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On the general constraints in 
single qubit quantum process 
tomography
Ramesh Bhandari1 & Nicholas A. Peters2

We briefly review single-qubit quantum process tomography for trace-preserving and nontrace-
preserving processes, and derive explicit forms of the general constraints for fitting experimental data. 
These forms provide additional insight into the structure of the process matrix. We illustrate this with 
several examples, including a discussion of qubit leakage error models and the intuition which can be 
gained from their process matrices.

Despite recent successes in developing new methods such as gate-set tomography (GST)1,2 to fully and accurately 
characterize a given quantum process, as well as simplified methods3,4 to avoid scalability limitations, quantum 
process tomography (QPT)5,6 remains a benchmark standard to which the results of the new evolving methods 
must be compared. In this paper, we review single qubit process tomography and present some new findings on 
the properties of the process matrix in the familiar χ representation and demonstrate their utility via application 
to nontrace-preserving processes such as qubit leakage errors. In particular, we examine the general form of 
constraints for numerical fitting of experimental data, and extract simplified forms, which indicate explicit rela-
tionships among the various elements of the process matrix, one of which is the familiar one, Tr(χ) =​ 1 (in the 
Pauli basis) for a trace-preserving process. The other three derived relationships for a trace-preserving process, 
exclusively involve the off-diagonal elements and thus provide further insight into the structure of the process 
matrix. Knowledge of these can thus serve as useful tools for an experimentalist interested in measuring quantum 
gates to determine error models. We illustrate their utility with several example process matrices, including some 
models of leakage errors.

Figure 1 shows a device under test (DUT) upon which qubits impinge in a quantum state described by the 
density matrix ρ. The output qubits’ density matrix is denoted by ρ′​. Ordinarily, quantum state tomography pro-
duces normalized states; however, the measurement rates contain additional information on the loss to character-
ize a non-trace-preserving process. To use the loss information, the density matrix of the output state ρ′​ includes 
a scaling factor (≤1) to account for any loss of qubits as they traverse the DUT.

Results
Following5,7, the output state in Fig. 1, ρ′​, can then be written as

ρ ε ρ′ = ( ), (1)

where ε is an operator representing the effect of the DUT on the input state. This can be further expanded as7

∑ε ρ ρ= †E E( ) ,
(2)i

i i

where Ei’s comprise a set of at most four operators describing the effect of the DUT. Now these operational ele-
ments can be expressed in terms of a fixed set of basis operators, = ...Ẽ k, 1, 2, 4k , i.e., we can write

∑=
=

˜E e E ,
(3)i

m
im m

1
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As a result,
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∑ρ ρ χ′ = ˜ ˜ †E E ,
(4)mn

m n mn

where χ = ∑ ⁎e emn i im in. Since indices m and n each run from 1 through 4, χmn is a 4 ×​ 4 matrix, called the process 
matrix. This matrix is Hermitian. Therefore, it has at most 42 =​ 16 independent parameters. Additionally, it is 
nonnegative definite, i.e., its eigenvalues are zero or greater.

Now, invoking the fact that for a trace-preserving process, Tr(ρ′​) =​ 1, one obtains from Eq. 4

∑χ = .˜ ˜†E E I
(5)mn

mn n m

These are, in effect, four constraints on the elements, χmn. These constraints then reduce the number of independ-
ent parameters of the χ matrix from 16 to 12. In general, including nontrace-preserving processes7,8,

≤P I, (6)

where

∑ ∑χ= = .˜ ˜† †P E E E E
(7)i

i i
mn

mn n m

Note that the matrix P is nonegative-definite Hermitian.
In what follows, we choose the Pauli basis, i.e., we set σ=Ẽi i, where σ1 =​ I, σ2 =​ σx, σ3 =​ σy, and σ4 =​ σz. It can 

be shown that for this fixed set of basis operators, Tr(χ) =​ Tr(P)/2, which then equals one for a trace-preserving 
process because in that case, P =​ I. Eq. 6 further implies that the eigenvalues of the P matrix (defined in Eq. 7) are 
each greater than or equal to zero and also less than or equal to one. For the choice σ=Ẽi i, we find

