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A Laminated Microfluidic Device for 
Comprehensive Preclinical Testing 
in the Drug ADME Process
Fan An1,2, Yueyang Qu1,2, Yong Luo1,2, Ning Fang3, Yang Liu1,2, Zhigang Gao1,2, Weijie Zhao1,2 & 
Bingcheng Lin4

New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the 
new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic 
the drug ADME response test in vivo. This proposed device was loaded and cultured with functional 
cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was 
introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized 
by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the 
lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this 
on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate 
the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was 
proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, 
and the administration method of a drug. Furthermore, this microdevice is expected to reduce the 
number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon 
adaptation in new drug discovery.

The traditional new drug discovery process is extremely costly, time-consuming and inefficient, and consequently, 
it has retarded fast advances in the drug industry and improvements in human health. For example, developing 
a new drug usually requires an average of 10–15 years1 and costs from $1.5 billion to more than $1.8 billion2. 
Unfortunately, FDA-approved drugs are not guaranteed to meet market needs. The high cost and long develop-
ment periods are primarily due to the extremely high failure rate of drug candidates in animal tests and clinical 
trials. According to the 2015 profile of Pharmaceutical Research and Manufacturers of America (http://www.
phrma.org/sites/default/files/pdf/2015_phrma_profile.pdf), only 6 of a few hundred drug candidates entered the 
trial stage, and only one was approved by the FDA. Significantly narrowing down the drug candidates subject to 
animal tests and clinical trials would be an effective way to revitalize the drug discovery industry.

Drug candidates that survive the preclinical testing may ultimately fail during the animal testing or clinical 
trial stage because the data obtained from in vitro drug screening platforms, such as a 96-well plate, cannot be 
extrapolated to the real body of animals or humans. In the 96-well plate test, drug candidates interact directly with 
the target cells. However, a drug candidate experiences a complex in vivo ADME process (absorption, metabo-
lism, distribution and excretion). Differences in the physiological environment, concentration and even molec-
ular formula of the drug candidates in vivo may lead to significant variations in their ADME process, which 
strongly affect the final efficacy and toxicity of the drug candidate. Traditional in vitro drug screening tools cannot 
effectively recreate the ADME process of a drug candidate in the body and consequently frequently yield biased 
screening results.

In this study, we attempted to recreate the ADME process in vitro and develop a platform for drug screen-
ing. To this end, we selected a microfluidic chip as the new ADME screening platform because it may allow the 
co-culture of multiple types of functional cells and a comprehensive analysis of cells, drug candidates and their 
metabolites. To date, a variety of functional cells3–10 have been successfully cultured inside the micro-channels 
in a microfluidic chip. The co-culture of multiple types of cells in a number of microfluidic chips has also been 
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reported11–14. Moreover, cell chips have been intensively used for drug screening, either for toxicity15, efficacy16 
or pharmacokinetics12. They have even been transformed into “organ-on-a-chip17”, “body-on-a-chip11” and 
“human-on-a-chip18” devices that have demonstrated a strong potential to revolutionize drug discovery. We 
herein attempted to develop a new type of cell co-culture chip for preclinical testing featuring an artificial ADME 
process.

Results
Device fabrication. As demonstrated in Fig. 1, the main structure of this multilayered microfluidic device 
consisted of six PDMS (Dow Corning, USA) plates with a diameter of 30 mm, from top to bottom and thicknesses 
of 6 mm, 1.2 mm, 2.4 mm, 1.2 mm, 4.8 mm, or 1.2 mm. Microchannels (0.2 mm deep, 0.8 mm wide, and 18 mm 
long) were fabricated, from the top to bottom, in the 1st, the 4th and the 6th PDMS plates for cell culture medium 
perfusion. The PDMS plates for these structures, which were developed by Whitesides G.M. et al.19, were fabri-
cated by soft lithography using SU8 3035 (Microchem, USA) as the template. Peripheral holes (1-mm diameter) 
were punctured in the PDMS plates to arrange tubing. Additionally, 5 mm diameter holes were made in the center 
of the each PDMS plate to facilitate connections between the cells and tissues between layers. Porous polycar-
bonate membranes with a 1-μ m pore size were placed between PDMS plates for on-chip cell culture. After a care-
ful alignment along the vertical direction, the PDMS plates were superimposed with the top and bottom PMMA 
plates and fastened with screws. The entire microfluidic device measured 4 cm ×  4 cm ×  2.1 cm (Figure S1 in S.I.).

