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Radiomic Texture Analysis Mapping 
Predicts Areas of True Functional 
MRI Activity
Islam Hassan1, Aikaterini Kotrotsou1, Ali Shojaee Bakhtiari1, Ginu A. Thomas1, 
Jeffrey S. Weinberg2, Ashok J. Kumar1, Raymond Sawaya2, Markus M. Luedi1, Pascal O. Zinn3 
& Rivka R. Colen1,4

Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment 
of the statistical threshold in order to maximize true functional activity and eliminate false positives. 
In this study, we propose a novel technique that uses radiomic texture analysis (TA) features 
associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-handed 
healthy volunteers were analyzed using SPM8. The resulting functional maps were thresholded to 
optimize visualization of language areas, resulting in 116 regions of interests (ROIs). A board-certified 
neuroradiologist classified different ROIs into Expected (E) and Non-Expected (NE) based on their 
anatomical locations. TA was performed using the mean Echo-Planner Imaging (EPI) volume, and 
20 rotation-invariant texture features were obtained for each ROI. Using forward stepwise logistic 
regression, we built a predictive model that discriminated between E and NE areas of functional 
activity, with a cross-validation AUC and success rate of 79.84% and 80.19% respectively (specificity/
sensitivity of 78.34%/82.61%). This study found that radiomic TA of fMRI scans may allow for 
determination of areas of true functional activity, and thus eliminate clinician bias.

Blood oxygen level dependent Magnetic Resonance Imaging (BOLD-MRI) is one of the most important tools 
in presurgical neuroimaging as it reflects the integrated synaptic activity of neurons1,2. Since the development of 
functional MRI (fMRI) as a technique for brain mapping, it has been extensively used in multiple clinical and 
research applications3. This can be attributed to its non-invasive nature and high spatial and temporal resolution, 
which allows covering of the entire brain within a short period of time4. Early on, fMRI was used as a tool in neu-
rocognitive research using group analysis rather than individual analysis5. In group analysis, data from different 
subjects are averaged in order to cancel-out random contributions and increase signal-to-noise ratio (SNR)5. 
However, individual analysis is the only option in clinical decision-making such as in presurgical brain mapping.

Currently, individual analysis of fMRI data consists of steps that reduce the SNR and increase the 
contrast-to-noise ratio (CNR)6. The ultimate goal is to maximize detection of true activity and eliminate any false 
positives, which is achieved through adjusting the statistical threshold of fMRI map7. In individual analysis, deter-
mination of this threshold is arbitrary and differs from one subject to another, depending on the experience of the 
reporting radiologist8. Usually, the threshold is set to the point where maximum noise can be eliminated without 
affecting true activity9. However, it remains unclear whether the final fMRI map is a true representation of brain 
activity. Further, no method is known that eliminates non-essential or untrue activity that survives the arbitrary 
threshold and the limits of thresholding are not identified. Finally, it has to be proven if a stringent threshold 
always results in preservation of truly active areas.

Those questions become of extreme importance in cases of clinical applications, specifically presurgical map-
ping, where accuracy is pivotal for clinical decision making10,11. Despite multiple validation studies of fMRI, 
individual fMRI results per-se cannot be considered 100% accurate due to several factors12. First, fMRI is an 
indirect measurement of brain activity, thus it is an overstretch to assume that BOLD-signal represents activity 
of a specific brain region associated with the evaluated function4,8. Second, no statistical method can provide 
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quantitative parameters to differentiate primary activity from secondary activity7. Third, depending only on voxel 
intensity to determine activity discards a lot of information that can be obtained from raw data. These aforemen-
tioned limitations highlight and beckon the need for a robust adjunct analysis that can help increase accuracy and 
reliability of fMRI. Such adjunct analysis must provide a quantitative platform that can capture minor differences 
and fluctuations of the signal intensity occurring within eloquent cortex during activity. Although quantification 
of functional brain activity is challenging, yet it can provide a strong predictive platform that can utilize minor 
computational differences between the behavior of true essential fMRI activity and other areas of functional 
activity captured by fMRI studies. Subsequently, radiomics analysis of medical images can play a role in detection 
of such minor changes that occur within the region of interest (ROI) of activity itself.