χ≤ + ≤Tr F0 ( ) 1, (8)

χ≤ − ≤Tr F0 ( ) 1, (9)

where

χ χ χ χ χ χ= + + − + + .F Im Re Im Re Im Re2 ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) (10)34 12
2

24 13
2

23 14
2

Tr(χ) ±​ F are the two P-matrix eigenvalues appearing in the above inequalities, Eqs. 8 and 9, which the χ matrix 
must, in general, satisfy (we assume a positive sign for the radical sign in Eq. 10). Adding Eqs. 8 and 9 yields 
Tr(χ) ≤​ 1, which is normally quoted in literature; however, Eq. 8 indicates a much tighter constraint, involving 
both the diagonal elements and the off-diagonal elements. When the process is trace preserving, the equality 
holds, which then requires that all three terms under the radical sign in Eq. 10 be individually equal to zero 
because Tr(χ) =​ 1. In other words, not just Tr(χ) =​ 1, but the entire set

χ =Tr ( ) 1, (11)

χ χ= −Im Re( ) ( ), (12)34 12

χ χ=Im Re( ) ( ), (13)24 13

χ χ= −Im Re( ) ( ) (14)23 14

must hold in any numerical fit to the experimental data to yield a physical χ matrix. To our knowledge, this 
explicit form of constraints has not been cited or discussed in the past, although sets of equations of the form, 
Eq. 5, typically have been employed directly as constraints in numerical optimization procedures to obtain a fitted 
physical (trace-preserving) process matrix from experimental data (see, e.g.,9). Note that this set of constraints 
can also be derived directly by solving the linear equations embodied in Eq. 5.

From Eq. 9, it further follows that Tr(χ) ≥​ F. Using the fact that both Tr(χ) and F are nonnegative, Eqs. 8 and 
9 can now be rewritten as

χ + ≤FTr( ) 1, (15)

χ≤ − .F0 Tr( ) (16)

These two inequalities serve as general constraints that must be satisfied in a quantum process.

Figure 1.  The input state ρ changes to ρ′ upon traversal through a device-under-test (DUT). 
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Discussion
Below we give some some examples to corroborate the above results:

Hadamard Gate.  The process matrix for the Hadamard gate is given by

χ =


















.

1
2

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1 (17)

H

Eq. 11 is satisfied as Tr(χH) =​ 1. Further there are no complex coefficients, and the first-row elements are all zero, 
so Eqs. 12–14 are all true and identically zero, as is F. Therefore, Eqs. 15 and 16 are satisfied as well.

Polarizer at an angle θ.  This is a nontrace-preserving process. The χ matrix is given by

χ θ

θ θ
θ θ θ

θ θ θ

=























.( )

1/4 sin (2 )/4 0 cos (2 )/4
sin (2 )/4 sin (2 )/4 0 sin (4 )/8

0 0 0 0
cos (2 )/4 sin (4 )/8 0 cos (2 )/4 (18)

2

2

Tr(χ) =​ 1/2, which is less than 1, as expected. Additionally, the value of F, using Eq. 10, is also equal to 1/2. The 
constraints, Eqs. 15 and 16, are satisfied. Violations occur in Eqs. 12 and 14.

In addition to Tr(χ) <​ 1 for a nontrace-preserving process, what specific violations occur in Eqs. 12 and 14 can 
also be an indication of the type of nontrace-preserving process. We illustrate this with respect to a leakage error 
model for quantum computing.

