
1Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

www.nature.com/scientificreports

An efficient algorithm to identify
the optimal one-bit perturbation
based on the basin-of-state size of
Boolean networks
Mingxiao Hu1, Liangzhong Shen2, Xiangzhen Zan2, Xuequn Shang3 & Wenbin Liu1

Boolean networks are widely used to model gene regulatory networks and to design therapeutic
intervention strategies to affect the long-term behavior of systems. In this paper, we investigate the
less-studied one-bit perturbation, which falls under the category of structural intervention. Previous
works focused on finding the optimal one-bit perturbation to maximally alter the steady-state
distribution (SSD) of undesirable states through matrix perturbation theory. However, the application
of the SSD is limited to Boolean networks with about ten genes. In 2007, Xiao et al. proposed to search
the optimal one-bit perturbation by altering the sizes of the basin of attractions (BOAs). However,
their algorithm requires close observation of the state-transition diagram. In this paper, we propose an
algorithm that efficiently determines the BOA size after a perturbation. Our idea is that, if we construct
the basin of states for all states, then the size of the BOA of perturbed networks can be obtained just by
updating the paths of the states whose transitions have been affected. Results from both synthetic and
real biological networks show that the proposed algorithm performs better than the exhaustive SSD-
based algorithm and can be applied to networks with about 25 genes.

From a translational perspective, modeling gene regulatory networks provides a mathematical basis for
system-based optimal therapeutic strategies. Boolean networks (BNs) and the more general class of probabilistic
Boolean networks are one of the most popular approaches for modeling gene networks. In Boolean models,
gene expression is quantized into only two levels: on or off, and the expression level of each gene is functionally
determined by the expression states of some other genes using logical rules. The formalism of Boolean networks
emphasizes the fundamental principles rather than quantitative biochemical details. It provides a nature frame-
work to capture the dynamics of regulatory networks and the regulation of cellular states. From any initial state,
the network will eventually settle down to one of a limited set of stable states, which are called attractors. The
states that flow into the same attractor state make up a basin of attraction (BOA) of that attractor. The long-term
behavior of BNs can be characterized by the size of all the BOAs. Generally speaking, attractors with larger BOAs
tend to be more stable. Probabilistic Boolean networks (PBNs) extend the classical Boolean networks by intro-
ducing uncertainty in the rule structure. This uncertainty is motivated by randomness in the inference procedure,
inherent biological randomness, and model stochasticity owing to latent variables1. PBNs are actually a family of
constituent BNs that reflect the different contexts of the system. At each time, only one constitute BN is selected
to determine the running of the network. Additionally, each gene is allowed to flip its value with a positive prob-
ability to reflect the perturbations of gene state caused by various environmental factors. This perturbation prob-
ability makes the Markov chain of a PBN irreducible and ergodic. Therefore, the long-term dynamical behavior
can be described by a steady-state distribution (SSD). Those models have been used to study a number of bio-
molecular systems, such as the yeast-cell cycle, mammalian-cell cycle, Drosophila segment polarity network,
regulatory networks of E. coli metabolism, and Arabidopsis flower morphogenesis2. It has been argued that the
long-term behavior of such dynamic networks determines the phenotype or state of cell development, such as cell
proliferation and apoptosis3.

1Department of Physics and Electronic information engineering, Wenzhou University Wenzhou 325035, Zhejiang,
China. 2City College, Wenzhou University, Wenzhou 325035, Zhejiang, China. 3School of Computer Science and
Technology, Northwestern Polytechnic University, Xi'an 710072, China. Correspondence and requests for materials
should be addressed to W.L. (email: wbliu6910@126.com)

received: 25 January 2016

accepted: 29 April 2016

Published: 19 May 2016

OPEN

mailto:wbliu6910@126.com

www.nature.com/scientificreports/

2Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

The ultimate objective of gene-regulatory-network modeling and analysis is to design effective intervention
strategies so that the dynamics of the network evolves toward desirable cellular states. Following the two seminal
papers by Shmulevich in 20024,5, the control of gene regulatory networks has been intensively studied within the
framework of PBNs. Current control strategies can be classified into two categories: external control and struc-
tural intervention. External control “persuades” the system to move toward desirable states by flipping (or not
flipping) the value of a control gene or genes over time. In biology, an example of external control is the activation
of the well-known tumor-suppressor gene p53 in response to radiation which can rapidly inhibit cell growth and
lead to apoptosis in a few hours5. The optimal control policies aim to maximally increase the steady-state distri-
bution of desirable states and decrease that of undesirable states. Solving the optimal control problem requires
applying a dynamic programming algorithm. However, it quickly becomes computationally infeasible as network
size increases because the size of the search space for this optimization problem is O(2n). Several approximate
and greedy algorithms have been proposed to find suboptimal solutions, such as the mean-first-passage-time
control policy, the BOA control policy, the SSD control policy, and the conservative SSD control policy6. All
these policies aim to reduce the risk of entering undesirable states that correspond to aberrant phenotypes of the
modeled cells by some heuristic criterion. Recently, Yousefi et al. proposed to solve the optimal control prob-
lem by a linear-programming approach. Depending on whether desirable states are constrained, they presented
the unconstrained optimal-intervention policy and the phenotypically constrained optimal-intervention policy,
which can lead to the maximal phenotype alteration7.