Radiomics can address this issue through mining high throughput quantitative imaging features that hold 
predictive power13. Quantitative imaging features obtained through radiomic texture analysis (TA) provide infor-
mation that cannot be visually assessed14,15. The extracted features represent values from the voxel itself as well as 
its interrelations with the surrounding voxels. Lately, TA has acquired much attention due to the improvements 
in both the resolution of medical images as well as in the capabilities of computers16. Texture features obtained by 
the medical images have been correlated with disease-related changes occurring in the molecular environment, 
suggesting that TA can be used as a compliment of macrostructural information commonly used by the radiolo-
gists in order to better characterize pathological diseases17.

Ultimately, radiomic analysis can be transferred to the field of functional brain imaging, as the potential varia-
bility in behavior of different ROIs of activity can becaptured and quantified using radiomics texture features. We 
hypothesized that the inter-voxel changes quantified via TA can be used to predict true activity in fMRI.

The purpose of this feasibility study is to develop an automated robust method using TA to accurately predict 
areas of true fMRI activity. Aiming to extend the use of TA from structural images to functional images, we pro-
pose this new application of TA.

Results
Characteristics of fMRI activity maps. A total of 116 ROIs were obtained from 15 patients’ scans; 43 
ROIs were categorized as Expected (E) while the remaining 73 ROIs were categorized as Non-Expected (NE).  
(E/NE prevalence: 37%/63%). P-values of thresholded functional map ranged from 10−3 to 10−12 with a minimum 
cluster size of 5. Both E and NE ROIs survived the same statistical threshold. All participants showed a mixture of 
E and NE activity on their functional maps (Fig. 1).

Figure 1. (A) fMRI activity maps overlaid on 3D-T1 Spoiled Gradient Echo (SPGR) to delineate anatomy and 
show exact location of brain activity. (B) fMRI activity areas classified into Expected (E)  and Non-Expected 
(NE) based on their anatomical locations and reports from Direct Cortical Stimulation (DCS) data in literature. 
Blue areas represents non-expected fMRI activity within subgyral white matter, while red areas are within 
the expected activity area of language eloquent cortex. (C) fMRI activity maps overlaid on raw Echo-Plannar 
Imaging data. (D) 3D view of fMRI activity map.
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Radiomic texture feature can predict areas of true functional activity. Table 1 shows the mean, 
standard deviation and p-values for all 20 rotation-invariant features across E and NE ROIs. From the univariate 
analysis we can infer that texture features such as sum average and sum variance (p-value <  0.05) highlight signif-
icant differences between E and NE ROIs.

Identifying significant features. The 20 rotation invariant features were used to discriminate E from NE ROIs 
using logistic regression analysis. Four features showed strong linear discriminating power for the E versus NE; 
autocorrelation, sum average, sum variance and sum of square variance (Table 2). Figure 2 depicts the statistical 
power of the student t-test for different sample sizes chosen from the feature set. It is evident that for sample sizes 
larger than 100, the statistical power of the test is effectively 100%.

To build a robust predictive model, the feature subset chosen should contain uncorrelated features to each 
other. According to the correlation table (Table 3) the four significant features are strongly correlated with each 
other, thus we decided to skip the prior feature selection step and use stepwise logistic regression to identify the 
features best discriminating between E and NE ROIs.

Application of forward stepwise logistic regression in discriminating E from NE ROIs. To ensure cross-validation 
blindness towards features, we allowed the linear model decide the features it would choose without supervision. 
This step resulted in the inclusion of independently insignificant features inside the linear model. In order to make 
sure that the included features were not chosen in random in the next step we proceeded with cross-validating the 
model based on the features picked by the model itself. The model parameters are brought in table 4. The features 
that appeared in the model were dissimilarity (p =  0.02), Entropy (p =  0.002), sum variance (p =  0.000019) and 
difference entropy (p =  0.0002). Since the p-values of the individual features included in the model are all less 
than the threshold (0.05) the odds ratio for each feature inside the model is significantly different from 1.

