSD only when the control policies 
are performed. From this point of view, structural intervention has a greater potential impact on the dynamic 
behavior of networks than external intervention, and gene therapies are more likely to be developed by applying 
drug or genetic manipulation to alter extant cell behavior.

The probability mass of the SSD of BNs is mainly occupied by their attractor states. To avoid matrix oper-
ations, we can directly find the one-bit perturbation that maximally increases the BOA of desirable attractors 
and reduces the BOA of undesirable attractors. Xiao et al. proposed several algorithms to determine the optimal 
perturbation function based on the change in the size of the BOA9. However, their algorithms are very cumber-
some and require closely observing the state transition changes before and after a perturbation. In this paper, we 
propose an algorithm that quickly determines the size of the BOA after a one-bit perturbation based on the basin 
of states (BOS) for each state.

The rest of this paper is organized as follows: The definitions, problem setting, and algorithm description are 
given in Section 2. The experimental results and discussion on both synthetic networks and real biological net-
works appear in Section 3. Finally, concluding remarks are given in Section 4.

Methods
Boolean networks and Probabilistic Boolean Networks. A Boolean network G(V, F) is defined by a 
set of nodes V =  {x1, … , xn}, xi ∈  {0, 1}, and a set of Boolean functions F =  {f1, … , fn}, fi: →{0, 1} {0, 1}ki . Each 
node xi represents the expression state of a gene, where xi =  0 means that the gene is off and xi =  1 means that it is 
on. To update the node value, each node xi is assigned a Boolean function + = …x t f x t x t( 1) ( ( ), , ( ))i i i ik1 i

 with 
ki specific input nodes. Under the synchronous-updating scheme, all genes are updated simultaneously according 
to their corresponding update functions. The network’s state at time t is denoted by a binary vector x(t) =   
(x1(t), … , xn(t)). In the absence of noise, the state of the system at the next time step is

+ = … .x t F x t x t( 1) ( ( ), , ( )) (1)n1

In Boolean networks, there are generally two kinds of attractors: singleton attractors and cyclic attractors. 
The former consists of only one stable state while the latter consists of multiple stable states. Figure 1(A) shows a 
BN consisting of five genes and the corresponding truth table of all genes. Figure 1(B) shows the state transition 
diagram of this network. There four singleton attractors 00000, 00100, 10011, and 11111 and one cyclic attractor 
composed of two states 11010 and 11110. The sizes of their corresponding BOAs are 8, 8, 2, 2, and 12, respectively.

A PBN is composed of a family B B B{ , , , }N1 2  of BNs with a selection probability ci(1 ≤  i ≤  N). At each time, 
there is a switching probability to determine whether to select a constitute BN as the governing BN. To 
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incorporate the randomness of gene activity, a small perturbation probability p >  0 is assigned to each gene. This 
random perturbation allows all states of a PBN to communicate with each other, thereby resulting in an ergodic 
Markov chain with a SSD π π π= … −{ , , }0 2 1n . The long-term behavior of PBNs is characterized by this SSD. The 
simplest PBN is a Boolean network with perturbation p (BNp)2. A BNp inherits the attractor structure from the 
original BN without perturbation, the difference is that the random perturbation allows a BNp jump out of the 
BOA of an attractor and then evolves into the BOA of another attractor.

One-bit perturbation. One-bit perturbation is the simplest function perturbation that flips the output value 
for a specific input of a Boolean function. As a function perturbation changes some of the state transitions, the 
BOA of some attractors may enlarge or shrink, some attractors may disappear, and some new attractors may 
appear. If gene i is regulated by ki genes, then there are −2n ki system states in which the input value for gene i is 
equal to a specific value = x x x b b bi i i i i iki ki1 2 1 2

 (bij ∈  {0, 1}). This means that a one-bit perturbation on this input 
value will lead to −2n ki state-transition changes where the state of gene i is flipped. The detailed proof of this con-
clusion appears in ref. 9. Figure 1(C) shows the station-transition diagram after a one-bit perturbation of function 
f1

(3) (the number “3” in parentheses indicates that the output of function f1 in the third row is flipped). We see that 
25−3 =  4 station-transition branches (marked by different colors) change their direction of evolution.

