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Learning Bayesian Networks from 
Correlated Data
Harold Bae1, Stefano Monti2, Monty Montano3, Martin H. Steinberg2, Thomas T. Perls2 & 
Paola Sebastiani4

Bayesian networks are probabilistic models that represent complex distributions in a modular way and 
have become very popular in many fields. There are many methods to build Bayesian networks from a 
random sample of independent and identically distributed observations. However, many observational 
studies are designed using some form of clustered sampling that introduces correlations between 
observations within the same cluster and ignoring this correlation typically inflates the rate of false 
positive associations. We describe a novel parameterization of Bayesian networks that uses random 
effects to model the correlation within sample units and can be used for structure and parameter 
learning from correlated data without inflating the Type I error rate. We compare different learning 
metrics using simulations and illustrate the method in two real examples: an analysis of genetic and 
non-genetic factors associated with human longevity from a family-based study, and an example of risk 
factors for complications of sickle cell anemia from a longitudinal study with repeated measures.

Bayesian Networks (BN) are flexible probabilistic models that have become increasingly popular in many fields, 
including genetics and genomics1–5. There are well established approaches to structure and parameter learning 
of a BN from a random sample of independent and identically distributed (IID) observations6,7. However, many 
observational studies are designed using some form of clustered sampling that introduces correlations between 
the observations within the same cluster8. Examples of such designs includes family-based studies, in which fam-
ilies represent clusters and relatives within the same family cannot be assumed independent because they share 
more genetic and non-genetic factors than unrelated individuals, and longitudinal studies with repeated measure-
ments of the same individuals over time9. It is well known that ignoring the correlation between observations can 
impact the false positive rates of regression methods10, and the same problem is likely to persist with using BNs. 
As an example, Fig. 1 illustrates the effect of ignoring the correlation between observations when learning the 
network structure using three common model selection metrics. Regardless of the model selection metrics, both 
the false positive rates and family-wise error rates are greatly inflated when the correlation is ignored.

Linear mixed models and generalized linear mixed modeling are two popular approaches to address the issue 
of correlated data11,12, but they are not directly applicable to BN modeling. In this paper, we propose a parame-
terization that extends mixed effects regression models to BNs and can be used for both structure and parameter 
learning from correlated data. The parameterization can work with a mix of variable types including categorical, 
continuous, and time-to-event data. In the next section we briefly review methods for learning BNs from inde-
pendent and identically distributed observations, and describe mixed-effects regression models for the analysis of 
correlated data. We next extend mixed-effects regression models to BNs and then present the results of simulation 
studies that describe the inflation to the Type I error due to ignoring correlated data and compare different model 
selection metrics that can be used for learning mixed-effects BNs. We illustrate our proposed approach in two real 
data examples. Finally, conclusions and suggestions for further work are provided.

Background
Learning Bayesian Networks from Independent and Identically Distributed Observations.  A 
BN is a vector of random variables Y =  (Y1, … , Yv) with a joint probability distribution that factorizes according 
to the local and global Markov properties represented by the associated directed acyclic graph (DAG)13–15. The 
local Markov property states that a variable is independent of its non-descendants given its parents, where the 
non-descendant of a variable Yi are all variables linked to Yi through a directed path pointing to Yi. The global 
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Markov property states that a variable is independent of all the remaining variables in the graph conditionally 
on its Markov blanket that is defined by the parent nodes, children nodes and additional parents of the children 
nodes.

There are well established approaches to structure learning of BNs6,7,13 that use either exact Bayesian criteria 
based on the marginal likelihood ∫ θ θ θ| =p D M p D M p M d( ) ( , ) ( ) , or asymptotic criteria such as 

θ= − | +AIC p D p2 log( ( )) 2 , or θ= − | +BIC p D log n p2 log( ( )) ( )  where D denotes the sample of size n, M 
denotes the BN structure, θ is a vector of p model parameters, p(D|θ, M) and p(θ|M) denote the likelihood func-
tion and the prior distribution of the parameters, and θ is the maximum likelihood estimate of θ. Popular 
approaches such as the K2 algorithm16 leverage the decomposability of the likelihood function to break down the 
model search into a modular search of the dependency of each node on the parent nodes17,18. The decomposability 
of the likelihood is based on the factorization of the probability distribution of the variables Y =  (Y1, Y2, … , Yv) 
according to the local Markov property described by a DAG M
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In Equation (1), pa(yi) denotes the observable parents of the variable Yi in the model M, while yik and pa(yi)k 
denote the observed value of Yi and its parent nodes in the k-th sample unit. Each sub-model Mi specifies the 
set of parents of the variable Yi (see Fig. 2), so that M =  (M1, M2, … , Mv). We denote by yk =  (y1k, y2k, … , yvk) the 

Figure 1.  Example of Ignoring Within-Cluster Correlations When Learning BN. 2,000 simulated data sets 
were generated using the network structure shown on the left and assuming normal distributions for the 5 
variables. In 1,000 sets, the observations were IID, and in the remaining 1,000 sets data were generated from 581 
independent clusters, with observations correlated within clusters. The table summarizes the number of times 
the true network was selected in 1,000 simulations with IID observations and 1,000 simulations with correlated 
data, the false positive rates, and family-wise error rates using three common model selection metrics and a 
forward search. False positive rates were defined as the number of additional or missing edges over the total 
number of tests, and family-wise error rates were defined as the probability of one or more errors in the overall 
search. BIC: Bayesian Information Criterion; AIC: Akaike Information Criterion; LRT: Likelihood Ratio Test at 
α =  0.05.

Figure 2.  Example of BN with 3 observable variables (Y1, Y2, Y3) and parameter vectors θ = (θ1, θ2, θ3). If 
there are no missing data, the observations are independent, and the prior distribution of the parameters follow 
Hyper-Markov law, then the marginal likelihood p(D|M) factorizes into a product of 3 local marginal likelihood 
functions.
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vector of values of the variables measured in the k-th sample unit, and by θ the set of parameters θ =  (θ1, … , θv), 
where each θi can itself be a vector of parameters indexing the conditional distribution of the variable Yi given its 
parents pa(yi).