Structural intervention directly changes the underlying network structure (wiring) to alter the long-term
behavior (steady state) of the network8. In biology, this can be accomplished by introducing a transcription factor
or drug that may affect the state of the target genes in some specific situations. For example, in developing coun-
tries, estrogen is often taken by women after menopause to slow down the aging process. However, the estrogen
dose is critical because an overdose may increase the risk of developing breast or ovarian cancer. The simplest
structural-intervention strategy is one-bit perturbation, which alters one output bit of the Boolean function for
a specific gene. After a function perturbation, the original state transition matrix and SSD are both changed. The
optimal structural intervention is to determine which perturbation on the truth table governing a BNp (where
BNP is a Boolean network with perturbation p) or PBN would result in the maximal long-term effect on the
dynamic behavior of the network. In 2007, Xiao et al. first studied how perturbation functions impact the BOA of
Boolean networks9. In 2008 and 2012, Qian et al. adapted perturbation theory in finite Markov chains to derive an
analytic solution to compute the shifted mass after a function perturbation10,11. In 2011, Bouaynayal formulated
optimal intervention as an inverse-perturbation problem that can be solved by using standard convex optimiza-
tion methods12. Although these approaches can find the optimal one-bit perturbation, their application is still
limited to networks with about 10 genes. For example, the method in ref. 12 can only deal with BNs consisting of
10 to 15 genes, even when applying the current-best semi-definite program solvers. The main obstacle for meth-
ods based on matrix perturbation theory is that operations on the probability transition matrix (2n × 2n) are too
time consuming. Structural intervention can permanently change the SSD of the network because the fundamen-
tal functions have been changed. However, external intervention changes the SSD only when the control policies
are performed. From this point of view, structural intervention has a greater potential impact on the dynamic
behavior of networks than external intervention, and gene therapies are more likely to be developed by applying
drug or genetic manipulation to alter extant cell behavior.

The probability mass of the SSD of BNs is mainly occupied by their attractor states. To avoid matrix oper-
ations, we can directly find the one-bit perturbation that maximally increases the BOA of desirable attractors
and reduces the BOA of undesirable attractors. Xiao et al. proposed several algorithms to determine the optimal
perturbation function based on the change in the size of the BOA9. However, their algorithms are very cumber-
some and require closely observing the state transition changes before and after a perturbation. In this paper, we
propose an algorithm that quickly determines the size of the BOA after a one-bit perturbation based on the basin
of states (BOS) for each state.

The rest of this paper is organized as follows: The definitions, problem setting, and algorithm description are
given in Section 2. The experimental results and discussion on both synthetic networks and real biological net-
works appear in Section 3. Finally, concluding remarks are given in Section 4.

Methods
Boolean networks and Probabilistic Boolean Networks. A Boolean network G(V, F) is defined by a
set of nodes V = {x1, … , xn}, xi ∈ {0, 1}, and a set of Boolean functions F = {f1, … , fn}, fi: →{0, 1} {0, 1}ki . Each
node xi represents the expression state of a gene, where xi = 0 means that the gene is off and xi = 1 means that it is
on. To update the node value, each node xi is assigned a Boolean function + = …x t f x t x t(1) ((), , ())i i i ik1 i

 with
ki specific input nodes. Under the synchronous-updating scheme, all genes are updated simultaneously according
to their corresponding update functions. The network’s state at time t is denoted by a binary vector x(t) =
(x1(t), … , xn(t)). In the absence of noise, the state of the system at the next time step is

+ = … .x t F x t x t(1) ((), , ()) (1)n1

In Boolean networks, there are generally two kinds of attractors: singleton attractors and cyclic attractors.
The former consists of only one stable state while the latter consists of multiple stable states. Figure 1(A) shows a
BN consisting of five genes and the corresponding truth table of all genes. Figure 1(B) shows the state transition
diagram of this network. There four singleton attractors 00000, 00100, 10011, and 11111 and one cyclic attractor
composed of two states 11010 and 11110. The sizes of their corresponding BOAs are 8, 8, 2, 2, and 12, respectively.