Figure 1. A simple BN consists of five genes with the maximum indegree 3. (A) The regulation relationships 
of genes and their corresponding truth table. The bits whose perturbation will destroy the current attractors are 
marked by red color in the truth table. (B) The state-transition diagram before any perturbation. (C) The state-
transition diagram after perturbing f1

(3).
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Problem setting. Attractors represent the fixed points of dynamical systems and capture the system’s 
long-term behavior, so modifying attractor states may lead to severe side effects on the biological system in ques-
tion. Therefore, to be prudent we should avoid one-bit perturbations that lead either to the disappearance of 
attractors or to the emergence of new attractors.

But it should be prudent to modify the fundamental landscaps.
In biology, cancer can be characterized by the imbalance between cellular states (attractors), such as prolif-

eration and apoptosis (programmed cell death). The objective of intervention is to keep cells away from certain 
states (for example, metastatic cancerous phenotypes). In order to avoid unpredicted side effects on the biological 
system in question, it should be cautious to change the fundamental landscape of the state transitions, namely, the 
system’s attractor structure. In this paper, we restricted the one-bit perturbations that lead neither to the disap-
pearance of attractors nor to the emergence of new attractors. Given the Boolean network BN with attractors A1, 
A2, … , Am, the first challenge is to identify such one-bit perturbations and avoid applying them.

The next challenge is to find the optimal intervention from the candidate one-bit perturbations in terms of 
maximizing the size of the BOA of expected attractors and minimizing that of unexpected attractors. As in previ-
ous studies, we classify the attractors into a desired attractor set D and an undesired attractor set U according to 
some target genes. The objective function to be maximized is

∑ ∑∆ = − − −
∈ ∈

B B A B A B A B A[ ( ) ( )] [ ( ) ( )],
(2)A D

i
p

l l
A U

i
p

j j
( ) ( )

l j

where B(Al) and B A( )i
p

l
( )  denote the size of the BOA for attractor Al before and after perturbing 

≤ ≤ ≤ ≤f i n p(1 , 1 2 )i
p k( ) i , respectively. The size of the BOA of Al is the sum of the number of transient states 

that eventually enter it and the number states |Al| included in it.

Algorithm. To keep attractors unchanged, we must first identify the one-bit perturbations that may destroy 
the original attractors. Consider the singleton attractor x1x2x3x4x5 =  00100 for the BN in Fig. 1(A), the corre-
sponding input value for gene x1 is x5x2x4 =  000. The one-bit perturbation f1

(1) will lead the next state of 00100 
being 10100, instead of being itself. Therefore, we should avoid considering this one-bit perturbation. By repeat-
ing this for other genes, we also find that the one-bit perturbations of f2

(5), f3
(5), f4

(1), and f5
(1) should also be 

avoided. By applying this process to all attractor states, we identify the one-bit perturbations that may destroy the 
attractors. In the truth table in Fig. 1(A), those one-bit perturbations have been marked by red color. However, 
some one-bit perturbations may lead to new attractors. Such perturbations are difficult to identify, so we leave this 
problem to be solved in the BOS-updating process. If we encounter a new attractor in the perturbed BN, we stop 
searching with the current one-bit perturbation (see Algorithm 3, lines 42–47). The pseudocode for identifying 
the one-bit perturbations that may affect attractor states is summarized in Algorithm 1.

Algorithm 1: Mark the function bits which may destroy the original attractor states.
Input: A Boolean network G(V, F) and AS;
Output: A function F’ with marked bits;
1 begin
2  F’ ←  F;
3  for i ←  1 to m  // m is the number of attractors
4    a ←  AS(i);
5    for j ←  1 to n
6     r ←  Input_RowNumber(a, j);
     // extract the input row number of gene j in state a
7      F’ ←  mark(F’, j, r);  // mark the rth output row of gene j
8    end
9  end
10 return F’
11 end

The second challenge is to identify the optimal structural intervention ⁎
⁎

fi
p( ) that maximizes the objective function 

Δ B in formula (2). Directly calculating the sizes B(Al) and B A( )i
p

l
( ) of the BOAs by an exhaustive search strategy 

is too time consuming for large BNs. Because the one-bit perturbation, fi
p( ) only changes −2n ki state transitions in 

the original state-transition diagram, we propose a framework to quickly determine the BOA size B A( )i
p

l
( )  after 

the one-bit perturbation fi
p( ).