In addition to the local Markov property, efficient Bayesian computations rely on a factorization of the prior 
distribution for the vector of parameters θ. Dawid and Lauritzen19 described general Hyper-Markov laws that 
assume certain marginal and conditional independences of the parameters to produce this factorization:

∏ ∏θ θ θ θ| | = | |
= =

p D M p M p y pa y M p M( , ) ( ) ( ( ) , , ) ( ),
(2)k
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that is used to compute the marginal likelihood as the product:
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that can be used for a modular Bayesian model search. All of these proposed approximations assume that the 
observations are independent or exchangeable.

Mixed-Effects Regression Models.  Mixed effects regression modelling has emerged as one of the most 
popular method to analyze correlated data11. Let Y denote the observations of n subjects from m clusters, and 
suppose that Y follows a multivariate normal distribution. A linear mixed effects model for Y is described by the 
equation:

β ε ε ε= + Γ + ∆ ∼ ∼ ⊥Y X Z u u N I N I u; (0, ); (0, ); (4)s n

in which X is an n ×  p matrix of regression coefficients for the fixed effects β, Z is an n ×  s matrix of known coeffi-
cients, Γ  and Δ  are s ×  s and n ×  n matrices of parameters that describe the correlations between observations, u 
is a vector of s ×  1 random effects, and ε is a vector of n ×  1 error terms11,20. The model specifies that

β β β= = ΓΓ + ∆∆ = Ψ + ΣE Y X X V Y X Z Z Z Z( , ) ; ( , ) (5)T T T T

so that the correlation between the observations is described by the matrices Ψ  and Σ . If both Ψ  and Σ  are 
block diagonal matrices, the parameterization is the independent cluster model, in which subjects from m dif-
ferent clusters are independent, but they are correlated within the same cluster. Note that the parameterization 
in Equation (4) assumes that the vectors u and ε are standardized to have variances equal to 1 and they are inde-
pendent, while the variance components of Y are the elements of the matrices Γ Γ T and Δ Δ T. For analysis of 
time-to-events data with proportional hazard models, the random effects are usually modeled in the log-hazard 
function or using a frailty term with gamma distribution21–24. For categorical data modeled within the framework 
of generalized linear models, the random effects are modeled on the scale of the linear predictors25. These models 
make the additional assumption that the observations are independent, conditionally on the random effects.

Non-Bayesian inference on the fixed effects parameters typically uses the marginal approach based on the 
integrated likelihood:

∫ ∫φ β β| = | Ψ Σ = |Ψ | Ψ Σp D M p y u x du p u p y u x du( , ) ( , , , , ) ( ) ( , , , , ) (6)

where φ represents the vector of fixed effects β and variance parameters in Ψ  and Σ . The integrated likeli-
hood can be computed in closed form when errors and random effects are normally distributed, but numeri-
cal approximations are needed for non-linear/non-normal models26. The integrated likelihood is used to find 
maximum-likelihood estimates of the fixed effects and variance components. Common parameterizations of 
the random effects include exchangeable correlation, in which within-cluster pairwise correlation is assumed 
constant, and auto-regressive correlation. When clusters are families, the correlation between family members 
depends on the degree of relatedness and kinship coefficients that represent the probability of alleles transmitted 
identically by descent between pairs of family relatives27 (See Fig. 3).

Several model selection criteria have been proposed for selection of fixed effects in mixed effects11, including 
AIC and BIC that can be computed using the integrated likelihood but there is no consensus on the appropriate 
correction parameters. Specifically, it has been argued that the overall sample size may not be the correct  
quantity to use when the data are correlated and the effective number of parameters may be unclear in  
models that includes several random effects28,29. Modified versions of BIC that have been proposed, say 

φ= − +BIC p D n p2log( ( ) log( )e  where ne is an estimate of the effective sample size, use a reduced sample size to 
account for the correlation between observations11. We will use these three proposed corrections of the sample 
size in the simulation study:

Jones’ correction.  ne =  1TC−11, where 1 is the unit vector, and C is the correlation matrix that can be estimated 
from the covariance matrix V =  V(Y|X, β) =  ZΨ ZT +  Σ 30.

Yang’ correction.  = ∑n n K( ( ) /(1 1 ))/2e f f n
T

f n
2

f f
 applies to family based data. It assumes that the data are from 

families of size nf and each Kf denotes the kinship matrix for the fth family31.
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Liberal correction.  ne =  nc where nc is the number of clusters. This is the most liberal correction, in which a clus-
ter represents a single sample unit.

Mixed-Effects Bayesian Networks
We propose a mixed-effects type parameterization of a BN that can be used for structure and parameter learning 
from correlated observations. The rationale of our approach rests on the observation that in the mixed effect 
regression model in Equation (4) we introduce and model the correlation between the sample units through the 
vector of random effects ZΓ u, with variance-covariance matrix ZΨ ZT, where Ψ  =  Γ Γ T.

To extend this idea to a BN with variables Y1, … , Yv, consider first this simple situation. Suppose v =  2 and let 
Y1 be parent of Y2, with E(Y2k|Y1k) =  β1Y1k and (Y1, Y2) follows a bivariate normal distribution. To estimate the 
coefficient β1 from a sample of observations that are not independent and have correlation structure known up to 
some parameters, one can use the mixed effect regression model

β ε β α= + Γ + ∆ = + +Y Y Z u Y e (7)2 1 1 2 2 2 2 2 1 1 2 2

where e2 represents the iid sampling error for the variable Y2 and we assume σ∼e N I(0, )n2 2
2 , and  

α2 is a vector of random effects distributed as α ∼ Γ ΓN Z Z(0, )T T
2 2 2 2 2 . With this parameterization, 

β σ σΓ Γ = Γ Γ +V Y Y Z Z I( , , , )T T T
n2 1 1 2

2
2 2 2 2 2 2 2

2 , if α2 and e2 are independent, and the likelihood function used to 
estimate the parameter β1 takes into account the correlation of the observation through the matrix Γ ΓZ ZT T

2 2 2 2 . 
The examples at the end of this section show how to specify Γ ΓZ ZT T

2 2 2 2  in two common situations of family-based 
studies and longitudinal studies with repeated measures. We can extend this parameterization to all variables in a 
network but some assumptions on the relation between random effects are needed to maintain the decomposa-
bility of the likelihood function.