Leakage Error Model.  Qubit leakage is of two types: 1) coherent leakage, where the qubit represented by a 
two-level subsystem of a multi-level system like the trapped ion, leaks out of its Hilbert space and then transitions 
back to it; 2) loss, where the qubit permanently transitions out of its Hilbert space, i.e., never returns to it and is 
thus considered lost. In this paper, we focus on the latter, where, for example, the qubit in the first excited state (|1〉​)  
of the multi-level system, may be further excited outside of the qubit’s computational Hilbert space, and never 
returns to it (or returns to it after a very long time, so for practical purposes it is considered lost). The process is 
therefore nontrace preserving. Following10,

ρ ρ ρ σ ρ σ′ = = − + + +E p p I I( ) (1 )
4

( ) ( ), (19)z z

where E represents the error operation, ρ is the input state, ρ′​ is the output state and p is the leakage error proba-
bility. It follows from above that

ρ ρσ′ =


 −



 +Tr p pTr( ) 1

2 2
( ),

(20)z

indicating that the qubit is lost with a probability p when it is in the excited state and remains stable when it is in 
the ground state (|0〉​). Using Eq. 4 and Eq. 19, the process matrix is

χ =














−













.
EL

p p

p p

1 3
4

0 0
4

0 0 0 0
0 0 0 0

4
0 0

4 (21)

χ = − ≤
EL

Tr ( ) 1 1p
2

 for p ≥​ 0. In this case, when p >​ 0, this is no longer a trace-preserving process, so Eq. 14 is 
violated in proportion to the leakage probability p. In fact, all the nonzero, non-identity elements deviate from the 
corresponding elements of the ideal identity gate by an amount identical in magnitude (p/4), which is propor-
tional to the leakage probability p.

Consider now the case where in Eq. 19, the Pauli operator, σz is replaced by σx. This is a nontrace-preserving 
process with ρETr ( ( )) given by Eq. 20, but with σz replaced with σx. This corresponds to a noisy environment 
where the state |+ ≡ | + |( 0 1 )/ 2 stays stable, and the state |− ≡ | − |( 0 1 )/ 2 leaks out with probability 
p. On the other hand, |0〉​ and |1〉​, which comprise the |+​〉​ and the |−​〉​ states, leak out with the same probability, 
1 −​ p/2. The corresponding process matrix is given by

EX
χ =














−













.

p p

p p

1 3
4 4

0 0

4 4
0 0

0 0 0 0
0 0 0 0 (22)
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Here the violation, indicative of a nontrace-preserving process, occurs in Eq. 12, instead of Eq. 14, signifying a 
different nontrace-preserving process, even though 1 −​ Tr(χ) remains unchanged. The positioning of the nonzero 
elements, except the first diagonal element here, has shifted within the χ matrix, suggestive of the change in the 
nature of the nontrace-preserving process. This manner of shift is predictable if one is specifically working with a 
general leakage error model in which σz in Eq. 19 is replaced with σ.�� �n.

We further extend the model of Eq. 19 to qubits, where the ground state (|0〉​) may also leak out, although 
with a low probability compared to the excited state (|1〉​) as, for example, in superconducting phase qubits11. The 
leakage process here can be represented by the following equation:

ρ ρ σ ρ σ ε ρσ σ ρ= − + + + − +E p p I I( ) (1 )
4

( ) ( )
2

( ), (23)z z z z

where an extra term has been added to Eq. 19 to account for the leakage of the ground state as seen below:

ρ ε ρσ=


 −



 +

−
.ETr p p Tr( ( )) 1

2
2

2
( )

(24)z

The ground state leakage probability, from Eq. 24, is ε. While the excited state leakage probability is p −​ ε. The pro-
cess matrix is the same as the one given in Eq. 21, except that the nonzero off-diagonal elements are now changed 
to (p −​ 2ε)/4, an indication of the change of the nature of the nontrace-preserving process, namely, the presence of 
leakage from the ground state as well. We also note here that the left hand side of Eq. 15, Tr(χ) +​ F evaluates to 1 −​ ε 
for this model in contrast to the value of 1 obtained for Eqs. 21 and 22, which can be another distinguishing feature.