Like the definition of BOA, we define the BOS of state s to be the transient states that can reach it. If state s is 
an attractor state, its BOS refers to those transient states which directly reach it, not including those transient 
states which reach it through other attractor states in the same cyclic attractor. For example in Fig. 1(B), a cyclic 
attractor includes two states 11010 and 11110. The BOS of attractor state 11110 only refers to those transient 
states: 01111, 01110, 00111, 00110 and 10010. The BOS size of state s, BOS(s), is the number of transient states 
plus 1. The BOA size of attractor Al is then = ∑ ≤ ≤∈B A BOS a l m( ) ( )(1 )l a Ai

.
Our motivation is that, if the BOS size BOS(s) for all states in the original network is known, then the BOA size 

B′ (Al) for all attractors after a perturbation can be obtained by simply updating the state-transition diagram of the 
−2n ki perturbed states.

To determine the BOS for all states and attractors A1, A2, … , Am in a BN, we must travel from each state 
(00...00 to 11… 11) to their corresponding attractors. Let = … −P ss s s aS l1 2 1s

 (a ∈  Al) denote the path from state s 
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to its attractor Al. In the traversal process, the BOS size of the visited state s′  ∈  s1s2… sl−1a is incremented by 1 at 
each step. Two situations must be considered when arriving at state a: If Al has previously been identified as an 
attractor, the traversal process should stop at state a. If Al has not been identified as an attractor, the traversal 
process continues. When state a is revisited, the new attractor Al can be identified. Finally, we should decrement 
by 1 the BOS size of the attractor states in Al (apart from a itself). The pseudocode for determining the BOS size 
for all states and the attractors is summarized in Algorithm 2.

Algorithm 2: Determine the basin of state (BOS) and the attractors set (AS).
Input: A Boolean network G(V, F) and the evolution path Next;
Output:  BOS;     // the BOS size of state s

AS;     // the states in all the currently identified attractors
1 begin
2  begin       // Initialization
3  i ←  0;     // the number of attractors
4  set AS(i) ←  φ;
5  BOS(s) ←  0;
6  end
7  for s ←  1 to 2n // calculate the BOS(s)
8   SS ←  φ; // SS stores the states evolved from state s
9   ss ←  s;
10   while (ss ∉  AS and ss ∉  SS)
11   {
12    SS ←  ss;
13    ss ←  Next(ss);
14    BOS(ss) ←  BOS(ss) + 1;
15   }
16  BOS(s) ←  BOS(s) + 1;
17  if (ss ∈  AS)   // enter an identified attractor
18   continue;
19  if (ss ∈  SS)   // find a new attractor
20   {
21    s0 ←  ss;
22    A ←  φ;  // the states in the ith identified attractor
23    do
24    {
25      A ←  ss;
26      BOS(ss) ←  BOS(ss) − 1;
27      ss ←  Next(ss);
28     } while (ss = =  s0);
29     AS(i) ←  A;
30     i ←  i +  1;  // increment the number of attractors
31   }
32  end
33 return BOS and AS
34 end

After identifying the BOS of all 2n states and the attractors in a BN, the exhaustive strategy simply repeats 
Algorithm 2 to determine the size of the BOA for the perturbed networks. We propose herein an algorithm that 
uses the BOS size obtained in Algorithm 2 to determine the size of the BOA after a one-bit perturbation. Given a 
one-bit perturbation fi

p( ), we assume Sp denotes the set of −2n ki states whose transitions are changed. Our idea is 
that the ultimate BOS can be obtained by sequentially updating the path of each of the −2n ki states. For each state 
s ∈  Sp, the updating includes two processes: the SUB process and the ADD process. The SUB process updates the 
BOS size for all states in the current path PS, whereas the ADD process updates the BOS size for all states in the 
modified path ′PS.

The updating process may produce some cycles. If the cycles are emerged cyclic attractors in the perturbed 
BN′ , we should stop at once as the new attractor appears; otherwise, they are just temporary cycles formed in the 
updating process. The temporary cycles make the updating process more complicated. We now apply the network 
in Fig. 2 to illustrate the updating process in detail. The original BN contains eight states and one singleton attrac-
tor 111. The perturbation is implemented in the second bit of the function for the third gene. This intervention 
leads to a change in the state transitions of states 001 and 011.