Characterization of cell layers and tissues. The Caco-2 cell layer was responsible for the selective 
absorption of drug candidates. Caco-2 cells were cultured on collagen-type-I-coated porous membrane for 17 
days to form a cell layer with tight junctions. The image of the Caco-2 cell layer is shown in Fig. 2A, and the cell 
state can be observed. To observe the absorption of drug candidates by the Caco-2 cell layer, we applied propran-
olol and sodium fluorescein to the surface of the Caco-2 cell layer and evaluated the quantity of reagents that 
penetrated through the Caco-2 cell layer.

Figure 2D shows that the Papp of propranolol is much higher than that of sodium fluorescein. Propranolol 
is a typical intestine-absorbed drug, whereas sodium fluorescein cannot be absorbed. These data successfully 
demonstrate the selective absorption of propranolol over the sodium fluorescein by the Caco-2 cell layer, which 
implies three facts: (1) our Caco-2 cell layer was robust in terms of the absorption of drug candidates; (2) tight 
junctions successfully formed between Caco-2 cells and thereby avoided the diffusive transportation of sodium 
fluorescein through the Caco-2 cell layer; (3) the sealing of the microdevice was satisfactory. We also compared 
the Papp of propranolol and sodium fluorescein in the microdevice with those in a traditional transwell chamber. 
Good agreement was observed, which further indicates the reliability of our microdevice in terms of absorption 
of drug candidates.

Figure 1. The exploded view of the laminated microfluidic device (left part) mimicking the ADME process 
of an oral drug in vivo (right part was illustrated by the first author, Fan An). (1) illustration of the Caco-2 cell 
layer on the PC membrane; (2) illustration of HUVEC (gray) and hepatocyte (green) layers on the membranes; 
HUVECs are on the top, and hepatocytes are on the bottom. (3) illustration of HUVEC (gray) and hepatocyte 
(green) layers on the membranes, hepatocytes are on the top, and HUVEC are on the bottom; (4) illustration of 
the MCF-7 cell layer on the PC membrane; (5) illustration of the lung, heart and adipose tissues located in the 5th 
PDMS spacer from the top.
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To reproduce endothelial barrier function, a HUVEC layer was generated in the microdevice under both the 
Caco-2 cell layer and the hepatocyte layer. We cultured the HUVECs on the porous PC membrane for 3 days to 
form tight junctions between HUVECs. The image of the HUVEC layer is shown in Fig. 2B. We then tested the 
barrier capability of the HUVEC layer by measuring the apparent permeability of propranol, sodium fluorescein, 
40 kDa dextran and 70 kDa dextran. Figure 2D shows that the Papp of large molecules (dextrans) is much lower 
than that of the small molecules (propranolol and sodium fluorescein), and the Papp appeared to inversely corre-
late with the molecular weight. These data show that the HUVEC layer was selectively permeable according to 
the molecular weight. This behavior is similar to that of capillaries in vivo. Figure 2D shows two additional facts: 
(1) tight junctions successfully formed between HUVECs and avoided the diffusive mass transfer through the 
HUVEC layer; (2) the sealing of the microdevice was satisfactory.

Hepatocytes in the microdevice are responsible for the metabolism of drug candidates. Unlike intestinal epi-
thelial cells or vascular endothelial cells, the sinusoids are distributed through hepatic lobules to facilitate efficient 
mass transfer in vivo. Therefore, we were able to control the density of hepatocytes with this microdevice and 
ensure that the hepatocytes were sparsely distributed on the membrane (Fig. 2C). We used primary hepato-
cytes instead of cell lines to enhance the metabolism on the chip and prepared two layers of hepatocytes in the 
microdevice. Furthermore, to test the metabolism of primary hepatocytes, we tested the antitumor activity of 
cyclophosphamide (CTX) on primary hepatocytes cultured in a 35 mm-dish using CTX and cell culture medium 

Figure 2. (A) The fluorescence image of the Caco-2 cell layer (stained with CelltrackerTM red and Hoechst 
33342) on the porous membrane; (B) The fluorescence image of the HUVEC cell layer (stained with 
CelltrackerTM green and Hoechst 33342) on the porous membrane. (C) The bright field image of hepatocytes 
on the porous membrane. (D) The apparent permeability (Papp) of soluble reagents with different molecular 
weights and properties through the Caco-2 cell or HUVEC layer. (E) The inhibition of MCF-7 cell proliferation 
by hepatocytes in culture medium, cyclophosphamide (CTX) and CTX metabolites in the microfluidic device. 
Viability analysis of the heart (F), lung (G) and adipose (H) tissue according to a LIVE/DEAD®  Viability/
Cytotoxicity kit. Dead cells produced bright red fluorescence. The scale bars in A, B and C are 200 μ m and 
500 μ m in F, G; H.N =  4. Error bars represent the standard error of the mean (SEM) of four independents 
experiments. Two-tailed significance was set at *p <  0.05, **p <  0.001 and ***p <  0.0005.
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as controls. CTX is an innocuous pro-drug that is transformed into aldehyde phosphnboramide in the liver and 
subsequently degraded into active phosphoramide mustard in tumor cells to inhibit their proliferation. Figure 2E 
shows significant variation between the CTX incubated with hepatocytes and the controls, proving the metabolic 
capability of our primary hepatocytes. Therefore, our primary hepatocytes can metabolize drug candidates: only 
the CTX incubated with hepatocytes showed antitumor activity, whereas CTX that had not been metabolized by 
the hepatocytes did not demonstrate this activity.