Thus, we see that simplification of the constraints, Eq. 7 into the set, Eqs. 11–14, can provide insight into the 
structure of the trace-preserving process matrix; the three newly derived explicit forms, Eqs. 12–14, express clear 
relationships among the off-diagonal elements; we have not seen these relationships mentioned or discussed in the 
literature before. Violations of these constraints is an indication of a nontrace-preserving process, and the nature 
of the violations, as we have illustrated above, can help discriminate one type of a nontrace-preserving process 
from another. Furthermore, it must be emphasized that for a quantum process known to be nontrace-preserving 
like the polarizer (where Tr(χ) =​ 1/2, ideally), or for a process suspected to be not strictly trace-preserving like a 
quantum gate with leakage errors, or simply for a DUT whose behavior is not known a priori (a true black box), 
the general constraints, Eqs. 15 and 16, must be invoked in the fitting of data.

In summary, we have revisited the theoretical aspects of single qubit quantum process tomography to determine 
the behavior of a quantum device. More specifically, we have reexamined the well-known constraints for the pro-
cess matrix (in the χ representation), and recast them into more insightful forms. In the case of a trace-preserving 
process, specific relationships among the various elements of the process matrix emerge that then shed light on 
its basic generic structure. Knowledge of these new constraint relationships permit an enhanced understanding of 
the interpretation and analysis of the experimental data. We have illustrated their validity and utility with several 
examples, with specific attention to leakage errors, which are of significant importance in quantum computing.

Methods
We tested the efficacy of constraints, Eqs. 15 and 16, in fitting data by adding noise to the above ideal χ matri-
ces for the Hadamard gate, the polarizer, and the leakage error models considered in this paper. We simulated 
Gaussian Hermitian complex noise using the MATLAB R2015b function randn which returns a number from 
a normal distribution with zero mean and a standard deviation equal to 1. This noise is then scaled by a variable 
scaler ranging from 10−4 to 10−1 and added to the process matrix, after which the process matrix is optimized; 
one fixed value of the scaler is used at one time. We use toolboxes YALMIP Version 19-Sep-201512 with SeDuMi 
1.3213 for optimization within Matlab.

In the numerical simulations, we frequently observed the noisy χ matrices to have negative eigenvalues, eigen-
values exceeding unity, and/or trace exceeding unity. Imposing the requirements of nonnegative definiteness, 
Hermiticity and the constraints, Eqs. 15 and 16 to fit these noisy χ matrices always restored physicality; the 
eigenvalues were then nonnegative and less than or equal to 1. Improperly constraining the system, e.g., imposing 
only Tr(χ) ≤​ 1, without Eqs. 15 and 16, led to unphysical output states computed from χ, even though the require-
ments of nonnegative definiteness and Hermiticity for the χ matrix were still in place. Further it is worth noting 
that in many examples examined, the fidelity between the target process matrix and each of the two types of opti-
mizations is similar, especially when it is high, and in this case does not aid one in detecting optimization errors.

Next we give two specific examples showing an initial noisy process matrix and the results after applying the 
complete constraints. First we consider the Hadamard gate as given by Eq. 17. After adding noise scaled by 10−3, 
we obtain, as an example, the following:

χ =











− . + . − . − . − . − . − . + .
− . + . . + . − . + . . − .
− . + . − . − . − . + . − . − .
− . − . . + . − . + . . + .











.

i i i i
i i i i
i i i i
i i i i

0 0009 0 0000 0 0005 0 0007 0 0012 0 0002 0 0003 0 0015
0 0005 0 0007 0 4998 0 0000 0 0011 0 0016 0 5012 0 0002
0 0012 0 0002 0 0011 0 0016 0 0015 0 0000 0 0004 0 0002
0 0003 0 0015 0 5012 0 0002 0 0004 0 0002 0 5003 0 0000 (25)

Hinitial

This initial matrix has one eigenvalue greater than one and two negative eigenvalues and is therefore unphysical. 
We also note that the set of Eqs. 11–14 is violated here. Here and in the following examples, we show rounded 
results, while full precision is used to compute reported derived quantities.