Texture feature

Expected (E) Non-Expected (NE)

T test P-ValueMean
Standard 
Deviation Mean

Standard 
Deviation

Autocorrelation* 27.5 6.9 33.4 10.8 0.002

Contrast 0.3 0.2 0.2 0.4 0.288

Correlation 0.6 0.3 0.6 0.3 0.123

Cluster Prominence 8.0 10.7 9.1 20.8 0.757

Cluster Shade − 1.1 2.0 − 0.7 2.3 0.320

Dissimilarity 0.3 0.2 0.2 0.2 0.116

Energy 0.5 0.3 0.5 0.3 0.627

Entropy 0.5 0.3 0.4 0.3 0.529

Homogeneity 0.9 0.1 0.9 0.1 0.076

Maximum probability 0.6 0.2 0.6 0.2 0.719

Sum of squares: variance* 27.9 7.3 33.4 10.8 0.004

Sum average* 10.4 1.3 11.4 1.9 0.003

Sum variance* 101.5 25.4 124.5 39.8 0.001

Sum entropy 0.4 0.2 0.4 0.2 0.588

Difference variance 0.3 0.2 0.2 0.4 0.288

Difference entropy 0.2 0.1 0.2 0.1 0.109

Information measure of 
correlation1 − 0.3 0.2 − 0.4 0.2 0.232

Information measure of 
correlation2 0.4 0.2 0.4 0.2 0.911

Inverse difference normalized 
(INN) 1.0 0.0 1.0 0.0 0.101

Inverse difference moment 
normalized 1.0 0.0 1.0 0.0 0.261

Table 1. Descriptive statistics for the expected and non-expected ROIs. The P-value is obtained using 
Student’s t-test for the equality of means. *indicates significant difference (P <  0.05).

Feature name P-value

Autocorrelation 0.002

Sum average 0.003

Sum variance 0.001

Sum of squares: variance 0.004

Table 2.  Descriptive statistics of prominent texture features obtained using logistic regression analysis.
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In the cross-validation step, we randomly chose 12 patients to extract the ROIs for training, while we kept 
the rest for testing the model. In order to compensate for the statistical fluctuations we ran the cross validation 
100 times. The overall success rate of the model was 80.19%, with an area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve was 79.84%. The mean optimal specificity and sensitivity of the model was 
78.34% and 82.61% respectively (Fig. 3).

Figure 2. Statistical power of the student t-test for different sample sizes chosen from the feature set. 

 Autocorrelation Sum of squares: variance Sum average Sum variance

Autocorrelation 1.00 0.99 0.99 0.99

Sum of squares: variance 0.99 1.00 0.99 0.99

Sum average 0.99 0.99 1.00 0.99

Sum variance 0.99 0.99 0.99 1.00

Table 3. The correlation between the 4 significant features.

Feature Estimate t-State P-Value

(Intercept) 0.007 0.005 0.995

Dissimilarity 10.319 2.239 0.025

Entropy 11.220 3.081060216 0.002

Sum variance 0.005 4.269 1.96 ×  10−5

Difference entropy − 60.877 3.720 0.0002

Table 4. Logistic regression table parameters.

Figure 3. ROC plot of the logistic regression model. 
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Discussion
In this study, we demonstrated the power of radiomic TA in discriminating areas of true fMRI activity from 
non-task-related (non-essential) and false positive activity. Our results suggest that radiomic TA can detect true 
functional activity with high accuracy, sensitivity and specificity. As demonstrated by cross-validated statistical 
analysis, our method allowed us to discriminate between E and NE ROIs with a success rate of 80.19% and 78.34% 
specificity and 82.61% sensitivity.

This study addresses one of the major problems in current fMRI analysis, namely the relatively low positive 
predictive value8. Although fMRI is the modality of choice for non-invasively detecting areas of functional activ-
ity relative to other brain mapping tools8, it is not currently possible to predict if a specific area of activity is a 
true area of activity without invasive measurements (i.e. direct cortical stimulation (DCS))18. This has limited the 
potential applicability of fMRI as a brain mapping tool for presurgical examinations. The need for a complemen-
tary tool that can reliably predict the nature of functional ROIs becomes imperative.

Although we depended in our classification of fMRI activity on the standardized MNI anatomical location 
and the experience of neuroradiologist in confirming the location of activity, yet this classification was not anec-
dotal; the classification of the activity depended on a meta-analysis of published data that reported incidence of 
speech deficit when stimulation of such location was performed intra-operatively.