Additionally, we deposited heart, lung and fat tissues on a dialysis membrane assembled with the 5th PDMS 
spacer to evaluate the distribution of drug candidates. Experimentally, we sealed these tissues in the microdevice 
for 72 h in a cell incubator and then stained them with the LIVE/DEAD®  Viability/Cytotoxicity Kit. Figure 2F–H 
shows the images of the stained tissues. Red spots, indicating dead cells, were sparsely distributed in the tissues, 
and approximately < 10% cells were estimated to be dead after 72 h of culture. These dead cells may interfere with 
the toxicity test for these tissues. However, in our design, these tissues were used only to test the distribution 
of the drug candidates. Therefore, we deemed a partial loss of cell viability in the whole tissue fragments to be 
acceptable.

Artificial ADME Process. We applied the cell and tissue layers to the entire microdevice with spacers, as 
demonstrated in Fig. 1, and loaded the microdevice with drug candidates via the microchannel in the 1st spacer. 
The drug candidate solution covered the Caco-2 cell layer, which then absorbed the drug. The selective absorption 
of sodium fluorescein and propranolol by the Caco-2 cell layer is shown in Fig. 2D. The adsorbed drug candidate 
then passed through the HUVEC layer and diffused toward the hepatocyte layer, where it was then metabolized. 
The drug candidate and its metabolites then permeated through the HUVEC layer, diffused toward the MCF-7 
cell layer, and then interacted with MCF-7 cell layer and the heart, lung and fat tissues. Finally, they were elimi-
nated though the dialysis membrane. The entire artificial ADME process was characterized by the pentobarbital, 
thiopentone and propranolol concentration in the cell culture medium over time in the medium cycle in the 
4th spacer (Fig. 3A–C). The concentration of the drugs first increased during the absorption process and then 

Figure 3. (A–C) Drug-time curves of propranolol, thiopentone and pentobarbital in the medium cycle in the 
fourth spacer. (D) The distribution of pentobarbital and propranolol in the heart, lung and adipose tissues. 
Pentobarbital was not detected in heart tissues in any of the three independent experiments. (E) The inhibition 
of MCF-7 cell proliferation in response to cyclophosphamide (CTX), taxol and 5-fuorouracil on the chip and in 
96-well plate during 72 h of culture. (F) The alanine aminotransferase (ALT) values of paracetamol, propranolol, 
cyclophosphamide, taxol and 5-fuorouracil. N =  3. Error bars represent the standard error of the mean (SEM) 
of three independents experiments. Two-tailed significance was set to *p <  0.05 and **p <  0.001.
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declined during the metabolism, distribution and elimination processes. This trend corroborated with in vivo 
observations20–22.

On-chip pharmacokinetics. During the ADME process in the microdevice, we can measure a number 
of pharmacokinetic parameters on the chip, which is impossible in other reported in vitro drug screening plat-
forms. First, the cell culture medium in the 4th spacer was sampled from its tank, and the concentration of drug 
candidates was plotted versus time. Figure 3A–C shows the drug-time curves of propranolol, thiopentone and 
pentobarbital in the microdevice. The graph suggests that the drugs were completely absorbed and eliminated. 
Additionally, quantitative information can be extracted from the curves. For example, the maximum concen-
trations of propranolol, thiopentone and pentobarbital were ~15.1, 3.8, and 1.14 μ M, respectively. These data 
indicated that propranolol was better absorbed than thiopentone and pentobarbital. Although the molecular 
structures of thiopentone and pentobarbital differ by only one S atom, their drug-time curves significantly dif-
fered. Compared with pentobarbital, the additional sulfur atom renders thiopentone more lipid soluble, which 
resulted in better absorption. The qualitative and quantitative information from the drug-time curve in the 
microdevice can serve as a reliable reference for the design of animal tests20–22. An anomaly was also observed: 
the half-lives of pentobarbital, thiopentone and propanol appeared to be nearly identical and greater than 10 hrs. 
These half-lives should differ, and their similarity may result from the small mass transfer area of the dialysis 
membrane.