We proceed by introducing a set of random effects α =  (α1, … , αv), in which each αi is a n ×  1 vector of cor-
related random effects associated with Yi. The random effects can be interpreted as additional parameters that 
augment the parent set of each variable Yi as (pa(Yi), θi, αi, γi) where the vector θi represents the parameters of 
the conditional distribution of each node Yi|pa(Yi) that we would ordinarily use if observations were IID, and the 
vector γi represents the variance parameters of αi that model the correlation between observations. We assume 
that the distribution of the random effects αi depends only on the variance parameters γi, so that θi and αi are 
independent given γi. For example, if the variables Yi follow normal distributions and the parent-children relation 
are described by regression models, the parameter vector θi includes the regression coefficients β and the uncorre-
lated error variance terms, while γi represents the correlation parameters. See Fig. 4 for an example.

Let φ denote the overall set of parameters (θ, α, γ) of the joint probability distribution of the variables Y1, … , Yv 
and we assume global independence of the parameters

φ θ α γ φ θ α γ= ⊥ = ≠i j( , , ) ( , , ) (8)i i i i j j j j

so that we can write the product of the global likelihood function and parameter prior distribution for data D as:

∏φ φ φ φ=
=

p D M p M p y pa y M p M( , ) ( ) ( ( ), , ) ( )
(9)i

v

i i i i i i
1

∏ θ α γ θ

α γ γ

=
=

p y pa y M p M

p M p M

( ( ), , , , ) ( )

( , ) ( ) (10)

i

v

i i i i i i i i

i i i i i

1

This factorization of the augmented likelihood can be used for local computations using information based cri-
teria or other Bayesian criteria. For example, conditionally on θ =  (θ1, … , θv) and γ =  (γ1, … , γv), the integrated 
likelihood can be computed as:

Figure 3.  An Example Pedigree and Corresponding Additive Genetic Relationship Matrix. The kinship 
matrices contain pairwise kinship coefficients between pairs of family members and these coefficients represent 
the probability that two individuals share the same gene allele by identity by descent. The covariance between 
two family members with kinship coefficient kij is 2kijγ2 where γ2 represents the genetic variance.
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∫∏ ∏θ γ α γ θ γ α α θ γ| = =
= =

p D M p M p y pa y M d p D M( , , ) ( , ) ( ( ), , , , ) ( , , )
(11)i

v

i i i i i i i i i i
i

v

i i i
1 1

where p(D|θi, γi, Mi) can be computed exactly for normally distributed variables (see11) or using numerical 
approximations in other cases as shown in26. Maintaining the product-form of the likelihood has the benefit that 
the search of the best dependency structure among the variables Y1, … , Yv can be conducted in a modular way, by 
finding the optimal set of parents of each variable Yi that optimizes either the marginal likelihood, or the marginal 
BIC or AIC based on integrated likelihood.

The variables Yi can follow a normal distribution, or non-normal distributions such as a Poisson distribu-
tion or multinomial distribution for categorical data, or survival distribution for time-to-event data. In the 
non-normal data case, random effects can be included in the log-transformed parameterization of the mean 
(Poisson/multinomial data), or the log-hazard function (time-to-event data). Once the best dependency structure 
is selected, the conditional distributions of each local model can be estimated using MCMC methods, or large 
sample approximations.

Example of Family-Based Data.  Suppose that study subjects are clustered into m families with different 
familial relations, then the within-family correlation of a variable Y can be described by the random effect 
α|γ2 ~ N(0, 2γ2K), where γ2 is the genetic variance to be estimated from data, and the matrix K can be derived 
from the kinship coefficients as in Fig. 3. By using the singular value decomposition of 2K =  USUT, with 
UUT =  UTU =  In, we can define Γ  =  γS1/2, Z =  U and u ~ N(0, In), so that α =  ZΓ u =  γUS1/2u and the variance 
covariance matrix of α is γ2US1/2S1/2UT =  2γ2K. To extend this parameterization to a Bayesian network with  
Y1, … , Yv variables, for each Yi we can then define αi =  γiUS1/2ui, with ui ~ N(0, In). With this parameterization, we 
allow the genetic variance γi

2 to vary for each variable Yi, but the matrices U and S will be the same for each Yi, as 
the kinship matrix K is study specific. We can assume a Gamma prior on each parameter γi

2, and independence of 
θi and α γi i

2 for each i =  1, … ., v, and independence of αi, γi
2 and αj, γj

2 for all i ≠  j to derive the above factoriza-
tion of the likelihood.

Example of Repeated Measures.  Suppose that data are from a longitudinal study with repeated measures 
per subject, and we stack the repeated measures per subject, so that the overall size of the data set D is ∑ nk k where 
nk denotes the number of repeated measures of the kth subject. Clearly, the repeated measures of each individual 
are correlated and the within subject correlation in each variable Yi can be described by a vector of random effects 
αi|γi ~ N(0, γiΨ i) where the matrix Ψ i is a block diagonal matrix with blocks that can be parameterized using 
exchangeable correlation, or autoregressive structure.

Simulation Studies
We conducted simulation studies to examine the effect of ignoring the correlation between observations in struc-
ture learning of a BN. We also compared false positive rate and power of the modifications of BIC and AIC 
for learning a BN from correlated data. For simplicity, we focused on the forward search procedure of the K2 
algorithm16. We considered two scenarios: continuous data that follow normal distributions, and time-to-event 

Figure 4.  Left panel: common parameterization of a simple directed graphical model with 3 observable, 
Gaussian variables (Y1, Y2, Y3), conditional of the parameter vector θ. Nodes in orange are the parameters that 
define the conditional parent-children distribution of the observable variables (fixed effects), while the nodes 
in yellow are nuisance parameters. Right panel: our proposed parameterization when both the dependency 
structure and conditional probability distributions need to be estimated from correlated data. The random 
effects α (blue nodes) have probability distributions that depend on parameters γ (lavender nodes). Both 
parameters γ and random effects α are used to model the correlation between observations as in Equation (4).
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data modelled using Cox proportional hazard regression. In the first case, we used the closed form solution to 
the integrated likelihood that allows for efficient computations of likelihood based model selection criteria11. In 
the second case, we used the numerical approximation of the marginal likelihood that can be derived assuming 
normally distributed random effects in the log-hazard scale22,32. In both simulations we generated data assuming 
that data are from a family based study design.