For the SUB process, we first update the transition of state 001, which changes from state 111 to 011. Its current 
evolution path PS is 001 →  010 →  111 [see Fig. 3(A)]. The BOS size of other states in PS is simply updated by BOS(s′ )  
−  BOS(s); that is, the BOS sizes of 010 and 111 become 1 and 3, respectively [see Fig. 3(B)]. Next, we consider the 
SUB process for the transition of state 011. Its current path PS is a temporary cycle 011 →  110 →  001 →  011 [see 
Fig. 3(D)]. In this case, its new transition destroys the cycle and leads to other states entering its BOS. Note that 
the BOS of state 110 does not change because the current path PS is a cycle. The updating process for the BOS 
takes the following form: we first add BOS(110) to the BOS size of state 001, and then add the new BOS(001) to 
the BOS size of state 110 [see Fig. 3(E)].
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For the ADD process, we also consider first the transition of state 001 to 011. This transition transforms the 
modified path ′PS into a temporary cycle 001 →  011 →  110 →  001 [see Fig. 3(C)]. The consequence of the tempo-
rary cycle is that state 110 is no longer in the BOS of state 001, and state 011 is no longer in the BOS of state 110. 
Therefore, the BOS-updating process takes the following form: we first subtract BOS(110) from the BOS size of 
state 001, and then we subtract BOS(011) from the BOS size of state 110. Next, we consider the ADD process for 
the transition of state 011. Its modified path ′PS is 011 →  111, which directly enters an attractor. The BOS-updating 
process simply adds BOS(011) to other states in ′PS [see Fig. 3(F)]. The pseudocode to determine the updated-BOS 
size for all states is summarized in Algorithm 3.

Algorithm 3: Determine the basin of state (BOS) under a one-bit perturbation.
Input: A Boolean network G(V, F), BOS, AS, Next and the perturbation bit fi

p( );
Output: BOS’;  // the BOS size of state s after intervention
1 begin

Figure 2. A simple BN consists of three genes and its truth table. 

Figure 3. The SUB and ADD processes after the one-bit perturbation f3
( )2 .
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2  begin
3  BOS’ ←  BOS;  // stores the BOS size of state s in the process of evolution
4  Next’ ←  Next;  // stores the current path in the process of evolution
5   AS’ ←  AS;
6   Sp ←  Affectedstates f( )i

p( ) ; //  Sp is the −2n ki affected states after perturbation
7   end
8   for l ←  1 to −2n ki

9    s ←  Sp(l);
10    ss ←  Next’(s);
// the SUB process
11   if s ∉  AS′    // s does not belong to AS’
12    while (ss ∉  AS′ )
13    {
14     BOS’(ss) ←  BOS’(ss) – BOS’(s); // SUB the BOS(s) from its next state in 
                  the current state-transition diagram
15     ss ←  Next’(ss);
16   }
17   BOS’(ss) ←  BOS’(ss) −  BOS’(s);
18   else      // while s is an attractor in an attractor cycle
19   SS ←  ss;
20   while (ss ≠  s)
21   {
22     BOS’(Next’(ss)) ←  BOS’(Next’(ss)) +  BOS’(ss);
23     ss ←  Next’(ss);
24     SS ←  SS U ss;
25   }
26   AS’ ←  AS’ - SS;  // decrease the vanished attractor cycle from AS’
27  end
// the ADD process
28   ss ←  Nextstate(s);
29   Next’(ss) ←  ss;
30   SS ←  φ; p ←  0;
31   while (ss ≠  s and ss ∉  AS′ )
32    p ←  p +  1;
33    SS(p) ←  ss;    // SS stores the evolution path after intervention
34    ss ←  Next’(ss);
35   end
36   p ←  p +  1;
37   SS(p) ←  ss;
38   if  ss ∈  AS′ 
39    BOS’(SS(1:p)) ←  BOS’(SS(1:p)) +  BOS’(s);
40  else       //it forms a new attractor or attractor cycle
41  {// determine whether the new attractor cycle should be a break
42    for l ←  1 to p −  1
43     ss_m(l) ←  Next state (SS(l));
44     ss_n(l) ←  SS(l +  1);
45    end
46    if p = =  1 or all (ss_m = =  ss_n)
47     break;
48    else
49    for ii ←  p to 2
50     BOS’(SS(ii)) ←  BOS’(SS(ii)) - BOS’(SS(ii-1));
51     ii ←  ii −  1;
52    end
53     AS’ ←  AS’ U SS;  // increase the new attractor cycle to AS’
54    end
55   }
56  end
57 return BOS’;
58 end