A PBN is composed of a family B B B{ , , , }N1 2 of BNs with a selection probability ci(1 ≤ i ≤ N). At each time,
there is a switching probability to determine whether to select a constitute BN as the governing BN. To

www.nature.com/scientificreports/

3Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

incorporate the randomness of gene activity, a small perturbation probability p > 0 is assigned to each gene. This
random perturbation allows all states of a PBN to communicate with each other, thereby resulting in an ergodic
Markov chain with a SSD π π π= … −{ , , }0 2 1n . The long-term behavior of PBNs is characterized by this SSD. The
simplest PBN is a Boolean network with perturbation p (BNp)2. A BNp inherits the attractor structure from the
original BN without perturbation, the difference is that the random perturbation allows a BNp jump out of the
BOA of an attractor and then evolves into the BOA of another attractor.

One-bit perturbation. One-bit perturbation is the simplest function perturbation that flips the output value
for a specific input of a Boolean function. As a function perturbation changes some of the state transitions, the
BOA of some attractors may enlarge or shrink, some attractors may disappear, and some new attractors may
appear. If gene i is regulated by ki genes, then there are −2n ki system states in which the input value for gene i is
equal to a specific value = x x x b b bi i i i i iki ki1 2 1 2

 (bij ∈ {0, 1}). This means that a one-bit perturbation on this input
value will lead to −2n ki state-transition changes where the state of gene i is flipped. The detailed proof of this con-
clusion appears in ref. 9. Figure 1(C) shows the station-transition diagram after a one-bit perturbation of function
f1

(3) (the number “3” in parentheses indicates that the output of function f1 in the third row is flipped). We see that
25−3 = 4 station-transition branches (marked by different colors) change their direction of evolution.

Figure 1. A simple BN consists of five genes with the maximum indegree 3. (A) The regulation relationships
of genes and their corresponding truth table. The bits whose perturbation will destroy the current attractors are
marked by red color in the truth table. (B) The state-transition diagram before any perturbation. (C) The state-
transition diagram after perturbing f1

(3).

www.nature.com/scientificreports/

4Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

Problem setting. Attractors represent the fixed points of dynamical systems and capture the system’s
long-term behavior, so modifying attractor states may lead to severe side effects on the biological system in ques-
tion. Therefore, to be prudent we should avoid one-bit perturbations that lead either to the disappearance of
attractors or to the emergence of new attractors.

But it should be prudent to modify the fundamental landscaps.
In biology, cancer can be characterized by the imbalance between cellular states (attractors), such as prolif-

eration and apoptosis (programmed cell death). The objective of intervention is to keep cells away from certain
states (for example, metastatic cancerous phenotypes). In order to avoid unpredicted side effects on the biological
system in question, it should be cautious to change the fundamental landscape of the state transitions, namely, the
system’s attractor structure. In this paper, we restricted the one-bit perturbations that lead neither to the disap-
pearance of attractors nor to the emergence of new attractors. Given the Boolean network BN with attractors A1,
A2, … , Am, the first challenge is to identify such one-bit perturbations and avoid applying them.

The next challenge is to find the optimal intervention from the candidate one-bit perturbations in terms of
maximizing the size of the BOA of expected attractors and minimizing that of unexpected attractors. As in previ-
ous studies, we classify the attractors into a desired attractor set D and an undesired attractor set U according to
some target genes. The objective function to be maximized is

∑ ∑∆ = − − −
∈ ∈

B B A B A B A B A[() ()] [() ()],
(2)A D

i
p

l l
A U

i
p

j j
() ()

l j

where B(Al) and B A()i
p

l
() denote the size of the BOA for attractor Al before and after perturbing

≤ ≤ ≤ ≤f i n p(1 , 1 2)i
p k() i , respectively. The size of the BOA of Al is the sum of the number of transient states

that eventually enter it and the number states |Al| included in it.

Algorithm. To keep attractors unchanged, we must first identify the one-bit perturbations that may destroy
the original attractors. Consider the singleton attractor x1x2x3x4x5 = 00100 for the BN in Fig. 1(A), the corre-
sponding input value for gene x1 is x5x2x4 = 000. The one-bit perturbation f1

(1) will lead the next state of 00100
being 10100, instead of being itself. Therefore, we should avoid considering this one-bit perturbation. By repeat-
ing this for other genes, we also find that the one-bit perturbations of f2

(5), f3
(5), f4

(1), and f5
(1) should also be

avoided. By applying this process to all attractor states, we identify the one-bit perturbations that may destroy the
attractors. In the truth table in Fig. 1(A), those one-bit perturbations have been marked by red color. However,
some one-bit perturbations may lead to new attractors. Such perturbations are difficult to identify, so we leave this
problem to be solved in the BOS-updating process. If we encounter a new attractor in the perturbed BN, we stop
searching with the current one-bit perturbation (see Algorithm 3, lines 42–47). The pseudocode for identifying
the one-bit perturbations that may affect attractor states is summarized in Algorithm 1.