Moreover, radiomics have been extensively used in the field of oncology and applied to biomedical images to 
reflect the underlying tumorogenesis13,19–21. However, extending the umbrella of radiomics to the field of fMRI 
reveals huge potential to achieve the goal of precision medicine20. Each functional imaging dataset has a large 
number of data that can be mined and analyzed extensively using the radiomics approach to extract an exponen-
tial amount of information and integrate it in the analysis of fMRI. Similar TA approach has been used to capture 
tumor heterogeneity in different forms of cancer with remarkable success19,21. Thus, it is justifiable to extrapolate 
the same methods to a functional application that benefit from the radiomic TA abilities to capture image and 
functional heterogeneity. In our study, we highlighted the potential role of radiomic TA in unveiling the true 
signature of cognition specifically language processing, underscoring the possible role of radiomic analysis in 
capturing physiological events.

TA measures the heterogeneity of image intensities in a specific region22. Consequently, processes that lead to 
changes in the distribution of the MRI signal intensity would affect the extracted features22,23. Extending this idea 
to fMRI, we postulated and show that TA can detect and highlight differences resulting from functional activity 
in the region, and quantify them into parameters that can be further used to predict the nature of activity and 
distinguish true activity. our univariate analysis results showed that the texture features that were found to be 
significant for determination of E and NE activity were sum of squares: variance (p =  0.004) and sum variance 
(p =  0.001) (measure of how spread the gray levels of voxel pairs are), sum average (p =  0.003) (measure of overall 
image brightness), and autocorrelation (p =  0.002) (measure of how voxel pairs are correlated). Mean values of 
the aforementioned features were higher in NE ROIs, indicating increased homogeneity compared to areas of 
true functional activity that was more heterogeneous (Table 1). This was further confirmed with our multivariate 
analysis, which illustrated robust differences in levels of textures between NE and E, with a predilection of areas of 
true activity exhibiting heterogeneous textures. This can be attributed to the fluctuation in voxel intensity between 
active and control phases of the task based fMRI12,24. Thus, it can be anticipated that since those ROIs are truly 
activated, there should be larger heterogeneity in the signal of the mean EPI volume.

In order that we develop a robust post-processing approach that would complement current fMRI analysis, all 
fMRI investigations and preprocessing techniques followed standardized, previously published protocols25,26. To 
avoid any bias in the quality of the fMRI, all healthy volunteers were scanned on clinical scanners and the imaging 
parameters used followed clinical protocols. TA was performed after the completion of the preprocessing of the 
fMRI; thus the methodology proposed in this work does not interfere with the preprocessing steps typically used 
in fMRI experiments and its translation into the clinic can be anticipated to enter with relative ease.

The present study has several limitations. Being a preliminary feasibility study, the number of healthy volun-
teers was relatively small; despite that sufficient statistical sample power was reached, we are currently recruiting 
more participants in order to determine broad scalability. Furthermore, although we performed TA using only 
8 gray levels, we were able to discriminate between E and NE with high accuracy. In future studies, we aim to 
include a larger number of healthy participants and comprehensively investigate the effect of different number of 
gray levels in the predictive power of our classifier. While no validation was done using other direct brain stim-
ulation methods, our focus was to perform a feasibility study using healthy participants, which naturally limits 
our ability to perform any invasive validation procedure. Our primary classification was based on previously 
published data using gold standard DCS27 and the experience of the neuroradiologist. Our goal is to extend the 
application of the proposed method in tumor patients as well as patients with neurocognitive and neurodegen-
erative diseases. This will further allow us to validate our findings by comparing them with the results from DCS. 
Also, inclusion of patients will allow integration of other omics data to radiomics TA. Such integration will be of 
paramount impact; this will make possible correlations to underlying molecular events with different patterns of 
cognitive stimulation, fMRI activation as well as cognitive impairment. We will also evaluate the use of multiple 
tasks in combination with the same methodology.