Figure 4 presents the process for updating the BOS size for the BN in Fig. 1 under a one-bit perturbation f1
(3). This 

perturbation affects the transitions of four states: 01000, 01100, 11000, and 11100. The first column lists the 32 
states, and the second column is the BOS of each state in the original BN. The following four columns present the 
process for updating the BOS size according to the order of the four states. The updating of the current path PS is 
highlighted in green and that of the modified path ′PS is highlighted in yellow. The last column is the resulting BOS 
size for all states. This table shows that the updating process visits very few parts of the whole state space. 
Therefore, it is less time consuming than the exhaustive strategy.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

Based on algorithms 2 and 3, the workflow of our BOS-based algorithm to identify the optimal one-bit pertur-
bation includes the following main steps:

Step 1: Apply Algorithm 2 to build the BOS size of all states in the original BN and identify its attractors.
Step 2: Apply Algorithm 1 to identify the one-bit perturbations that may destroy the original attractors.
Step 3: For a potential one-bit perturbation fi

p( ), apply Algorithm 3 to obtain the updated BOS size of all states.
Step 4: Calculate Δ B for each feasible one-bit perturbation.
Step 5: Repeat Step 3 for other potential perturbations and find the perturbation that gives the maximal Δ B.

Results and Discussion
In this section, we compare the SSD algorithm, the exhaustive algorithm, and the proposed BOS-based algorithm 
both in simulated networks and in two biological networks. All calculations use the PBN Toolbox (http://code.
google.com/p/pbn-matlab-toolbox/), which calculates the SSD. We implemented both the exhaustive and the 

Figure 4. Evolution of the BOS size for BN in Fig. 1 under the one-bit perturbation f1
( )3 .

Figure 5. Average time to calculate the size of the BOA or the SSD for a one-bit perturbation. Solid lines are 
for K =  3 and dashed lines are for K =  4.

http://code.google.com/p/pbn-matlab-toolbox/
http://code.google.com/p/pbn-matlab-toolbox/
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BOS-based algorithms with this toolbox. All numerical experiments were done on a windows computer with two 
Core 2.4 GHz processors and 32 GB of physical memory.

Simulation on synthetic networks. To compare the performance of the three algorithms on synthetic net-
works, we randomly generate 20 BNs for each number n of genes (n =  5, … , 25) and the average indegree K (K =  3, 
4). The perturbation probability of each gene used to calculate the SSD is p =  0.001. Figure 5 shows the average time 
of the three algorithms for a one-bit perturbation. The solid lines are for K =  3 and the dashed lines are for K =  4.

First, the BOS-based algorithm performs best while the SSD-based algorithm performs worst. In particular, 
the time needed to calculate the SSD increases with the number n of genes more quickly than the time required 
to directly calculate the BOA size of all attractors. This is apparent by observing the slope of the lines in Fig. 5.

Second, the ratio of the average computing time for the exhaustive algorithm to that for the BOS-based algo-
rithm is almost constant. This result is reasonable because, if the average indegree is K, then the BOS-based algo-
rithm only needs to update the evolution path of the 2n−K states whose transitions have been changed, whereas 
the exhaustive algorithm has to do the same for all 2n states.

Third, the average indegree K does not influence the performance of the SSD algorithm. However, it affects 
the performance of both the exhaustive and the BOS-based algorithms. Concerning the exhaustive algorithm, the 
average computing time for K =  4 is slightly longer than that for K =  3. One major reason for this result is that the 
average length from a state to its attractor for BNs with K =  4 is longer than for BNs with K =  3. Therefore, it takes 
longer to determine the size of the BOA for K =  4 than for K =  313. Concerning the BOS-based algorithm, the 
effect of the average indegree is completely the opposite because 2n−K states are affected by a one-bit perturbation. 
Therefore, given a specific number n of genes, the BOS-based algorithm needs to update fewer states for BNs with 
K =  4 than for BNs with K =  3.

Apart from the time issue, the space complexity of the SSD is O(2n ×  2n), whereas that of the other two algo-
rithms is only O(2n). Therefore, the proposed BOS-based algorithm can be applied to larger BNs than the other 
two algorithms. Figure 5 shows that the proposed BOS-based algorithm takes about 80 seconds for BNs with 25 
genes whereas the exhaustive method takes about 300 seconds even for BNs with 20 genes.

