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Evolutionary constraints over 
microsatellite abundance in larger 
mammals as a potential mechanism 
against carcinogenic burden
Jung Youn Park1, Yong-Rock An2, Chul-Min An1, Jung-Ha Kang1, Eun Mi Kim1, Heebal Kim3,4,5, 
Seoae Cho5 & Jaemin Kim6

Larger organisms tend to live longer, have more potentially carcinogenic cells, and undergo more cell 
divisions. While one might intuitively expect cancer incidence to scale with body size, this assertion 
does not hold over the range of different mammals. Explaining this lack of correlation, so-called ‘Peto’s 
paradox’ can likely increase our understanding of how cancer defense mechanisms are shaped by 
natural selection. Here, we study the occurrence of microsatellite in mammal genomes and observe 
that animals with expanded body size restrain the number of microsatellite. To take into account of 
higher mutation rate in the microsatellite region compared to that of genome, limiting the abundance 
of somatic mutations might explain how larger organisms could overcome the burden of cancer. These 
observations may serve as the basis to better understand how evolution has modeled protective 
mechanisms against cancer development.

Cancer is a unique type of genetic disease in which several sequential mutations are necessary, and each mutation 
drives a wave of cellular proliferation which in turn leads to gradual increases in tumor size, disorganization and 
malignancy1. As cancer arises through the accumulation of mutations, each proliferating cell is at risk of malig-
nant transformation, assuming all cells have similar chances of mutation2. Cancer risk is thus expected to increase 
with larger bodies and longer lifespan, but there appears to be disconnect between prediction and observation 
across species, a phenomenon termed Peto’s paradox3.

There are many hypotheses but limited research efforts to resolve this paradox. Although large bodies evolved 
independently, some probable and common mechanisms of the effective cancer suppression in large species 
include lower somatic mutation rates, redundancy of tumor suppressor genes, lower selective advantage of 
mutant cells, more efficient immune system, shorter telomeres, and fewer reactive oxygen species due to lower 
basal metabolic rate2. Katzourakis et al. also suggested that lower levels of tumorgenic endogenous retroviruses 
in larger bodied species could be the result of evolution of mechanisms capable of limiting retroviral activity4. 
Recently, Varki & Varki provided several explanations for the reported rarity of carcinomas in captive chimpan-
zees such as differences in diet, their microbiome, and potential environmental factors5. Abegglen et al. reported 
that elephants, compared with human, appeared to have multiple copies of tumor suppressor gene (TP53) and 
also increased level of apoptotic response after DNA damage, which are potential molecular mechanisms of can-
cer resistance6.

Genomes are scattered with numerous simple repeats, and tandem repeats are iterations of repeat units of any 
size, from a single base pair to thousands of base pairs. The major types of microsatellites are mono-, di-, tri- and 
tetranucleotide repeats, but units of five or six nucleotides are also classified as microsatellites7. These are among 
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the most variable types of DNA sequence in the genome8, and genetic variation at many microsatellite loci is 
characterized by high heterozygosity and the presence of multiple alleles7. Notably, the vast number of muta-
tions in cancer cells were directly associated with changes in microsatellites in tumor DNA9. The cancer patients 
harbor mutations in mismatch repair genes10,11, which leads to failure to correct slippage errors made by DNA 
polymerases and consequently to give rise to the length changes, microsatellites instability7. It seems evident that 
repetitive elements are “hot spots” for mutagenesis and may serve as markers for detecting other types of muta-
tions throughout the genome9,12.

In this sense, relating two seemingly disparate contexts, Peto’s paradox and microsatellites across species, may 
lead to conceptual advances in understanding the mechanisms underlying the animals that have been evolving 
mechanisms to suppress cancer ever since the origin of multicellularity. In the light of comparative oncology, we 
explore the hypothesis that differences in microsatellite occurrence across mammalian species have been shaped 
by natural selection, with larger animals expected to have smaller number of microsatellites in the genome.