Algorithm 1: Mark the function bits which may destroy the original attractor states.
Input: A Boolean network G(V, F) and AS;
Output: A function F’ with marked bits;
1 begin
2 F’ ← F;
3 for i ← 1 to m // m is the number of attractors
4 a ← AS(i);
5 for j ← 1 to n
6 r ← Input_RowNumber(a, j);
 // extract the input row number of gene j in state a
7 F’ ← mark(F’, j, r); // mark the rth output row of gene j
8 end
9 end
10 return F’
11 end

The second challenge is to identify the optimal structural intervention ⁎
⁎

fi
p() that maximizes the objective function

Δ B in formula (2). Directly calculating the sizes B(Al) and B A()i
p

l
() of the BOAs by an exhaustive search strategy

is too time consuming for large BNs. Because the one-bit perturbation, fi
p() only changes −2n ki state transitions in

the original state-transition diagram, we propose a framework to quickly determine the BOA size B A()i
p

l
() after

the one-bit perturbation fi
p().

Like the definition of BOA, we define the BOS of state s to be the transient states that can reach it. If state s is
an attractor state, its BOS refers to those transient states which directly reach it, not including those transient
states which reach it through other attractor states in the same cyclic attractor. For example in Fig. 1(B), a cyclic
attractor includes two states 11010 and 11110. The BOS of attractor state 11110 only refers to those transient
states: 01111, 01110, 00111, 00110 and 10010. The BOS size of state s, BOS(s), is the number of transient states
plus 1. The BOA size of attractor Al is then = ∑ ≤ ≤∈B A BOS a l m() ()(1)l a Ai

.
Our motivation is that, if the BOS size BOS(s) for all states in the original network is known, then the BOA size

B′ (Al) for all attractors after a perturbation can be obtained by simply updating the state-transition diagram of the
−2n ki perturbed states.

To determine the BOS for all states and attractors A1, A2, … , Am in a BN, we must travel from each state
(00...00 to 11… 11) to their corresponding attractors. Let = … −P ss s s aS l1 2 1s

 (a ∈ Al) denote the path from state s

www.nature.com/scientificreports/

5Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

to its attractor Al. In the traversal process, the BOS size of the visited state s′ ∈ s1s2… sl−1a is incremented by 1 at
each step. Two situations must be considered when arriving at state a: If Al has previously been identified as an
attractor, the traversal process should stop at state a. If Al has not been identified as an attractor, the traversal
process continues. When state a is revisited, the new attractor Al can be identified. Finally, we should decrement
by 1 the BOS size of the attractor states in Al (apart from a itself). The pseudocode for determining the BOS size
for all states and the attractors is summarized in Algorithm 2.

Algorithm 2: Determine the basin of state (BOS) and the attractors set (AS).
Input: A Boolean network G(V, F) and the evolution path Next;
Output: BOS; // the BOS size of state s

AS; // the states in all the currently identified attractors
1 begin
2 begin // Initialization
3 i ← 0; // the number of attractors
4 set AS(i) ← φ;
5 BOS(s) ← 0;
6 end
7 for s ← 1 to 2n // calculate the BOS(s)
8 SS ← φ; // SS stores the states evolved from state s
9 ss ← s;
10 while (ss ∉ AS and ss ∉ SS)
11 {
12 SS ← ss;
13 ss ← Next(ss);
14 BOS(ss) ← BOS(ss) + 1;
15 }
16 BOS(s) ← BOS(s) + 1;
17 if (ss ∈ AS) // enter an identified attractor
18 continue;
19 if (ss ∈ SS) // find a new attractor
20 {
21 s0 ← ss;
22 A ← φ; // the states in the ith identified attractor
23 do
24 {
25 A ← ss;
26 BOS(ss) ← BOS(ss) − 1;
27 ss ← Next(ss);
28 } while (ss = = s0);
29 AS(i) ← A;
30 i ← i + 1; // increment the number of attractors
31 }
32 end
33 return BOS and AS
34 end

After identifying the BOS of all 2n states and the attractors in a BN, the exhaustive strategy simply repeats
Algorithm 2 to determine the size of the BOA for the perturbed networks. We propose herein an algorithm that
uses the BOS size obtained in Algorithm 2 to determine the size of the BOA after a one-bit perturbation. Given a
one-bit perturbation fi

p(), we assume Sp denotes the set of −2n ki states whose transitions are changed. Our idea is
that the ultimate BOS can be obtained by sequentially updating the path of each of the −2n ki states. For each state
s ∈ Sp, the updating includes two processes: the SUB process and the ADD process. The SUB process updates the
BOS size for all states in the current path PS, whereas the ADD process updates the BOS size for all states in the
modified path ′PS.