The heart, lung and fat tissues in the microdevice were able to interact with the drug candidates, and the 
distribution of drug candidates in these three tissues can be evaluated. Here, we demonstrate this function of the 
microdevice with pentobarbital and propranolol. We retrieved the heart, lung and fat tissues after testing and 
analyzed the remaining pentobarbital and propranolol in the tissues. Figure 3D shows that the propranolol was 
distributed across all the three tissues, and the its concentration decreased in the following order: lung > heart >  
fat. However, pentobarbital was detected in only the fat tissue. This result corroborates the results of animal test-
ing23. Propranolol is preferentially deposited in the lung and heart tissues because it is a β -receptor blocker and 
tends to bind the β 1-adrenergic receptor of the myocardium in the heart and the β 2-adrenergic receptor of the 
bronchial smooth muscle in the lung.

Estimation of the anti-tumor activity and hepatotoxicity. Because the tumor cells (MCF-7 cells) 
were integrated in the microdevice, we were able to estimate the anti-tumor activity of a drug candidate at a given 
pre-fixed concentration. Several classical anti-tumor drugs (CTX, taxol and 5-Fu) were used to demonstrate the 
feasibility of our working protocol in the microdevice. We set the concentration of CTX, taxol, and 5-Fu to 125, 5 
and 55 μ M, respectively, in accordance with the normalized doses used for clinical oral administration and injec-
tion. We then compared the anti-tumor activity of these drugs in the microdevice with those in a 96-well plate. 
Figure 3E shows that all the drugs demonstrated anti-tumor activity, but the anti-tumor activity in the 96-well 
plate and the microfluidic device significantly differed. CTX-induced tumor cell inhibition in the microdevice is 
~6 times higher than that in the 96-well plate and this difference arises because the hepatocytes in the microde-
vice metabolize CTX, and these metabolites more effectively inhibit tumor cells than native CTX. Moreover, the 
tumor cell inhibition rates due to taxol and 5-Fu in the microdevice was ~2 times lower than those observed in 
the 96-well plate. This difference may be due to the significantly lower effective concentrations of taxol and 5-fu 
on the chip than in the 96-well plate due to the ADME process in the microdevice. In summary, the testing of 
anti-tumor activity in the microdevice more closely approximates the clinical situation than the 96-well plate 
due to the ADME process in the microdevice24. The testing results obtained from the microdevice may serve as a 
reliable reference for the design of animal tests.

The microdevice, which contained primary hepatocytes, allows the hepatotoxicity of a drug candidate to be 
assessed at a pre-defined concentration. In our study, paracetamol, propranolol, cyclophosphamide, taxol or 5-Fu 
was added to the microchannel on the 1st spacer. After 48 h, the glutamic-pyruvic transaminase activity of cell 
culture medium incubated with hepatocytes in the 3rd PDMS spacer was collected and detected using ALT kits. 
Figure 3F shows that all drugs exhibited hepatotoxicity, and the toxicity of paracetamol was extraordinarily high. 
This result agrees with those of animal tests25.

Discussion
In this study, we stacked functional cells and tissues layer by layer in a microdevice. This modularized strategy is 
flexible and advantageous: (1) the quantity of cells or tissue deposited can be controlled by the membrane area; 
(2) the liquid volume between the cell layers can be controlled by the thickness of the spacer; (3) the number of 
cell types that can be integrated in a single chip is virtually unlimited because they are relatively independent units 
vertically separated by porous membranes and PDMS spacers; (4) functional cells and tissues, as well as the cell 
culture medium, can be easily retrieved by simply disassembling the device; therefore, the bioactivity of each cell 
type and the communication between any two connected cell layers can be readily characterized by an off-line 
analysis of retrieved samples, such as high-resolution optical imaging; (5) the combinations of functional cells are 
highly flexible. For example, we can simply combine Caco-2 cells and tumor cells to investigate the effect of drug 
absorption on antitumor efficacy. We can also combine Caco-2 cells and hepatocytes to investigate the effect of 
drug absorption on toxicity. We fabricated an endothelium barrier other than an endothelium-lined vasculature 
in the device because it simplified device fabrication and operation.