Continuous Data.  We generated correlated observations borrowing the family structure from the Long Life 
Family Study (LLFS): a study of healthy aging that enrolled individuals from families with longevity and healthy 
aging in the United States and Denmark between 2006 and 200933,34. A typical family structure in the LLFS has a 
proband and consenting siblings, their offspring and spouses. For this simulation study, the total sample size was 
4656 and the number of families was 582. With a kinship matrix from each family Kf, the variance-covariance 
matrix of the observations is the 4656 ×  4656 matrix:

σ γ= + …V I diag K K K2 ( , , , ) (12)e
2

4656 1 2 582

where σe
2 is the error variance, and γ is the “genetic variance”. To simulate normally distributed data with this 

variance-covariance matrix, we fixed the error variance σ = 1e
2  and varied the genetic variance to be γ2 =  1/3, 1, 3 

to simulate genetic traits with heritability γ γ σ+ = . . ./( ) 0 25, 0 50 and 0 75e
2 2 2 , representing the situations of 

Score ne

Number of False Positive Covariates At 
Each Level

Tot Test

Error Rates

1 2 3 4 ≥5 FPR FWER

BICM 4656 46 0 0 0 0 10405 0.0044 0.045

BICJ 2796 59 1 0 0 0 10530 0.0057 0.058

BICY 1768 74 2 0 0 0 10647 0.0071 0.071

BICC 582 128 7 1 0 0 11135 0.0122 0.120

AICM 4656 1616 779 270 71 17 23310 0.1181 0.836

LRTM 4656 513 100 13 2 0 14535 0.0432 0.415

BICF 4656 128 7 0 0 0 11136 0.0121 0.120

LRTF 4656 965 311 79 8 0 18218 0.0748 0.642

AICF 4656 2316 1381 685 277 110 28479 0.1674 0.931

Table 1.   False Positive Rates and Family-wise Error Rates of Different Model Selection Metrics For 
Normally Distributed Data When h2 = 0.50. Levels indicate the hierarchy in the forward search procedure 
such that Level 1 indicates the search is performed on all 10 covariates, Level 2 indicates that the search is 
performed on 9 covariates given that at least one false positive covariate was selected in the previous level, 
and so forth. BICM: BIC based on integrated likelihood and full sample size; BICJ, BICY, BICC: BIC with Jones’, 
Young and conservative effective sample size; AICM: AIC based on integrated likelihood and full sample size; 
LRTM: likelihood ratio test based on integrated likelihood to account for correlated data; BICF, LRTF and AICF: 
traditional BIC, likelihood ratio test, and AIC. FPR is the false positive rate defined as number of errors over 
total number of tests ignoring correlated data; FWER is family wise error rate, i.e., probability of one or more 
errors.

α

Power

Strong Effect
Moderate 

Effect
Weak 
Effect

BICM 0.0044 0.572 0.295 0.139

LRT BICM
0.0044 0.593 0.314 0.151

BICJ 0.0057 0.608 0.322 0.162

LRT BIC J
0.0057 0.623 0.340 0.172

BICY 0.0071 0.635 0.346 0.178

LRT BICY
0.0071 0.648 0.362 0.186

BICC 0.0122 0.708 0.426 0.245

LRT BICC
0.0122 0.710 0.429 0.247

Table 2.   Power Comparisons of Four Variants of BIC vs. Corresponding LRTM (Normally Distributed 
Data). Results are based on 1,000 simulated datasets with 3 situations of strong, moderate, and weak covariate 
effects. BICM: BIC based on integrated likelihood and full sample size; BICJ, BICY, BICC: BIC with Jones’, Young 
and conservative effective sample size; LRT BICM

, LRT BIC J
, LRT BICY

, and LRT BICC
: likelihood ratio test based on 

integrated likelihood using the significance threshold obtained from empirical false positive rates of BICM, BICJ, 
BICY and BICC. For example, since BICM has an observed false positive rate of 0.0044, we compared the power of 
the BICM to the power of the LRTM with significance threshold of 0.0044.
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25%, 50%, and 75% of the trait variability due to genetics and the rest to other non-genetic factors. To generate 
correlated data, in each simulation a vector Z of independent and normally distributed observations was gener-
ated and transformed into Y =  UD1/2Z where U and D are the matrix of eigenvectors and eigenvalues from the 
spectral decomposition of the variance-covariance matrix V. This transformation guarantees that V(Y) =  UD1/2V
(Z)D1/2UT =  V. In each run, we also included 10 null covariates. In this simulation study, the null covariates were 
common single nucleotide polymorphisms (SNP) with minor allele frequency >5%, which were randomly 
selected from the real genome-wide genotype data from LLFS. Each simulated data was analyzed using a forward 
search with BIC and AIC and the LRT at α =  0.05 ignoring the correlation in the data. The data were also analyzed 
using BIC, AIC and the LRT based on the intergrated likelihood, θ γ��p D( , ) to account for the correlation in the 
data. Four variants of BIC were used based on different effective sample sizes: ne =  4656 (full sample size); 
ne =  2796 (Jones’ correction); ne =  1768 (Yang’s correction); and ne =  582 (most conservative sample size). The 
simulation was repeated 1,000 times.

Table 1 shows the number of false positive covariates that were selected with the forward search using the 9 
criteria, the overall number of tests conducted during the forward search, false positive rate (probability of Type 
1 error in one test: BIC, AIC or LRT) and family wise error rate (probability of one or more errors in the overall 
search) when the heritability is 0.5. The false positive rate was calculated by dividing the sum of all false positive 
covariates by the total number of tests. The full set of results for different heritability estimates can be found in 
the Supplementary Materials. The results show an inflation of both error rates when the correlation in the data 
is ignored, with a 55% increase of the family wise error rate for the LRT, and a 267% increase for the BIC. The 
inflated Type I error will repeat for each search of parent-child dependency in the network and result in highly 
connected networks. The false positive rate of the LRT based on the integrated likelihood that accounts for the 
correlation in the data is slightly below the nominal level (0.0432). The various corrections of the BIC result in 
small false positive and family wise error rates. Using the full sample size as the effective sample size in the BIC is 
an over-correction that results in a very conservative scoring metrics. Decreasing the effective sample size makes 
the BIC score more liberal with a modest increase of both false positive and family wise error rates. Although 
these small error rates of BIC seem desirable, the question is their effect on the true positive rates of the different 
scoring metrics.

