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Dynamic Onset of Feynman 
Relation in the Phonon Regime
Y. Li , C. J. Zhu , E. W. Hagley  & L. Deng

predicts that the density excitation spectrum and structure factor of a condensed Bosonic system in 
the phonon regime drops linear and continuously to zero. Until now, this widely accepted monotonic 
excitation energy drop as the function of reduced quasi-momentum has never been challenged in a 
spin-preserving process. We show rigorously that in a light-matter wave-mixing process in a Bosonic 

alter the Feynman relation and result in a new dynamic relation that exhibits an astonishing non-

alter the density excitation response of a quantum gas. Indeed, this dynamic relation with a non-

phonon-based condensed matter Bogoliubov theory.

The Feynman relation1, originally derived to describe the density excitation spectrum of superfluid 4He at T =  0, 
provides a very fundamental understanding of the collective response of an ultra-cold gaseous or solid-state 
system in the small phonon regime without spin changes. The most celebrated predictions of this important 
relation are the linear dependency of quasi-momentum transfer in the excitation spectrum of the ground state 
when the external interaction is neglected, and the corresponding behavior of the system structure factor. Indeed, 
such monotonic behavior approaching zero excitation energy as the quasi-momentum transfer reduces has been 
widely accepted in solid-state physics2.

Nonlinear optics3, a completely non-related field of study, investigates a wide range of light-matter interac-
tions from sub-atomic particles and condensed matter physics4–6, to astrophysical phenomena3,7. Although widely 
used in many fields of physical science, nonlinear optics usually only serves as an indispensable probe (especially 
when the light intensity is not very high) rather than a tool to actively and dynamically alter the fundamental 
properties of a material under investigation except the intensity-dependent effects induced by ultra-high power 
ultra-short-pulse lasers3,8. The discovery of gaseous phase Bose-Einstein condensates1, now referred to as bosonic 
quantum gases9, has significantly changed our understanding of nonlinear optics of light-matter interactions, 
even at very weak field strengths. Surprisingly, the non-linear optical response of quantum gases can be funda-
mentally different from that of normal gases10. Indeed, many effects and phenomena well-known to nonlinear 
optics in normal gases are now subject to significant modification and often require a completely different inter-
pretation. Moreover, many nonlinear wave-mixing processes in normal gases with well-understood physics are 
now found to have no correspondence in quantum gases.

Here we show how nonlinear optics of a weak Sum-Frequency-Generation (SFG) process can profoundly 
impact the collective response of a bosonic quantum gas in a spin-preserving process. We show that even a weak 
light-matter wave-mixing process in a quantum gas can significantly alter the well-known single-spin Feynman 
relation in the phonon regime, resulting in a dynamic non-Feynman onset and cut-off in the ground state excita-
tion spectrum. This is a profoundly fundamental change because (1) never in the history of condensed matter 
physics has the single-spin Feynman relation in the phonon regime been challenged; and (2) never before has a 
nonlinear optical process been shown to have such a profound impact on both the condensed-matter collective 
response of the system and the physics of the light-field generation process. These dynamic effects may open 
many possibilities for novel nonlinear optical processes in quantum gases.

School of Physical and Engineering 
National Institute of Standards and Technology, Gaithersburg, 

R

P

OPEN



www.nature.com/scientificreports/

2SCIENTIFIC REPORTS

Results
Model. We begin by considering an elongated Bose condensate with its long axis aligned with the z-axis 
(Fig. 1).

We excite the condensate with a pump laser field EL with wave vector kL that is linearly polarized along the 
x-axis and propagates along the z-axis. Because of the allowed dipole coupling between states | → |2 1  an SFG 
field EM with wave vector kM and frequency ωM is generated from electronic state |2  (Fig. 1a).

The Gross-Pitaevskii equation11,12 describing the evolution of the atomic mean-field wave function in the 
presence of the pump field is given by

β∂Ψ
∂
= Ψ + Ψ + + . . Ψ.ω− Δ ⋅ + Δˆi

t
H U e[ H c ] (1)D

i k r i t
0

Here, =− ∇ + ΨĤ M g( /2 )0
2 2 2 is the trap-free13,14 system Hamiltonian without the external light field and 

= Ω ΔU t(r, ) /D M
2

2 describes the optical-dipole potential arising from the internally-generated SFG field. 
π=g a M4 /S

2  with aS and M being the s-wave scattering length and the atomic mass, respectively. 
Δ = −k 3k kL M and ω ω ωΔ = −3 L M are the usual optical-wave vector and energy mismatch. Together they 
describe the phase-mismatch between the pump and the internally-generated fields. We have defined 
β = Ω Ω Δ⁎/M P

(3)
2, where Ω = ⋅d E /M M21  is the Rabi frequency of the generated field and ΩP

(3) is the effective 
three-photon Rabi frequency of the pump field. d21 is the dipole transition operator between states | → |2 1  and 

δ γΔ = + i2 2 2, where δ ω ω= −M2 21 is the detuning of the generated field from the electronic state |2  having a 
resonant line width of γ2.