Results and Discussion
We investigated the genome-wide microsatellites (defined as di-, tri-, tetra-, penta-, hexa-nucleotide repeats) 
across 31 mammalian species (Supplementary Table S1) using RepeatMasker13. It is previously suggested that 
abundance of microsatellite tends to positively correlate with genome size among a variety of eukaryotes, whereas 
occurrence of microsatellite is negatively correlated with genome size in plants7,14–16. In mammals in particu-
lar, it was evident that the total number of microsatellite does not correlate with genome size (P-value =  0.13) 
(Supplementary Fig. S1).

Microsatellites can be found anywhere in the genome, both in protein-coding and noncoding regions. Due 
to their high mutability, microsatellites are thought to play a major role in genome evolution by creating and 
maintaining quantitative genetic variation14,17. To understand the selective landscapes in which species evolved 
in terms of occurrence of microsatellite, we used linear regression to test association between number of micro-
satellites and body mass. As our surrogate measure of relative level of total number of cells present in each organ-
ism, we followed previous studies in the use of body mass4,18. We observed a significant negative correlation 
(slope =  − 0.042, P-value =  2.0E-04 and R2 =  0.36), indicating that the number of microsatellites in the whole 
genome is smaller in species with larger body size (Fig. 1 and Table 1). As multicellular organism expanded the 

Figure 1. Number of microsatellites in genome against body mass in 31 mammalian species. Both traits are 
log-transformed, and different colors denote different orders.

Dependent variable

Simple linear regression Multiple linear regression

df1
slope 
(beta) R2 P-value slope (beta) P-value

body mass 29 − 0.042 0.38 < 0.001 − 0.042 0.023
2temperature-corrected mass-
specific basal metabolic rate 29 0.047 0.25 < 0.01 0.00077 0.97

Table 1.  Relationships between number of microsatellites and life history traits in non-phylogenetic 
models. 1df denotes degree of freedom 2activation energy of E =  0.65 was used to correct for temperature. 
Results from other E ranges are shown in Supplementary Table S2.
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body size, the challenge of suppressing somatic evolution dramatically increases; however, that challenge was 
successfully tackled in terms of abundance of microsatellite, in which mutation rate is higher than in genome.

As life history traits are often correlated each other, it remains possible that the apparent correlation of body 
mass with microsatellite occurrence could be confounded by other life history traits. There is increasing evidence 
that variations in rates of nucleotide substitution show relationships with body size18–20 and metabolic rate17. 
Higher metabolic rates, associated with reactive oxygen species (ROS) and metabolic stress along with other 
by-products of metabolism, can lead to tumorigenesis and appear to be inversely proportional to animal body 
size21. Hence, clarifying if other traits have played a role in determining the number of microsatellites is very 
crucial in assessing the effect of body mass correctly.

We evaluated the correlation between microsatellite abundance and life history traits with multiple 
regression model to account for their simultaneous contributions while controlling for potential confound-
ers. In addition, as temperature is known to affect metabolic rate22, following the previous study, we consid-
ered temperature-corrected mass-specific metabolic rate23 as a confounding variable in the model. Body size 
still remained as the only significant variable confirming that it is the most significant predictor of microsat-
ellite density, which in turn indicates that observed correlation between abundance of microsatellite and body 
mass is robust against variations in temperature and metabolic rate (Table 1). The result was consistent when 
mass-specific metabolic rate (not temperature-corrected) was included in the model (Supplementary Table S2).

However, this conclusion still may be premature without phylogenetic comparative analyses of evolution in 
microsatellites occurrence. When species are used as data points, relationships between raw values of any traits 
are difficult to interpret, because shared phylogenetic history means that assumptions of statistical independ-
ence are likely to be violated24–26. It had been demonstrated that such approaches may lead to overestimation, 
excessively high type I error rates and inaccurate estimations of correlations or slopes27,28. The correlation was 
thus re-evaluated in a phylogenetic context. After correcting for phylogenetic proximity, the independent con-
trasts of body mass versus number of microsatellites were correlated significantly and negatively (slope =  − 0.069, 
P-value =  0.0019) (Fig. 2). Although this method is also limited for loss of statistical power and its reliance on 
the assumption of constant rates of trait evolution through time29,30, a consistent result supports the evidence that 
microsatellite abundance is significantly associated with body size.