The updating process may produce some cycles. If the cycles are emerged cyclic attractors in the perturbed
BN′ , we should stop at once as the new attractor appears; otherwise, they are just temporary cycles formed in the
updating process. The temporary cycles make the updating process more complicated. We now apply the network
in Fig. 2 to illustrate the updating process in detail. The original BN contains eight states and one singleton attrac-
tor 111. The perturbation is implemented in the second bit of the function for the third gene. This intervention
leads to a change in the state transitions of states 001 and 011.

For the SUB process, we first update the transition of state 001, which changes from state 111 to 011. Its current
evolution path PS is 001 → 010 → 111 [see Fig. 3(A)]. The BOS size of other states in PS is simply updated by BOS(s′)
− BOS(s); that is, the BOS sizes of 010 and 111 become 1 and 3, respectively [see Fig. 3(B)]. Next, we consider the
SUB process for the transition of state 011. Its current path PS is a temporary cycle 011 → 110 → 001 → 011 [see
Fig. 3(D)]. In this case, its new transition destroys the cycle and leads to other states entering its BOS. Note that
the BOS of state 110 does not change because the current path PS is a cycle. The updating process for the BOS
takes the following form: we first add BOS(110) to the BOS size of state 001, and then add the new BOS(001) to
the BOS size of state 110 [see Fig. 3(E)].

www.nature.com/scientificreports/

6Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

For the ADD process, we also consider first the transition of state 001 to 011. This transition transforms the
modified path ′PS into a temporary cycle 001 → 011 → 110 → 001 [see Fig. 3(C)]. The consequence of the tempo-
rary cycle is that state 110 is no longer in the BOS of state 001, and state 011 is no longer in the BOS of state 110.
Therefore, the BOS-updating process takes the following form: we first subtract BOS(110) from the BOS size of
state 001, and then we subtract BOS(011) from the BOS size of state 110. Next, we consider the ADD process for
the transition of state 011. Its modified path ′PS is 011 → 111, which directly enters an attractor. The BOS-updating
process simply adds BOS(011) to other states in ′PS [see Fig. 3(F)]. The pseudocode to determine the updated-BOS
size for all states is summarized in Algorithm 3.

Algorithm 3: Determine the basin of state (BOS) under a one-bit perturbation.
Input: A Boolean network G(V, F), BOS, AS, Next and the perturbation bit fi

p();
Output: BOS’; // the BOS size of state s after intervention
1 begin

Figure 2. A simple BN consists of three genes and its truth table.

Figure 3. The SUB and ADD processes after the one-bit perturbation f3
()2 .

www.nature.com/scientificreports/

7Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

2 begin
3 BOS’ ← BOS; // stores the BOS size of state s in the process of evolution
4 Next’ ← Next; // stores the current path in the process of evolution
5 AS’ ← AS;
6 Sp ← Affectedstates f()i

p() ; // Sp is the −2n ki affected states after perturbation
7 end
8 for l ← 1 to −2n ki

9 s ← Sp(l);
10 ss ← Next’(s);
// the SUB process
11 if s ∉ AS′ // s does not belong to AS’
12 while (ss ∉ AS′)
13 {
14 BOS’(ss) ← BOS’(ss) – BOS’(s); // SUB the BOS(s) from its next state in
 the current state-transition diagram
15 ss ← Next’(ss);
16 }
17 BOS’(ss) ← BOS’(ss) − BOS’(s);
18 else // while s is an attractor in an attractor cycle
19 SS ← ss;
20 while (ss ≠ s)
21 {
22 BOS’(Next’(ss)) ← BOS’(Next’(ss)) + BOS’(ss);
23 ss ← Next’(ss);
24 SS ← SS U ss;
25 }
26 AS’ ← AS’ - SS; // decrease the vanished attractor cycle from AS’
27 end
// the ADD process
28 ss ← Nextstate(s);
29 Next’(ss) ← ss;
30 SS ← φ; p ← 0;
31 while (ss ≠ s and ss ∉ AS′)
32 p ← p + 1;
33 SS(p) ← ss; // SS stores the evolution path after intervention
34 ss ← Next’(ss);
35 end
36 p ← p + 1;
37 SS(p) ← ss;
38 if ss ∈ AS′
39 BOS’(SS(1:p)) ← BOS’(SS(1:p)) + BOS’(s);
40 else //it forms a new attractor or attractor cycle
41 {// determine whether the new attractor cycle should be a break
42 for l ← 1 to p − 1
43 ss_m(l) ← Next state (SS(l));
44 ss_n(l) ← SS(l + 1);
45 end
46 if p = = 1 or all (ss_m = = ss_n)
47 break;
48 else
49 for ii ← p to 2
50 BOS’(SS(ii)) ← BOS’(SS(ii)) - BOS’(SS(ii-1));
51 ii ← ii − 1;
52 end
53 AS’ ← AS’ U SS; // increase the new attractor cycle to AS’
54 end
55 }
56 end
57 return BOS’;
58 end