The critical element that distinguishes the Hamiltonian in Eq. (1) from the Hamiltonian describing 
light-matter multi-wave mixing in a quantum gas10 is the dipole potential energy term U D on the right side of 
Eq. (1). This term arises from the internally-generated SFG field but has been neglected in all light-quantum gas 
studies reported to date. However, we show here that this term is a vitally important element in nonlinear optical 
properties of light-matter interactions in the phonon regime; the regime where the well-known Feynman relation 
dominates. It is important to emphasize that UD(r, t) is a dynamically changing quantity depending on the gener-
ation and coherent propagation of the wave-mixing field ΩM(r, t), and hence it cannot be considered as a static 
trap potential in Ĥ0. In fact, it can be shown mathematically that any quasi-static external trapping mechanisms, 
magnetic or optical, can be removed from the Maxwell equation for the SFG field by a phase transformation and 
therefore have no effect on the Feynman relation in the phonon regime.

In the single-spin Feynman phonon response regime no trap potential exists13,14, and the excitation of the 
system is described by small quasi-momentum transfer q usually arising from thermal agitations. This trap-free 
Hamiltonian corresponds to an atomic Bose-Einstein condensate system where the trapping potential is fully 
turned off. This avoids the initial mean-field reaction that completely masks the small phonon regime in which 
the Feynman relation applies. This is exactly what has been done experimentally in measurements of the struc-
ture factor of a Bose-condensate13,14. It is then immediately clear that with the external potential an additional 
small, dynamic and yet negative excitation energy can profoundly alter the energy spectrum and response of the 
system. This is achieved by an optical wave-mixing process with a negative detuning which results in a dynamic 
internally-generated field and a non-adiabatic dipole potential UD(r, t) <  0 that can cancel the phonon energy in 
the excitation spectrum and thereby drastically change the Feynman relation.

Figure 1. Optical-matter wave-mixing in a quantum gas. (a) Energy level diagram and laser couplings for 
a SFG process in a quantum gas. The dash-dotted arrow denotes the forward emission at ωM in the Feynman 
small phonon regime (small q). Resonant and off-resonant backward emission processes only occur in the free-
particle regime (large q) and have been neglected. (b) Wave-vector diagrams and the generalized optical-matter 
wave phase-matching conditions. (c) Excitation geometry.
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Maxwell-Bogoliubov theoretical framework. With the above general argument we begin our calcula-
tion using the Maxwell-Bogoliubov theoretical framework for quantum gases10. We generalize the seminal study 
of Raman wave mixing and scattering by Bloembergen and Shen15,16 to encompass both atomic center-of-mass 
(CM) motion and density excitations required for a quantum gas.

We assume that the Bose-Einstein condensate wave function of a single-specie is given by

∑Ψ =
⎡

⎣
⎢
⎢⎢
Ψ +

⎤

⎦
⎥
⎥⎥
.μ ω−

±
±

± ⋅ −t e u t e(r, ) (r) (r, )
(2)

i t

m
m

i t
0

,
,

(q r )m mq

Here, Ψ 0(r) is the ground state condensate wave function in the absence of any external light fields and 
μ = Ψg /2  is the chemical potential. In addition, qm and ω = Mq /2mq

2 2
m

 are the quasi-momentum transfer 
and the energy of the elementary excitation induced by the light-wave mixing and scattering process, respectively, 
with m being the Bogoliubov excitation mode index. For mathematical simplicity and without loss of generality, 
we only consider the lowest Bogoliubov mode by neglecting the mode index m. Multi-Bogoliubov modes can be 
similarly solved analytically. The effect is just a slight broadening of the width of the SFG field.

Defining = Δω ω
+ − + −

−⁎W t W t u t u t e[ (r, ), (r, )] [ (r, ), (r, ) ] i t( )q  and substituting Eq. (2) into Eq. (1) we 
obtain1
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where γ ω= − + Δ ± ±± i A U( )D , ω μ= + Ψ −A g2 /q 0
2 , = ΨB g /0

2 , and ω = q M/2q
2 . The general-

ized optical-matter wave vector and energy mismatch Δ = − ΔK q k and ω ωΔΩ = − Δq  encompass both 
optical-wave and fundamental excitations. We have also introduced a phenomenological motional state reso-
nance line width γ which characterizes the damping of the elementary excitation17.