Comparing genomic regions of interest for cancer research such as proto-oncogenes, tumor suppressor genes 
or whole protein-coding genes, widespread in mammalian genomes can provide important insights into how 
these classes of genes have been in subject to natural selection31. We first observed that body mass still con-
tributed significantly (P-value <  0.05) to the microsatellite occurrence within genic region under both simple 
(Supplementary Fig. S2) and multiple regression models (Supplementary Table S3) but not under comparative 
phylogenetic analysis. As we focus our attention to proto-oncogene and tumor suppressor genes, a negative trend 
was observed between microsatellite abundance and body mass, but the correlation was not highly significant 
(slope =  − 0.059, R2 =  0.12, P-value =  0.076) (Supplementary Fig. S3). More complete results can be expected 
with better quality of genome annotation and better definition of proto-oncogene and tumor suppressor genes 
across species (for example, different numbers of copies of the genes can also alter the level of cancer resist-
ance6,32). Interestingly, common minke whale characterized itself as a stricter regulator than any other species. 
Common minke whale seemed to very extremely suppress the occurrence of microsatellites in genic region, 

Figure 2. Phylogenetic independent contrasts of body mass versus number of microsatellites in whole 
genome region. (a) Rectangle indicates the contrasts in the phylogeny (Canis familiaris was replaced with Canis 
latrans in this analysis) (b) Relationship between phylogenetically independent contrasts of body mass and 
contrasts of number of microsatellites in whole genome region.
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proto-oncogene and tumor suppressor gene regions where the accumulated mutations can cause the cancer 
developments at relatively higher chance.

The extension of evolutionary thinking into cancer biology has contributed to realization that cancer defenses 
both between tissues within individual and between species have been influenced by natural selection33. Our 
results indicate that larger mammals tend to exert more effective control over microsatellite occurrence through-
out the genome. We suggest that a driving force for this restraint in larger and longer-lived animals is their higher 
expected cancer rates given the number of cells and number of cell divisions that occur.

Methods
Data and identifications of microsatellite. We downloaded 30 complete mammalian genomes from the 
NCBI and USCS databases and the assembled whole genome of common minke whale34 to finally retain 31 spe-
cies. Microsatellites were identified (masked as simple repeats) using RepeatMasker version 4.0.5 (http://repeat-
masker.genome.washington.edu)13 with the “no_is” parameter to skip bacterial insertion element check. The 
human proto-oncogene and tumor suppressor gene were retrieved from the UniprotKB (KW-0656 and KW-0043 
respectively)35 and found the orthologous genes across 27 publically available species using Ensembl database36. 
We then used BLAST to search the genomic sequence of the orthologous gene for common minke whale to finally 
retain the lowest common number of 27 gene set throughout 28 mammalian species37.

Multiple linear regression analysis and Phylogenetic comparative analyses. Life history traits cor-
relate with each other, and thus body size could in principle be a surrogate measure of a different life history trait, as 
has been previous shown for body temperature and metabolic rate. Mammalian life history data (Supplementary 
Table S1) was mainly taken from PanTHERIA database38 and the phylogenetic tree from TimeTree39. We used 
the phylogenetically independent contrasts (PIC) approach as implemented by the Analysis of Phylogenetic 
and Evolution (APE)40 package in R version 3.2.2 (http://cran.r-project.org/) to control for shared ancestry26. 
To correct for the effect of temperature in metabolic rate, mass-specific metabolic rate of each species was trans-
formed to 25 °C, following the previous study23. A range of average activation energy (E =  0.4, 0.65 and 0.8)  
was considered, and the result was robust (Supplementary Tables S2 and S3). The relationship between the stand-
ardized independent contrasts were then investigated through ordinary least squares regression analysis, with 
regression lines constrained to pass through the origin28. Traits were log-transformed in all regression analyses. 
The lm function in R was used to perform regression analyses.
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