We compared the power of different variants of BIC to the power of the LRTM using the significance threshold 
determined from the false positive rates in Table 1. To do so, we ran 3 additional simulations in which the variable 
Y was generated from a multivariate normal distribution with variance-covariance structure as described above. 
In these scenarios, we modelled the expected value of the variable Y as a linear function of 3 true covariates that 

Score

Number of False Positive Covariates At Each 
Level

Tot Test

Error Rates

1 2 3 4 ≥5 FPR FWER

BICM 71 1 0 0 0 10638 0.0068 0.070

AICM 1654 831 327 81 21 23553 0.1237 0.822

LRTM 561 120 14 3 0 14850 0.0470 0.436

BICF 121 11 0 0 0 11069 0.0119 0.109

AICF 2057 1180 530 188 58 26572 0.1510 0.884

LRTF 767 226 46 5 0 16604 0.0629 0.543

Table 3.   False Positive Rates and Family-wise Error Rates of Different Model Selection Metrics For 
Time-to-event Data When h2 = 0.50. BICM: BIC based on integrated likelihood and number of events as the 
sample size; AICM: AIC based on integrated likelihood and full sample size; LRTM: likelihood ratio test based on 
integrated likelihood to account for correlated data; BICF, LRTF and AICF: traditional BIC, likelihood ratio test, 
and AIC. FPR is the false positive rate defined as number of errors over total number of tests ignoring correlated 
data; FWER is family wise error rate, i.e., probability of one or more errors.

α

Power

Strong 
Effect

Moderate 
Effect

Weak 
Effect

h2 =  0.25
BICM 0.0073 0.961 0.726 0.490

LRT BICM
0.0073 0.964 0.741 0.502

h2 =  0.50
BICM 0.0068 0.830 0.516 0.315

LRT BICM
0.0068 0.841 0.522 0.323

h2 =  0.75
BICM 0.0078 0.513 0.255 0.144

LRT BICM
0.0078 0.540 0.285 0.161

Table 4.   Power Comparisons of BICM vs. Corresponding LRTM For Time-to-event Data. Results are based 
on 1,000 simulated datasets with 3 situations of strong, moderate, and weak covariate effects. BICM: BIC based 
on integrated likelihood and number of events as the sample size; LRT BICM

: likelihood ratio test based on 
integrated likelihood using the significance threshold obtained from empirical false positive rates.
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were also generated from a multivariate normal distribution with different amount of correlations. Three sets of 
regression parameters were chosen to represent the situations of weak, moderate and strong covariate effects such 
that the first scenario included 3 weak effect covariates, the second scenario included 3 moderate effect covariates, 
and the third scenario included 3 strong effect covariates. Power was defined as the probability of detecting all 
three true covariates in each run. The results are summarized in Table 2 and show that the LRTM has consistently 
higher power than the BIC for all different corrections, when the false positive rates are kept equal. For instance, 
in the presence of covariates with moderate effects, the BICM detects the 3 covariates 29.5% of the time, whereas 
the LRTM detects the covariates 31.4% of the time, which is an increase in power by 1.9%. The most liberal cor-
rection of the BIC, with effective sample size equal to the number of clusters, appears to provide a reasonable 
compromise, and is essentially equivalent to using the LRT.

Time-to-event Data.  To simulate time-to-event data, we again borrowed the family structure from the LLFS 
and modified the simulation scheme from35 by inducing correlation with log-normal frailty (random effects). The 
baseline survival time was simulated from a Weibull (2, 2). We simulated the correlated trait such that:

β
=

−
+

T X R U
X R

( , ) 4log
exp( )

,
(13)

where

γ∼ ∼ … ∼U Unif R MVN diag K K K C Unif(0, 1); (0, 2 ( , , , )); (0, 2) (14)1 2 582

so that the event time is defined as t =  min(T, C) and the censoring indicator is δ =  I(T ≤  C). The correlation 
among observations are induced by the inclusion of random effects term R on the log-hazard scale. The rest of the 
simulation scheme was very similar to the case of continuous data, except for BIC, where the effective sample size 
was the number of events as suggested by36.

Table 3 shows the number of false positive covariates that were selected with the forward search using the 6 
criteria, the overall number of tests conducted during the forward search, and both the false positive rate and 
the family wise error rate when the heritability is 50% on the log-hazard scale. The full set of results for different 
heritability estimates can be found in the Supplementary Materials. The results show an inflation of both error 
rates when the correlation in the data is ignored, with a 25% increase of the family wise error rate for the LRT, and 
a 56% increase for the BIC. The false positive rate of the LRT based on the integrated likelihood is slightly below 
the nominal level (0.0470), while the traditional LRT exhibits inflated Type 1 error rate of 0.0629. Consistent with 
the results from the continuous data, AIC is the most liberal metric.

We compared the power of BICM based on integrated likelihood to the power obtained from the LRTM 
using the significance threshold determined from the false positive rates in Table 3. Again, we ran 3 additional 

Gene Chromosome Number of Tested SNPs

AKT1 14 78

AKT2 19 142

AKT3 1 793

FOXO1 13 275

FOXO3 6 110

FOXO6 1 674

GHR 5 506

IGF1 12 994

IGF1R 15 854

IKBKB 8 76

INS 11 75

INSR 19 859

IRS1 2 2105

IRS2 13 1637

PDPK1 16 9

PIK3CA 3 318

PIK3CB 3 391

PIK3CD 1 172

PIK3CG 7 883

PIK3R1 5 4179

PIK3R2 19 32

PIK3R3 1 207

PIK3R5 17 295

Table 5.   Summary of 23 Genes in the IIS Pathway.
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Figure 5.  Top 3 BNs built using the proposed parameterization that dissect the associations of SNPs in 
genes of the IIS pathway through effects on blood biomarkers. The different edges among the three networks 
are colored in red.



www.nature.com/scientificreports/

1 0Scientific Reports | 6:25156 | DOI: 10.1038/srep25156

simulations in which the correlated survival trait was generated as described above with sets of 3 true covariates 
of different strengths. The results summarized in Table 4 show that the LRTM has consistently higher power in 
all cases regardless of the heritability estimates, which is consistent with results from the continuous data. For 
instance, in the presence of covariates with moderate effects when h2 =  0.50, BICM detects the 3 covariates 25.5% 
of the time, whereas the corresponding LRTM detects the covariates 28.5% of the time, which is an increase by 
3.0%.