Under the slowly varying envelope approximation the Maxwell equation for the wave-mixing field EM propa-
gating along the z-axis (forward direction) can be written as10,18

κ
∂
∂
+
∂
∂
− ∇ =

Ω
Δ

+ Ψ⊥ + −
− Δ ⋅ −ΔΩ⁎ ⁎E

z c
E

t
i
k

E i d W W e1
2 ( ) ,

(4)
M M

M
M

P i t2
0

21
(3)

2
0

( K r )

where κ πω= c2 /M0 . Mathematically, Eq. (3) can be formally integrated and inserted into the right side of Eq. (4) 
from which the propagation properties of the wave-mixing field can be numerically evaluated. For mathematical 
simplicity, and for the purpose of demonstrating the key underlying physics, we seek without the loss of generality 
a first-order solution of Eq. (3) that is adiabatic with respect to optical response but non-adiabatic with respect to 
atomic center-of-mass motion. The non-adiabaticity with respect to the atomic CM motion reflects the fact that 
UD cannot be treated as a static trap potential, as discussed before. We emphasize, however, that we have solved 
Eqs. (3, 4) numerically without any approximation and obtained the same results. With the above approximations 
we obtain from Eq. (3)

β
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where = −+ −D B2. Using Eq. (5) to construct the polarization source term for the SFG field, we obtain the 
Maxwell-Bogoliubov equation

κ
ω ω γ

∂Ω
∂

+
∂Ω
∂
− ∇ Ω =
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− Δ +

Ω⊥z c t
i
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i S U
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where the Bogoliubov fundamental excitation spectrum ωB(q; UD) and the quantum gas structure factor S(q; UD) 
are given by

ω
ω

= − =
−
.U A B S U A B(q; ) and (q; )B D D

B

2 2 2

In deriving the above results we have defined κ κ δ= Ωd /P0 21
2 (3) 2

2
2, enforced the total optical-matter 

wave phase matching in the forward direction, and also neglected far-off resonance contributions.
Under the lowest-order approximation in the phonon regime, the above expressions for the excitation spec-

trum and the structure factor of the quantum gas become

ω ω ω μ μ
ω

ω
= + + =

+
.( ) ( )q U U S q U

U
( ; ) 2 2 , and ( ; )

(7)B D q q D D
q D

B

Clearly, when UD is neglected Eq. (7) reduces to the well-known Feynman variational approximation1 for the 
density excitation spectrum of superfluid 4He at T =  0. We emphasize that Eqs. (6, 7) are obtained within standard 
nonlinear optics formalism 3, and are therefore completely unrelated in anyway to the local density approximation 
treatment.
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Bogoliubov excitation spectrum and condensate structure factor. Equation (7) predicts a novel 
and surprising feature never before seen in nonlinear optics. With a red-detuned pump δ2 <  0 and 
UD =  |ΩM|2/δ2 <  0, the Bogoliubov excitation spectrum for elementary excitations in the wave-mixing process is 
dynamically red-shifted, resulting in a dynamic onset and cut-off in the well-known “static” Feynman relation 
(Fig. 2a). Correspondingly, the frequency of the generated field ωM will be dynamically blue-shifted from it orig-
inal frequency (since ω ω ω ω ωΔ = ⇒ = −3B M L B). Accompanying this dynamic change in the Feynman rela-
tion is an abrupt drop in the quantum gas structure factor in the small quasi-momentum transfer regime (Fig. 2b), 
resulting in strong suppression of the forward light-wave-mixing and coherent propagation growth process. 
Indeed, this forward suppression is much more severe and abrupt than predicted by the usual “static” Feynman 
relation of single spin. The range of q <  qc (here ≈ +q M U O q2 / ( )c D

2  is the critical q at which the 
Bogoliubov dispersion becomes imaginary) forms the region in which wave propagation is forbidden. We note 
that such cut-offs in the excitation spectrum have been predicted for a Spin-Orbit Coupled (SOC) spinor Bose 
condensate19,20 where spin-flip interactions introduce unstable branches which result in such a forbidden regime. 
In our case, however, the multi-optical wave-mixing process preserves the single-spin state since the cut-off is 
introduced by nonlinear optical process that are spin preserving. The dynamic feature associated with the wave 

Figure 2. Fundamental excitation energy and quantum gas structure factor in the phonon regime. 
Bogoliubov excitation spectrum ωB(q) [plot (a)] and the condensate structure factor S(q) [plot (b)] exhibit a 
dynamic non-Feynman onset and cut-off as functions of q and UD. Black dashed-lines: prediction of the well-
known Feynman relation in the small phonon regime. Red dot-dashed curve: red-detuned pump exhibits a 
dynamic non-Feynman onset and cut-off. The gray-shaded regions above the Feynman relation are accessible 
with a Bosonic quantum gas only when the pump is blue-detuned and the photo-de-association time is longer 
than the bare atomic spontaneous emission time22–24. The green-shaded areas indicate regions in which the 
Bogoliubov spectrum with a red-detuned pump becomes imaginary (forbidden region).