In conclusion, radiomic TA mapping of raw fMRI images can be a useful tool for detection of areas of true 
fMRI activity. In this study, we show the ability of TA to predict areas of true fMRI activity; additionally, TA of 
fMRI images can discriminate between expected and non-expected areas of activity with a success rate of 80.19%. 
Further, we demonstrate that the steps for TA do not interfere with the preprocessing steps of fMRI analysis. To 
our knowledge this is the first study that applies TA on fMRI images and highlights the potential of this technique 
in the field of functional neuroimaging.
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Methods
Participants. This HIPAA-compliant study was approved by the Institutional Review Board of The University 
of Texas MD Anderson Cancer Center, and all participants provided written informed consent prior to inclusion 
into the study. All methods were performed in accordance with the approved guidelines. Prospective participants 
were contacted via email notification sent to volunteers who had subscribed to our hospital study volunteer server 
list. After detailed information was provided, a telephone screening was performed for the following inclusion 
criteria: age above 18 years, no prior brain surgeries or neuropsychological disorders and no contraindications 
to MRI. To exclude potential confounding effects that foreign language has on functional activity22, only native 
English speakers were considered for inclusion. Final analyses was based on 15 right-handed healthy volunteers 
(6 males, 9 females) aged between 22 and 66 years, with mean age 38.2 years. This pilot study was initiated on 
February 2014 and concluded on June 2015.

MRI Acquisition. Functional and structural images were acquired using a General Electric 3.0 Tesla 
Discovery MR750 MR scanner (GE Healthcare, Waukesha, WI, USA) with a 32-channel birdcage head coil 
and high order shim. Each participant was presented with the language tasks on a backlit projection screen. 
Functional images were acquired using a T2*-weighted BOLD sequence (repetition time (TR) =  2000 msec, 
echo time (TE) =  30 msec, matrix size =  64 ×  64, field-of-view (FOV) =  24 ×  24 cm, slice thickness =  4 mm with 
no intersection gap). This slice prescription allowed full coverage of the brain. A high-resolution 3D Spoiled 
Gradient Echo (SPGR) T1-weighted (T1WI) image was acquired for anatomic reference (TR/TE =  6 msec/2 msec, 
matrix size =  256 ×  256, FOV =  24 ×  24 cm, slice thickness =  1.2 mm with no intersection gap).

Task Paradigm. Participants performed 3 different language tasks including word generation, category nam-
ing and sentence completion as previously described26,28. For the purpose of this study, only the sentence comple-
tion paradigm was further analyzed, as this task has shown reliable activity in the language area11. All participants 
were trained on the task prior to scanning using a PowerPoint presentation. A block-design experiment was used 
due to its high sensitivity in identifying differences between control and active conditions29.

In the block-designed experiment, during active condition, the participant was presented with an incomplete 
sentence and asked to complete it, for example (“Astronauts uses rockets to go to outer ____”). This was followed 
by a control condition, during which the participant was presented with scrambled letters arranged in the form 
of nonsense words to create a gibberish sentence, for example (“Xbg rhc hgxgr Jknrhc sp ______”). The active 
and control conditions were matched in sentence length. The task consisted of alternating 6 active and 6 control 
conditions (total 12 conditions); each condition had a duration of 20 sec and 10 iterative whole brain volumes 
were acquired during that time resulting in a total number of 120 iterative whole brain volumes.

Image analysis. fMRI image analysis was done using statistical parametric mapping 8 (SPM8) software 
(Wellcome Department of Cognitive Neurology, London, UK) (Fig. 4). The images were obtained in DICOM for-
mat and then transformed to an analyzed format for SPM8 analysis. First, the volumes were motion corrected by 
registering each volume to the first acquired slice using affine registration (12 degrees-of-freedom). The resultant 
motion-corrected volumes were co-registered to the anatomical T1WI. Subsequently, volumes were normalized to 
the Montreal Neurological Institute (MNI) template. This step provided a reference atlas and facilitated the iden-
tification of areas of true functional activity. A Gaussian filter with 4 ×  4 ×  4 mm3 full-width-at-half-maximum 
(FWHM) was applied to smooth the data, thus increase the signal to noise ratio30. Then, this data was used to 
generate a functional map that represents the changes in signal intensity occurring during task stimulation using 

Figure 4. Diagrammatic illustration of the fMRI analysis processing pipeline. 
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the general linear model design (GLM) matrix11. The map was individually thresholded to show maximum activ-
ity at language areas with uncorrected p-values (ranging from 10−3–10−12)31.