Biological networks. In this section, we apply the three algorithms to two biological networks: the meta-
static melanoma network14 and the T-helper network15. The metastatic melanoma network contains seven key 
genes: WNT5A, pirin, S100P, RET1, MART1, HADHB, and STC2, which are labeled x1, … , x7. It has four single-
ton attractors: 0101111, 0110110, 0111110, and 1000001. This network was used in previous works to illustrate 
the effectiveness of various intervention strategies. Increasing the levels of the Wnt5a protein through a mela-
noma cell line is believed to alter the competence of the cell. Therefore, attractor 1000001 is undesirable, whereas 
the others are desirable. The T-helper network has 23 key genes: GATA3, IFN-ß, IFN-ßR, IFN-γ , IFN-γ R, IL-10, 
IL-10R, IL-12, IL-12R, IL-18, IL-18R, IL-4, IL-4R, IRAK, JAKI, NFAT, SOCS1, STAT1, STAT3, STAT4, STAT6, 
T-bet, and TCR, which are labeled x1, … , x23. The average indegree of this network is K =  1.7. This network has 33 
single attractors, which can be classified as 16 undesirable attractors and 17 desirable attractors: x1 =  0 and x1 =  1, 
respectively.

Figure 6. Distributions of size of BOAs of desired and undesired attractors for two biological networks: the 
metastatic-melanoma network and T-helper network. Panels (A,B) show the distributions before and after the 
optimal one-bit perturbation for the metastatic-melanoma network. Panels (C,D) show the distributions before 
and after the optimal one-bit perturbation for the T-helper network.
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Figure 6 presents the size of the BOA of the two networks before and after the optimal one-bit perturbation 
identified by the BOS-based algorithm. Red bars denote the size of the BOA for the undesirable attractors and 
black bars denote the size of the BOA for desirable attractors. First, the identified optimal one-bit perturbations 
retain the attractors of the networks. Second, the optimal one-bit perturbation obviously reduces the size of the 
BOA of the undesirable attractors. Concerning the metastatic melanoma network, the optimal one-bit perturba-
tion identified by the BOS-based algorithm is f4

(4), which can both retain the attractors of the system and maxi-
mally reduce the size of the BOA of undesirable attractors. This result is consistent with previous studies in ref. 10.

To identify the optimal one-bit perturbation, Table 1 presents the computing time for the three algorithms. 
The time for the SSD-based algorithm is not presented because it is impossible to deal the state-transition matrix 
of size 223 ×  223 with currently available computers. The exhaustive algorithm takes about 20 hours to identify 
the optimal one-bit perturbations, whereas the proposed BOS-based algorithm takes only about three minutes.

Conclusions
From the point of view of biology, structural intervention has the potential to permanently alter the dynamic 
behavior of gene regulatory networks, and then push the system so that it evolves in a desirable direction. 
Although previous studies applying matrix perturbation theory ensure that the perturbation obtained is the opti-
mal one-bit perturbation that can maximally shift the probabilistic mass of the SSD toward desirable states, its 
application is limited to networks with only about 15 genes.

Although Xiao et al. proposed to directly observe the changes in the size of the BOA before and after a func-
tion perturbation, they did not give a systematic computational algorithm that can efficiently solve this problem. 
In this paper, we propose an algorithm that efficiently determines the size of the BOA after a one-bit perturbation. 
To avoid unexpected side effects, we require that the optimal one-bit perturbation maintain the same network 
attractors. Our motivation is that, if we know the BOS size of all states, then the modified size of the BOA of all 
attractors after a one-bit perturbation of fi

p( ) can be obtained by updating only the evolution path of the −2n ki 
states whose transition have been altered. Results obtained from both synthetic networks and two real biological 
networks show that the proposed BOS-based algorithm is more efficient than both the exhaustive algorithm and 
the SSD-based algorithm. According to the results of the numerical experiments, the proposed BOS-based algo-
rithm can be applied to networks with 25 genes. Finally, note that the time complexity of the proposed BOS-based 
algorithm is still exponential. To solve the optimal-intervention problem for larger BNs, we must study other 
methods to determine the size of the BOA of perturbed networks quickly.
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Benchmark n K

Time (s)

BOS-based Exhaustive SSD

Wnt5a 7 2.6 0.004 0.55
51.5

T-helper 23 1.7 175.4 73636

Table 1.  Performance of the three algorithms for two real biological networks.
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