Figure 3. Forbidden regimes of the Bogoliubov excitation spectrum ωB(q; UD) and condensate structure 
factor S(q; UD). Contour plots of the Bogoliubov excitation spectrum ωB(q) (a) and the condensate structure 
factor S(q) (b) as functions of q and UD in the phonon regime. The white areas are regions forbidden by the 
dynamic non-Feynman cut-off.
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generation and propagation in such a spin-preserving process has no correspondence with the usual SOC pro-
cesses which are, in general, instantaneous.

Figure 3 displays contour plots of the Bogoliubov excitation spectrum ωB(q; UD) and the quantum gas struc-
ture factor S(q; UD) as functions of the optical-dipole potential induced by the generated field and the quasi 
momentum transfer in phonon regime using Eq. (7). In this small phonon regime where the static Feynman 
relation dominates the generated field propagates co-linearly with the pump laser. The modified Feynman relation 
results in a much stronger suppression of the forward wave-mixing gain.

The consequences of the Bogoliubov frequency 
red-shift can be further investigated and verified numerically by integrating the Maxwell-Bogoliubov equation (6) 

Figure 4. Intensity distribution of the forward-generated field in the phonon regime. Here, we integrate 
Eq. (6) using Eq. (7). Left column (side-view, center-cut-view, and top-view): the effect of UD is neglected from 
Eq. (7). The middle plot clearly shows the linear behavior near the center, as expected from the well-known 
Feynman relation in the phonon regime. Right column (side-view, center-cut-view, and top-view): the effect of 
UD is included in Eq. (7). The presence of a non-Feynman onset and cut-off with a red-detuned pump and SFG 
field propagating in the forward direction can be clearly seen in the middle plot.
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for the SFG field under the condition of total optical-matter wave phase-matching, i.e., Δ − =k q 0 and 
ω ωΔ − = 0B . In Fig. 4 we show the transverse distribution of the intensity |ΩM|2 obtained by direct numerical 

integration of Eq. (6) using Eq. (7). The initial condensate wave function is assumed to have a transverse 
Thomas-Fermi distribution, i.e., Ψ = −n r r(1 / )0

2
0

2
0
2  where n0 ≈  1011/ cm3 is the peak condensate density and r0 

is the transverse Thomas-Fermi radius. The initial condition for the generated field is assumed to be 
πΩ /2M

(0)  =  3 kHz (corresponding to one initial photon with a pulse duration of 200 μs traveling along the long axis 
of the condensate having a diameter of 10 μm). We take δ2/2π =  −1 GHz, μ =  600 Hz, kL =  8.06 μm−1, 
κ =n 100

7 (cm · s)−1, γ/2π =  10 kHz, and L =  0.02 cm. The presence of the dynamic non-Feynman onset and cut-off 
can be clearly seen (plots in the right column) when compared with the results where the small, non-adiabatic, 
and dynamic effects arising from the internally-generated field are neglected (plots in the left column). Note that 
in this forward wave generation direction, which is the most efficient wave-mixing and propagation direction in 
a normal gas, the generated field is suppressed much more strongly than the linear behavior predicted by the 
well-known Feynman relation. The dynamic non-Feynman onset and cut-off lead to a unique suppression in the 
structure factor and the coherent propagation gain of the quantum gas that has no correspondence in the nonlin-
ear optical response of normal gases and solid-state materials.

Discussion and Conclusion
Nonlinear optics of quantum gases is a fascinating new research field in which many new unexpected effects 
occur that might otherwise be strictly forbidden in normal gases or solid-state materials. Fundamental changes 
to the single-spin Feynman relation and the nonlinear optical response shown in this work exemplify the novelty 
of this new research direction within the discipline of nonlinear optics21. The exotic new effects and features 
shown in this study significantly enrich our fundamental understanding of the nonlinear optical response of 
these intriguing materials referred to as quantum gases. Indeed, none of these novel effects can be obtained by 
the so-called “matter-wave grating” or “matter-wave superradiance” theory which is fundamentally incapable of 
explaining any requisite details of light-matter wave-mixing processes in quantum gases21.
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