Figure 4 presents the process for updating the BOS size for the BN in Fig. 1 under a one-bit perturbation f1
(3). This

perturbation affects the transitions of four states: 01000, 01100, 11000, and 11100. The first column lists the 32
states, and the second column is the BOS of each state in the original BN. The following four columns present the
process for updating the BOS size according to the order of the four states. The updating of the current path PS is
highlighted in green and that of the modified path ′PS is highlighted in yellow. The last column is the resulting BOS
size for all states. This table shows that the updating process visits very few parts of the whole state space.
Therefore, it is less time consuming than the exhaustive strategy.

www.nature.com/scientificreports/

8Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

Based on algorithms 2 and 3, the workflow of our BOS-based algorithm to identify the optimal one-bit pertur-
bation includes the following main steps:

Step 1: Apply Algorithm 2 to build the BOS size of all states in the original BN and identify its attractors.
Step 2: Apply Algorithm 1 to identify the one-bit perturbations that may destroy the original attractors.
Step 3: For a potential one-bit perturbation fi

p(), apply Algorithm 3 to obtain the updated BOS size of all states.
Step 4: Calculate Δ B for each feasible one-bit perturbation.
Step 5: Repeat Step 3 for other potential perturbations and find the perturbation that gives the maximal Δ B.

Results and Discussion
In this section, we compare the SSD algorithm, the exhaustive algorithm, and the proposed BOS-based algorithm
both in simulated networks and in two biological networks. All calculations use the PBN Toolbox (http://code.
google.com/p/pbn-matlab-toolbox/), which calculates the SSD. We implemented both the exhaustive and the

Figure 4. Evolution of the BOS size for BN in Fig. 1 under the one-bit perturbation f1
()3 .

Figure 5. Average time to calculate the size of the BOA or the SSD for a one-bit perturbation. Solid lines are
for K = 3 and dashed lines are for K = 4.

http://code.google.com/p/pbn-matlab-toolbox/
http://code.google.com/p/pbn-matlab-toolbox/

www.nature.com/scientificreports/

9Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

BOS-based algorithms with this toolbox. All numerical experiments were done on a windows computer with two
Core 2.4 GHz processors and 32 GB of physical memory.

Simulation on synthetic networks. To compare the performance of the three algorithms on synthetic net-
works, we randomly generate 20 BNs for each number n of genes (n = 5, … , 25) and the average indegree K (K = 3,
4). The perturbation probability of each gene used to calculate the SSD is p = 0.001. Figure 5 shows the average time
of the three algorithms for a one-bit perturbation. The solid lines are for K = 3 and the dashed lines are for K = 4.

First, the BOS-based algorithm performs best while the SSD-based algorithm performs worst. In particular,
the time needed to calculate the SSD increases with the number n of genes more quickly than the time required
to directly calculate the BOA size of all attractors. This is apparent by observing the slope of the lines in Fig. 5.

Second, the ratio of the average computing time for the exhaustive algorithm to that for the BOS-based algo-
rithm is almost constant. This result is reasonable because, if the average indegree is K, then the BOS-based algo-
rithm only needs to update the evolution path of the 2n−K states whose transitions have been changed, whereas
the exhaustive algorithm has to do the same for all 2n states.

Third, the average indegree K does not influence the performance of the SSD algorithm. However, it affects
the performance of both the exhaustive and the BOS-based algorithms. Concerning the exhaustive algorithm, the
average computing time for K = 4 is slightly longer than that for K = 3. One major reason for this result is that the
average length from a state to its attractor for BNs with K = 4 is longer than for BNs with K = 3. Therefore, it takes
longer to determine the size of the BOA for K = 4 than for K = 313. Concerning the BOS-based algorithm, the
effect of the average indegree is completely the opposite because 2n−K states are affected by a one-bit perturbation.
Therefore, given a specific number n of genes, the BOS-based algorithm needs to update fewer states for BNs with
K = 4 than for BNs with K = 3.

Apart from the time issue, the space complexity of the SSD is O(2n × 2n), whereas that of the other two algo-
rithms is only O(2n). Therefore, the proposed BOS-based algorithm can be applied to larger BNs than the other
two algorithms. Figure 5 shows that the proposed BOS-based algorithm takes about 80 seconds for BNs with 25
genes whereas the exhaustive method takes about 300 seconds even for BNs with 20 genes.