Under the assumption of a trace-preserving process, we perform numerical fitting using Eqs. 11–14, as con-
straints. The result is
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χ =











. + . . + . − . − . − . + .

. − . . + . − . + . . − .
− . + . − . − . . + . − . − .
− . − . . + . − . + . . + .











.

i i i i
i i i i
i i i i
i i i i

0 0000 0 0000 0 0000 0 0004 0 0000 0 0000 0 0000 0 0004
0 0000 0 0004 0 4997 0 0000 0 0008 0 0000 0 5000 0 0000
0 0000 0 0000 0 0008 0 0000 0 0000 0 0000 0 0008 0 0000
0 0000 0 0004 0 5000 0 0000 0 0008 0 0000 0 5003 0 0000 (26)

HTP

Eqs. 11–14 are now satisfied. If, on the other hand, the quantum process is suspected to be not strictly 
trace-preserving (due to the possibility of leakage errors), one must replace the constraints, Eqs. 11–14, with the 
the general constraints, Eqs. 15 and 16. The result, after fitting with these constraints, is

χ =











. + . − . + . − . − . − . + .
− . − . . + . − . + . . − .
− . + . − . − . . + . − . − .
− . − . . + . − . + . . + .











.

i i i i
i i i i
i i i i
i i i i

0 0000 0 0000 0 0000 0 0004 0 0000 0 0000 0 0000 0 0004
0 0000 0 0004 0 4997 0 0000 0 0008 0 0000 0 5000 0 0000
0 0000 0 0000 0 0008 0 0000 0 0000 0 0000 0 0008 0 0000
0 0000 0 0004 0 5000 0 0000 0 0008 0 0000 0 5002 0 0000 (27)

HNTP

Eqs. 26 and 27 are very similar, however, the latter’s trace is 0.9999, so it is not trace preserving, but it is a valid 
physical process.

As a second example, we consider the leakage error model described by Eq. 23 (a nontrace-preserving process) 
with p =​ 10−2, ε =​ 3 * 10−3, and the Gaussian noise scaler equal to 10−3. An instance of the noisy process matrix is

χ =











. + . . − . − . − . . + .

. + . . + . . − . − . + .
− . + . . + . − . + . . + .
. − . − . − . . − . . + .











.

i i i i
i i i i
i i i i
i i i i

0 9921 0 0000 0 0012 0 0012 0 0032 0 0011 0 0013 0 0006
0 0012 0 0012 0 0004 0 0000 0 0001 0 0002 0 0016 0 0008
0 0032 0 0011 0 0001 0 0002 0 0022 0 0000 0 0013 0 0006
0 0013 0 0006 0 0016 0 0008 0 0013 0 0006 0 0042 0 0000 (28)

initial

It has two negative eigenvalues, and is therefore unphysical. In addition, Eq. 15 is violated as the left-hand side 
evaluates to a value of 1.0034. After optimization with constraints, Eqs. 15 and 16, the process matrix is

χ =











. + . . − . − . − . . + .

. + . . + . − . − . − . − .
− . + . − . + . . + . . + .
. − . − . + . . − . . + .











.

i i i i
i i i i
i i i i
i i i i

0 9911 0 0000 0 0009 0 0012 0 0023 0 0011 0 0009 0 0006
0 0009 0 0012 0 0004 0 0000 0 0002 0 0000 0 0012 0 0002
0 0023 0 0011 0 0002 0 0000 0 0001 0 0000 0 0006 0 0000
0 0009 0 0006 0 0012 0 0002 0 0006 0 0000 0 0034 0 0000 (29)

NTP

The optimized result is nonnegative definite and satisfies the required constraints, Eqs. 15 and 16.
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