These results emphasize the need to account for correlation in the data to avoid an unnecessary inflation of the 
false positive error rates. Moreover, after controlling for the Type 1 error, the LRTM appears to have comparable 
power to the BIC based on integrated likelihood in both cases of continuous and time-to-event data. In practical 
application, using the LRT is an appealing approximate solution that avoids the problem of choosing the appro-
priate number of parameters, and also control well the Type 1 error.

Application
We applied the proposed approach in the two real data and compared to the BNs constructed when ignoring 
correlations in the data.

In the first example, we built a BN to examine the associations between genetic data, blood biomarkers, 
socio-demographic factors, and life span using data from the LLFS. The genetic variants were unlinked SNPs in 
the 23 genes of the insulin and insulin-like growth factor 1 signaling (IIS) pathway that were found associated 
with age at death using single SNP analysis (i.e. testing the association one SNP at a time using Cox proportional 
hazard regression adjusted for family structure with a significance threshold of 0.005). This pathway is considered 
as one of the most important pathways in aging37. Table 5 summarizes the gene, chromosome, and the number of 
tested SNPs per gene. There was a total of 13 common SNPs that were individually associated with age at death, 
adjusting for sex. In a joint model that included these 13 SNPs as covariates, 6 of them were still associated with 
age at death at the p-value threshold of 0.005. Given the large number of tested SNPs, the p-value threshold of 
0.005 may appear too liberal but the goal of this preliminary analysis was primarily to obtain a candidate list of 
genetic variants to be considered in building the BN.

The question we were trying to answer with the BN was whether some of these direct associations between 
SNPs and lifespan could be explained through associations with blood biomarkers such as serum levels of DHEA 
(a steroid hormone linked to muscle loss in aging), insulin growth factor 1 (IGF-1), transferrin receptors (Tr), and 
hemoglobin (Hgb). All these biomarkers are related to aging and would provide targets to develop intervention 
for healthy aging38. Additional variables in the network were age at enrollment (Age.E) and follow-up survival 
time (FUS) censored at last contact for living subjects. We also included an indicator variable (Birth Year Cohort: 
BYC) that accounted for possible secular trend, and sex. To build the BN, we used the search procedure of the K2 
algorithm, and we considered all possible orderings of the other variables with the exception of the SNPs that, 
for biological reasons, were considered as root nodes in the BN. The follow-up survival time was considered as 
possible child of all the other nodes. For each possible ordering of the variables, a BN was built by fitting appro-
priate mixed effects regression models of follow-up survival time (using mixed effect Cox proportional hazard 
regression), age at enrollment, the four biomarkers (using linear mixed model), and by identifying statistically 
significant predictors through a forward search. Based on the simulation study, the likelihood ratio test from 
mixed effects model was used for model selection criteria by applying a Bonferroni correction at each node.

The three BNs with largest global likelihood are depicted in Fig. 5 and have very similar structures, with direc-
tions of few edges switched (edges colored in red in the figure), and the Markov Blankets (MB) of the variables 
in these 3 BNs in Table 6 areidentical. Only two SNPs remained in the model, one (rs1009375, in the proximity 
of AKT3, linked to glicemic control) is directly associated with follow-up survival and another (rs6974881, in 
PIK3CG, linked to inflammation) is directly associated with age at enrollment. The results suggest that genetic 
variants in the IIS pathway do not affect age at death through these 4 biomarkers.

We also built the BN ignoring the familiar correlations in the LLFS data using the LRT, and the three BNs with 
largest likelihood are depicted in Fig. 6. The overall structures are very similar to the top three BNs built under the 
proposed parameterization. However, in each of these BNs, two additional SNPs (rs17224116 and rs10048024) 
show significant dependency with transferin receptor level (node Tr) and IGF-1 levels. Based on the results of the 

Node MB in M1 MB in M2 MB in M3

FUS TR, Age.E, Hgb, Sex, rs1009375 TR, Age.E, Hgb, Sex, rs1009375 TR, Age.E, Hgb, Sex, rs1009375

Age.E BYC, Sex, rs6974881, FUS, TR, 
Hgb, rs1009375

BYC, Sex, rs6974881, FUS, TR, 
Hgb, rs1009375

BYC, Sex, rs6974881, FUS, TR, Hgb, 
rs1009375

DHEA Hgb, IGF1, BYC, TR Hgb, IGF1, BYC, TR Hgb, IGF1, BYC, TR

TR Hgb, BYC, DHEA, IGF1, FUS, 
Age.E, Sex, rs1009375

Hgb, BYC, DHEA, IGF1, FUS, 
Age.E, Sex, rs1009375

Hgb, BYC, DHEA, IGF1, FUS, 
Age.E, Sex, rs1009375

IGF-1 Hgb, Tr, BYC, DHEA Hgb, Tr, BYC, DHEA Hgb, Tr, BYC, DHEA

Hgb BYC, IGF1, FUS, Tr, DHEA, 
Age.E, Sex, rs1009375

BYC, IGF1, FUS, Tr, DHEA, 
Age.E, Sex, rs1009375

BYC, IGF1, FUS, Tr, DHEA, Age.E, 
Sex, rs1009375

Table 6.   Markov Blanket of Each Node in the Top 3 BNs. FUS: Follow-up Survival; Age.E: Age at enrollment; 
DHEA: Dehydroepiandrosterone; TR: Transferrin Receptors; IGF-1: Insulin-like growth factor 1; INS: Insulin; 
Hgb: Hemoglobin.
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Figure 6.  Top 3 BNs built ignoring the familiar correlations in the data used in Fig. 5. The different edges 
among the three networks are colored in red. Compared to the BNs in Fig. 5, two additional SNPs rs17224116 
and rs10048024 are added to the models.
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simulations that showed an increase Type I error when the correlation between observations is ignored, these two 
additional edges are likely to be false positive findings introduced by ignoring the correlation in the data.