Biological networks. In this section, we apply the three algorithms to two biological networks: the meta-
static melanoma network14 and the T-helper network15. The metastatic melanoma network contains seven key
genes: WNT5A, pirin, S100P, RET1, MART1, HADHB, and STC2, which are labeled x1, … , x7. It has four single-
ton attractors: 0101111, 0110110, 0111110, and 1000001. This network was used in previous works to illustrate
the effectiveness of various intervention strategies. Increasing the levels of the Wnt5a protein through a mela-
noma cell line is believed to alter the competence of the cell. Therefore, attractor 1000001 is undesirable, whereas
the others are desirable. The T-helper network has 23 key genes: GATA3, IFN-ß, IFN-ßR, IFN-γ , IFN-γ R, IL-10,
IL-10R, IL-12, IL-12R, IL-18, IL-18R, IL-4, IL-4R, IRAK, JAKI, NFAT, SOCS1, STAT1, STAT3, STAT4, STAT6,
T-bet, and TCR, which are labeled x1, … , x23. The average indegree of this network is K = 1.7. This network has 33
single attractors, which can be classified as 16 undesirable attractors and 17 desirable attractors: x1 = 0 and x1 = 1,
respectively.

Figure 6. Distributions of size of BOAs of desired and undesired attractors for two biological networks: the
metastatic-melanoma network and T-helper network. Panels (A,B) show the distributions before and after the
optimal one-bit perturbation for the metastatic-melanoma network. Panels (C,D) show the distributions before
and after the optimal one-bit perturbation for the T-helper network.

www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

Figure 6 presents the size of the BOA of the two networks before and after the optimal one-bit perturbation
identified by the BOS-based algorithm. Red bars denote the size of the BOA for the undesirable attractors and
black bars denote the size of the BOA for desirable attractors. First, the identified optimal one-bit perturbations
retain the attractors of the networks. Second, the optimal one-bit perturbation obviously reduces the size of the
BOA of the undesirable attractors. Concerning the metastatic melanoma network, the optimal one-bit perturba-
tion identified by the BOS-based algorithm is f4

(4), which can both retain the attractors of the system and maxi-
mally reduce the size of the BOA of undesirable attractors. This result is consistent with previous studies in ref. 10.

To identify the optimal one-bit perturbation, Table 1 presents the computing time for the three algorithms.
The time for the SSD-based algorithm is not presented because it is impossible to deal the state-transition matrix
of size 223 × 223 with currently available computers. The exhaustive algorithm takes about 20 hours to identify
the optimal one-bit perturbations, whereas the proposed BOS-based algorithm takes only about three minutes.

Conclusions
From the point of view of biology, structural intervention has the potential to permanently alter the dynamic
behavior of gene regulatory networks, and then push the system so that it evolves in a desirable direction.
Although previous studies applying matrix perturbation theory ensure that the perturbation obtained is the opti-
mal one-bit perturbation that can maximally shift the probabilistic mass of the SSD toward desirable states, its
application is limited to networks with only about 15 genes.

Although Xiao et al. proposed to directly observe the changes in the size of the BOA before and after a func-
tion perturbation, they did not give a systematic computational algorithm that can efficiently solve this problem.
In this paper, we propose an algorithm that efficiently determines the size of the BOA after a one-bit perturbation.
To avoid unexpected side effects, we require that the optimal one-bit perturbation maintain the same network
attractors. Our motivation is that, if we know the BOS size of all states, then the modified size of the BOA of all
attractors after a one-bit perturbation of fi

p() can be obtained by updating only the evolution path of the −2n ki
states whose transition have been altered. Results obtained from both synthetic networks and two real biological
networks show that the proposed BOS-based algorithm is more efficient than both the exhaustive algorithm and
the SSD-based algorithm. According to the results of the numerical experiments, the proposed BOS-based algo-
rithm can be applied to networks with 25 genes. Finally, note that the time complexity of the proposed BOS-based
algorithm is still exponential. To solve the optimal-intervention problem for larger BNs, we must study other
methods to determine the size of the BOA of perturbed networks quickly.

References
1. Shmulevich, I., Dougherty, E. R., Kim, S. & Zhang, W. Probabilistic Boolean Networks: A Rule-Based Uncertainty Model for Gene

Regulatory Networks. Bioinformatics 18, 261–274, doi: 10.1093/bioinformatics/18.2.261 (2002).
2. Shmulevich, I. & Dougherty, E. R. Genomic Signal Processing (Princeton Series in Applied Mathematics). (Princeton University Press,

2007).
3. Ivanov, I. & Dougherty, E. R. Modeling Genetic Regulatory Networks: Continuous or Discrete? Journal of Biological Systems 14,

219–229, doi: 10.1142/S0218339006001763 (2006).
4. Shmulevich, I., Dougherty, E. R. & Wei, Z. From Boolean to Probabilistic Boolean Networks as Models of Genetic Regulatory

Networks. Proceedings of the IEEE 90, 1778–1792, doi: 10.1109/JPROC.2002.804686 (2002).
5. Shmulevich, I., Dougherty, E. R. & Zhang, W. Gene Perturbation and Intervention in Probabilistic Boolean Networks. Bioinformatics