Identification of areas of true functional activity versus false positives.  When results from Direct 
Cortical Stimulation (DCS) are not available, identification of true functional activity is performed by evaluating 
the anatomical location of each ROI of the functional map along with literature findings using DCS. The anatom-
ical location of each ROI of the functional map was identified using the result of the normalization step to the 
MNI space. This was simply performed using xjView software (http://www.alivelearn.net/xjview) that provides a 
summary report of the number of voxels of each ROI belonging to each anatomical area. In the next step, the indi-
vidually thresholded functional maps along with the anatomical results obtained through xjView were reviewed 
by a board certified neuroradiologist (R.R.C., 7 years of experience in fMRI) who evaluated and confirmed the 
anatomical location of activity and eventually classified activity based on the anatomical gyral location of fMRI 
activity into expected (E) and non-expected (NE) activity27. When a cluster of activity was located partially in 
an E ROI and partially in a NE ROI, we used xjView software (http://www.alivelearn.net/xjview) cluster report 
feature to determine the number of voxels per each ROI and the maximum intensity, the cluster was eventually 
labelled according to the higher Z-score. Activity in cortical regions related to language such as Brodmann’s 44, 45 
and 22 as well as inferior and middle frontal gyri, and superior temporal gyrus were classified as E regions. Areas 
of non-task-related activity such as cerebellum, sub-gyral white matter, insula, post-central gyrus, supra-marginal 
gyrus and superior frontal gyrus were classified as NE regions. Additionally, 2 ROIs per participant were drawn 
in areas of no functional activity on EPI using Mango Software (Research Imaging Institute, University of Texas 
Health Science Center at San Antonio, TX, USA; http://ric.uthscsa.edu/mango/) and labeled as NE. Size and 
location of the aforementioned ROI of inactivity was fixed across different subjects; this was done to establish a 
ground truth of a true NE region.

Radiomic Texture Analysis. Radiomic features were computed using the mean volume of the normal-
ized non-smoothed data. TA was performed using our in-house software created on MatLab environment 
(Mathworks, Natick, MA). For the analysis, we used 2-dimensional gray level co-occurrence matrices (GLCMs) 
for each ROI as proposed by Haralick in 197322. A 2-dimensional GLCM is a lattice (nxn) matrix, where n is the 
number of gray levels that contains the joint probability of two adjacent pixels in a given angular direction Θ . In 
the case of 2-dimensional GLCM, we applied 4 possible angular directions corresponding to Θ  =  0, 45, 90, 135 
degrees.

Prior to texture feature calculation, we performed a normalization process to reduce the number of gray levels 
in order to prevent sparseness in the GLCMs32. For the purpose of this study 8 gray levels were used, thus the 
initial range of gray levels as defined by the voxel intensities was divided into 8 equal gbins and the values in each 
bin were assigned a single gray level. We calculated 20 radiomic texture features for each angular direction and 
subsequently averaged to produce a rotation invariant measure of each feature22,32,33. A summary of the calculated 
features is presented in Table 5.

Statistical Analysis. The final radiomic texture matrix was 116 ×  20 (116 ROIs, 20 rotation invariant fea-
tures). To find the relationship between texture features and the E versus NE status of ROIs, We applied the 
forward stepwise multivariate logistic regression model. We considered only linear relationships between the 
covariates and the logit of regression function. The inclusion and exclusion criteria for the stepwise regression 
were p-values less than 0.05 and greater than 0.15, respectively. In each step, the feature satisfying the inclusion 
criteria with the lowest p-value was included and concordantly the feature satisfying the exclusion criteria with 
the highest p-value was excluded from the model. We used the Akaike’s information criterion (AIC) to avoid 
over-fitting. In the training step, we analyzed our model based on the ROIs explicitly extracted from a training set 
of the patients (93 ROIs (80%)), and we subsequently tested it on the mutually exclusive set of patients (23 ROIs 
(20%)). By extracting the training and test sets from different patients, we assured that our model is not biased 
by the intrinsic feature character of individual patients. Statistical analysis was performed using software (Matlab 
R2014b, MathWorks, Natick, Mass) (SPSS, version 22; SPSS statistics, Armonk, NY).
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