In the second example, we used data from 2916 unrelated African-American subjects with sickle cell ane-
mia enrolled in the Cooperative Study of Sickle Cell Disease to model the correlation between several circulat-
ing biomarkers of the disease (CSSCD (https://biolincc.nhlbi.nih.gov/studies/csscd/). The data included these 9 
biomarkers: fetal hemoglobin, serum glutamic oxaloacetic transaminase, diastolic blood pressure, reticulocyte 
counts, platelet counts, red blood cell counts, white blood cell counts, hemoglobin, and mean corpuscular vol-
ume. Subjects enrolled in the study were followed longitudinally and approximately 3 repeated measures per 
subject are available, with a total of 8018 measurements available for the current analysis. In order to account for 
correlations due to repeated measurements on the same subjects, a BN was built by stacking repeated measures 
and using random effect to describe the correlation between repeated measures of the same study subject. Clinics 
at which lab measures were taken, age at measurement, and hemoglobin genotypes were considered root nodes of 
all variables, and all other procedures remained the same as in the previous example. The top BNs and associated 
MB using the proposed approach and ignoring correlations are illustrated in Fig. 7. Overall, there were 19 edges 
in the top BN constructed using the proposed approach. When correlations between repeated measures on the 
same subjects were ignored, there were 28 edges in the BN. These excess edges were reflected as additional vari-
ables in the MB of each node, which indicate that virtually all variables are connected to each other. Biologically, 
the simpler network is more consistent with previous findings that showed strong dependency between hema-
tological parameters, but less dependency of hematological parameters with blood pressure and markers of liver 
functions (SGOT)39. We conjecture that some of these additional edges are likely to be false positives as a result of 
ignoring apparent correlations between measurements, and this result further bolsters the utility of the proposed 
approach that can control the false positive error rates for different types of correlation structures.

Figure 7.  Left Panel: Top BN using the proposed approach and associated Markov Blanket of each node. 
Right Panel: Top BN built ignoring correlations due to the repeated measurements on the same subjects and 
associated Markov Blanket of each node. Additional variables in the Markov Blanket as a result of ignoring 
correlations are colored red. Hg: hemoglobin; SGOT: serum glutamic oxaloacetic transaminase; DBP: diastolic 
blood pressure; Retic: reticulocyte count; Platelet: platelet count; RBC: red blood cells; WBC: white blood cells; 
HbF: fetal hemoglobin; MCV: mean corpuscular volume.

https://biolincc.nhlbi.nih.gov/studies/csscd/
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Discussion and Conclusions
We presented an approach to learn BNs from correlated data arising from clustered sampling. Our approach uses 
random effects to model the correlation between observations within the same clusters, and assumes marginal 
and conditional independence on the random effects to maintain the decomposibility of the likelihood and mod-
ularity of the computations. The random effects introduced in the parameterization do not affect the network 
structure per se, and conceptually they are simply additional random parameters that are useful to model the 
excess correlation in the data. We evaluated different approximate metrics for model selection in data simulated 
from a hypothetical family-based study, in which the observations of members within the same family are related 
with varying degrees of correlation. The simulation study showed the importance of accounting for correlated 
data to avoid inflation of the false positive error rate, and suggested that in large samples a simple likelihood ratio 
test based on the integrated maximum likehood may provide a good trade off between false positive and false 
negative rates. Applications on two real data with different correlation structures showed the potential use of this 
approach to simultaneously model the associations of genetic and non-genetic factors with a complex trait from 
a family-based observational study and repeated measures of biomarkers.

Our proposed parameterization can be used for a full Bayesian approach to structural and parameter learnings 
of BNs with correlated data. However, the selection of BNs from data with many variables is computationally a 
very challenging problem and therefore we focused the simulation analysis on the evaluation of approximate 
criteria for model selection. A proper Bayesian approach to model selection of networks learned from corre-
lated data appears to be a very challenging question that needs more work. We limited our analysis to selection 
of networks with Gaussian data and time-to-event data. In both cases, there is a closed form solution, or good 
numerical approximation, to the calculation of the integrated likelihood that is used to compute likelihood based 
criteria such as the likelihood ratio test, BIC and AIC. However, approximate methods are needed for categorical 
variables25. We also assumed that the vector of random effects followed a normal distribution. Different distribu-
tional assumptions on the random effects and mis-specifications of these need to be explored further.

Another popular approach to account for correlations in observations is generalized estimating equation 
(GEE)40. Studies have shown that empirical results on parameter estimation and significance testing are very 
similar between GEE and random effects models41. The advantage of random effect models is that one can carry 
subject-specific as well as population-average inference, and therefore they provide a more flexible modeling 
approach for inference.

Our simulations suggest that the likelihood ratio test based on using the integrated likelihood provides a 
good metric for model selection. The criterion can be interpreted as a crude approximation of the Bayes factor 
and, compared to BIC or AIC, it allows users to choose different thersholds for model selection that can trade off 
sensitivity and specificity. This is an important feature of the criterion, particularly in the analysis of large datasets 
with several variables.

References
1.	 Friedman, N., Linial, M., Nachman, I. & Pe’er, D. Using bayesian networks to analyze expression data. Journal of Computational 

Biology 7, 601–20 (2000).
2.	 Lauritzen, S. L. & Sheehan, N. A. Graphical models for genetic analysis. Statistical Science 18, 489–514 (2004).
3.	 Sebastiani, P., Ramoni, M. F., Nolan, V., Baldwin, C. T. & Steinberg, M. H. Genetic dissection and prognostic modeling of overt 

stroke in sickle cell anemia. Nature Genetics 37, 435–40 (2005).
4.	 Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature 

Genetics 37, 710–7 (2005).
5.	 Thomas, D. Gene-environment-wide association studies: emerging approaches. Nature Review Genetics 11, 259–272 (2010).
6.	 Heckerman, D., Geiger, D. & Chickering, D. M. Learning bayesian networks: The combinations of knowledge and statistical data. 

Machine Learning 20, 197–243 (1995).
7.	 Koller, D. & Friedman, N. Probabilistic graphical models: principles and techniques Ch. 17, 717–782 Adaptive computation and 

machine learning (MIT Press, Cambridge, MA, 2009).
8.	 Laird, N. Analysis of Longitudinal and Cluster-Correlated Data Ch. 1, 1–28 (Institute of Mathematical Statistics, 2004).
9.	 Verbeke, G., Fieuws, S., Molenberghs, G. & Davidian, M. The analysis of multivariate longitudinal data: A review. Statistical Methods 

in Medical Research 23, 42–59 (2012).
10.	 Cannon, M. J., Warner, L., Taddei, J. A. & Kleinbaum, D. G. What can go wrong when you assume that correlated data are 

independent: an illustration from the evaluation of a childhood health intervention in brazil. Statistics in Medicine 20, 1461–7 
(2001).