18, 1319–1331, doi: 10.1093/bioinformatics/18.10.1319 (2002).
6. Qian, X., Ivanov, I., Ghaffari, N. & Dougherty, E. R. Intervention in Gene Regulatory Networks Via Greedy Control Policies Based

on Long-Run Behavior. BMC Systems Biology 3, 1–16, doi: 10.1186/1752-0509-3-61 (2009).
7. Yousefi, M. R. & Dougherty, E. R. Intervention in Gene Regulatory Networks with Maximal Phenotype Alteration. Bioinformatics

29, 1758–1767, doi: 10.1093/bioinformatics/btt242 (2013).
8. Shmulevich, I., Dougherty, E. R. & Zhang, W. Control of Stationary Behavior in Probabilistic Boolean Networks by Means of

Structural Intervention. Journal of Biological Systems 10, 431–445, doi: 10.1142/S0218339002000706 (2002).
9. Xiao, Y. & Dougherty, E. R. The Impact of Function Perturbations in Boolean Networks. Bioinformatics 23, 1265–1273, doi: 10.1093/

bioinformatics/btm093 (2007).
10. Qian, X. & Dougherty, E. R. Effect of Function Perturbation on the Steady-State Distribution of Genetic Regulatory Networks:

Optimal Structural Intervention. IEEE Transactions on Signal Processing 56, 4966–4976, doi: 10.1109/TSP.2008.928089 (2008).
11. Qian, X., Yoon, B. J. & Dougherty, E. R. Structural Intervention of Gene Regulatory Networks by General Rank-K Matrix

Perturbation. In Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Kyoto, Japan.
Washington DC, USA: IEEE Computer Society, doi: 10.1109/ICASSP.2012.6287987 (2012, March 25–30).

12. Bouaynaya, N., Shterenberg, R. & Schonfeld, D. Inverse Perturbation for Optimal Intervention in Gene Regulatory Networks.
Bioinformatics 27, 103–110, doi: 10.1093/bioinformatics/btq605 (2011).

13. Zheng, Q., Shen, L., Shang, X. & Liu, W. Detecting Small Attractors of Large Boolean Networks by Function-Reduction-Based
Strategy. IET Systems Biology 10, 49–56, doi: 10.1049/iet-syb.2015.0027 (2016).

14. Weeraratna, A. T. et al. Wnt5a Signaling Directly Affects Cell Motility and Invasion of Metastatic Melanoma. Cancer Cell 1, 279–288,
doi: 10.1016/S1535-6108(02)00045-4 (2002).

15. Mendoza, L. & Xenarios, I. A Method for the Generation of Standardized Qualitative Dynamical Systems of Regulatory Networks.
Theoretical Biology and Medical Modelling 3, 1–18, doi: 10.1186/1742-4682-3-13 (2006).

Benchmark n K

Time (s)

BOS-based Exhaustive SSD

Wnt5a 7 2.6 0.004 0.55
51.5

T-helper 23 1.7 175.4 73636

Table 1. Performance of the three algorithms for two real biological networks.

www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:26247 | DOI: 10.1038/srep26247

Acknowledgements
This work was funded in part by the National Science Foundation of China (Grants No. 61572367, No. 61272018,
and No. 61174162) and the Zhejiang Provincial Natural Science Foundation of China (Grants No. R1110261 and
No. LY13F010007).

Author Contributions
M.H. wrote the code and performed the comparison tests. L.S., X.Z., X.S. and W.L. conceived the algorithm, and
W.L. wrote the manuscript. All authors read and approved the final manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Hu, M. et al. An efficient algorithm to identify the optimal one-bit perturbation based
on the basin-of-state size of Boolean networks. Sci. Rep. 6, 26247; doi: 10.1038/srep26247 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	An efficient algorithm to identify the optimal one-bit perturbation based on the basin-of-state size of Boolean networks
	Introduction
	Methods
	Boolean networks and Probabilistic Boolean Networks
	One-bit perturbation
	Problem setting
	Algorithm

	Results and Discussion
	Simulation on synthetic networks
	Biological networks

	Conclusions
	Additional Information
	Acknowledgements
	References

 application/pdf

 An efficient algorithm to identify the optimal one-bit perturbation based on the basin-of-state size of Boolean networks

 srep , (2016). doi:10.1038/srep26247

 Mingxiao Hu
 Liangzhong Shen
 Xiangzhen Zan
 Xuequn Shang
 Wenbin Liu

 doi:10.1038/srep26247

 Nature Publishing Group

 © 2016 Nature Publishing Group

 © 2016 Macmillan Publishers Limited
 10.1038/srep26247
 2045-2322

 Nature Publishing Group

 permissions@nature.com

 http://dx.doi.org/10.1038/srep26247

 doi:10.1038/srep26247

 srep , (2016). doi:10.1038/srep26247

 True