11.	 Muller, S., Scealy, J. L. & Welsh, A. H. Model selection in linear mixed models. Statistical Science 28, 135–167 (2013).
12.	 Stroup, W. W. Generalized Linear Mixed Models: Modern Concepts, Methods and Applications p. 1–555 (CRC Press, 2012).
13.	 Jordan, M. I. Learning in graphical models p. 1–634 Adaptive computation and machine learning (MIT Press, Cambridge, Mass. 

1999).
14.	 Lauritzen, S. L. Graphical Models Ch. 1, 4–27 (Clarendon Press, Oxford, 1996).
15.	 Whittaker, J. Graphical Models in Applied Multivariate Statistics Ch. 3, 56–85 (John Wiley & Sons, New York, 1990).
16.	 Cooper, G. F. & Herskovitz, G. F. A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 

309–347 (1992).
17.	 Heckerman, D. A tutorial on learning with Bayesian networks 301–354 (MIT Press, 1999).
18.	 Madigan, D., York, J. & Allard, D. Bayesian graphical models for discrete data. International Statistical Review 63, 215 (1995).
19.	 Dawid, A. P. & Lauritzen, S. L. Hyper markov laws in the statistical-analysis of decomposable graphical models. Annals of Statistics 

21, 1272–1317 (1993).
20.	 Chen, Z. & Dunson, D. B. Random effects selection in linear mixed models. Biometrics 59, 762–9 (2003).
21.	 Govindarajulu, U. S., Lin, H., Lunetta, K. L. & D’Agostino, S. R. B. Frailty models: Applications to biomedical and genetic studies. 

Statistics in Medicine 30, 2754–64 (2011).
22.	 Therneau, T. M., Grambsch, P. M. & Pankratz, V. S. Penalized survival models and frailty. Journal of Computational and Graphical 

Statistics 12, 156–175 (2003).
23.	 Andersen, S. L., Sebastiani, P., Dworkis, D. A., Feldman, L. & Perls, T. T. Health span approximates life span among many 

supercentenarians: compression of morbidity at the approximate limit of life span. Journals of Gerontology. Series A: Biological 
Sciences and Medical Sciences 67, 395–405 (2012).



www.nature.com/scientificreports/

1 4Scientific Reports | 6:25156 | DOI: 10.1038/srep25156

24.	 Sebastiani, P. et al. Families enriched for exceptional longevity also have increased health span: Findings from the long life family 
study. Frontiers in Public Health 1 (2013).

25.	 Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. Journal of the American Statistical 
Association 88, 9–25 (1993).

26.	 Pinheiro, J. C. & Bates, D. M. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of 
Computational and Graphical Statistics 4, 12–35 (1995).

27.	 Lange, K. Mathematical and Statistical Methods for Genetic Analysis Ch. 5, 81–96 (Springer, 2002).
28.	 Lunn, D. The BUGS book: a practical introduction to Bayesian analysis Ch. 8, 137–184 Texts in statistical science series (2013).
29.	 Ibrahim, J. G., Zhu, H., Garcia, R. I. & Guo, R. Fixed and random effects selection in mixed effects models. Biometrics 67, 495–503 

(2011).
30.	 Jones, R. H. Bayesian information criterion for longitudinal and clustered data. Statistics in Medicine 30, 3050–6 (2011).
31.	 Yang, Y. et al. Effective sample size: Quick estimation of the effect of related samples in genetic case-control association analyses. 

Computational Biology and Chemistry 35, 40–9 (2011).
32.	 Ripatti, S. & Palmgren, J. Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 56, 1016–22 (2000).
33.	 Newman, A. B. et al. Health and function of participants in the long life family study: A comparison with other cohorts. Aging 

(Albany NY) 3, 63–76 (2011).
34.	 Sebastiani, P. et al. A family longevity selection score: ranking sibships by their longevity, size, and availability for study. American 

Journal of Epidemiology 170, 1555–1562 (2009).
35.	 Chen, H. et al. Sequence kernel association test for survival traits. Genetic Epidemiology 38, 191–7 (2014).
36.	 Hsieh, F. Y. & Lavori, P. W. Sample-size calculations for the cox proportional hazards regression model with nonbinary covariates. 

Controlled Clinical Trials 21, 552–60 (2000).
37.	 van Heemst, D. Insulin, igf-1 and longevity. Aging and Disease 1, 147–57 (2010).
38.	 Sebastiani, P. & Perls, T. T. The genetics of extreme longevity: lessons from the new england centenarian study. Frontiers in Genetics 

3, 277 (2012).
39.	 Sebastiani, P. et al. A network model to predict the risk of death in sickle cell disease. Blood 110, 2727–35 (2007).
40.	 Liang, K. & Zeger, S. Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986).
41.	 Gardiner, J. C., Luo, Z. & Roman, L. A. Fixed effects, random effects and gee: What are the differences? Statistics in Medicine 28, 

221–239 (2009).

Acknowledgements
This work was funded by the National Institute on Aging (NIA U19-AG023122, U01-AG023755 to T.P.), the 
National Heart Lung Blood Institute (R21HL114237 to P.S.), and the National Institure of General Medical 
Sciences T32GM074905.

Author Contributions
H.B. and P.S. contributed to the theoretical development and evaluation using simulated and real data. S.M., 
M.M., M.H.S. and T.T.P. contributed to the interpretation of results and revised the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Bae, H. et al. Learning Bayesian Networks from Correlated Data. Sci. Rep. 6, 25156;  
doi: 10.1038/srep25156 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Learning Bayesian Networks from Correlated Data
	Introduction
	Background
	Learning Bayesian Networks from Independent and Identically Distributed Observations
	Mixed-Effects Regression Models
	Jones’ correction
	Yang’ correction
	Liberal correction

	Mixed-Effects Bayesian Networks
	Example of Family-Based Data
	Example of Repeated Measures

	Simulation Studies
	Continuous Data
	Time-to-event Data

	Application
	Discussion and Conclusions
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Learning Bayesian Networks from Correlated Data
            
         
          
             
                srep ,  (2016). doi:10.1038/srep25156
            
         
          
             
                Harold Bae
                Stefano Monti
                Monty Montano
                Martin H. Steinberg
                Thomas T. Perls
                Paola Sebastiani
            
         
          doi:10.1038/srep25156
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep25156
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep25156
            
         
      
       
          
          
          
             
                doi:10.1038/srep25156
            
         
          
             
                srep ,  (2016). doi:10.1038/srep25156
            
         
          
          
      
       
       
          True
      
   