The highlight of our microdevice is its ability to recreate the drug ADME process. The ability of a compound 
to ultimately be developed into a successful drug depends largely on the ADME process of this drug in vivo. The 
ADME process is traditionally evaluated using laboratory animals, which is an expensive and onerous process. 
Using our laminated chip to evaluate ADME properties of a candidate drug before an animal test would signifi-
cantly reduce the number of animal tests thereafter, thus saving time and money.
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Because it can recreate the drug’s ADME process, this microdevice performs in a manner similar to a labora-
tory SD rat in preclinical tests and demonstrates unparalleled advantages over traditional in vitro drug screening 
tools. First, the drug-time curve can be obtained from the laminated chip (Fig. 3A–C), which is impossible with 
traditional in vitro drug screening tools. Second, the drug distribution can be evaluated based on the microdevice 
(Fig. 3D), which is also impossible with traditional in vitro drug screening tools. Third, the efficacy test results 
obtained using the microdevice, which are similar to those from animal and clinical studies, are highly influ-
enced by the ADME processes and differ significantly from the results obtained using a 96-well plate (Fig. 3E). 
Fourth, the administration method of a drug can be predicted using the laminated chip, but not with in vitro drug 
screening tools. To demonstrate the antitumor activity of taxol, its IC50 concentration in the microdevice (up 
to 5 μ M) was determined and was much higher than that in a 96-well plate (< 2 nM) due to the poor intestinal 
permeability, indicating that taxol can be administered only by injection and not orally. In fact, taxol is clinically 
administered only by injection22. Fifth, because our device is similar to a laboratory SD rat, it can provide abun-
dant information for drug development. In addition to the drug-time curve, distribution, and efficacy testing 
mentioned above, our device can also be used to conveniently evaluate the absorption, metabolism and toxicity.

Notably, we aimed to recreate the ADME process in vitro, not to recreate the living body of an animal. Thus, 
our device does not mimic the living body. For example, it does not contain a complex vascular network to con-
nect and feed different types of functional cells. The device also does not lend itself to allometric scaling, and 
the size ratio between different functional cells does not follow the conditions in vivo; the area of the Caco-2 
cell layer and dialysis membrane is relatively small, resulting in a small mass transfer rate, among other effects. 
However, our device transported drugs out through the cell barriers and tissues in the following order: intestinal 
wall - vessel barrier - liver - vessel barrier - different organs – kidney (dialysis membrane). This device allowed the 
investigation of the mass transfer property of drugs in vitro.

Technically, the co-culture of several dense cell layers and living tissue figments in a narrow space consumes 
large amounts of nutrients. Three culture medium cycles containing different components were supplied into the 
1st, 4th and 6th PDMS spacers at a flow rate of 5 μ l/min, generating a max fluidic shear of less than 10 dyne at 
channel restriction. The flow rate was determined based on two factors. First, when the three culture media flow 
at different rates, the resultant pressure difference may give rise to ultrafiltration that causes errors in the experi-
ment. Second, the MCF7 cells cultured on the PC member coated with collagen suffer from fluidic shear and may 
detach at higher flow rates.

In conclusion, a laminated microdevice integrating multiple cells and tissues was developed. Using our pro-
tocol, various cell types can be integrated in a single laminated chip, and the arrangement of functional cells and 
tissues in the microdevice is also highly flexible. This device is expected to serve as an alternative to the laboratory 
SD rat for the comprehensive evaluation of drug candidates. Furthermore, all animal cells and tissues used in the 
demonstrated device can likely be replaced by cells and tissues of human origin to further increase the value of 
this device in various fields, such as drug discovery, personalized medicine, toxin testing, etc.

Methods
Device assembly and operation. Prior to assembly, the PDMS plates were sterilized with 75% alcohol 
and dried on a clean bench under ultraviolet irradiation. From the top, functional cells, including Caco-2 cells, 
human umbilical vein endothelial cells (HUVEC), primary hepatocytes and Michigan Cancer Foundation-7 
(MCF-7) cells, were cultured on an individual porous polycarbonate membrane (Whatman, USA) with a 1-μ m 
pore size, respectively. The heart, lung, and fat tissues were individually deposited on the dialysis membrane 
(MWCO:50000, Spectrum, USA). The membrane-based cell and tissue layers were assembled along the vertical 
direction with the aid of PDMS plates, as shown in Fig. 1. The spaces inside the 2nd, 3rd and 5th PDMS spacer were 
filled with cell culture medium during assembly. Ultimately, the PMMA frame was covered, and all screws were 
tightened to seal the entire device.

The tubing was connected to the inlet and outlet holes at the top of the PMMA frame. The culture medium 
was infused into the inlets from one of three medium tanks with a multi-channel peristaltic pump (205 S/CA12, 
WATSON MARLOW, British). Each culture medium contained different components and was supplied into the 
1st, 4th or 6th PDMS spacer at a flow rate of 5 μ l/min. In detail, the cell-culture medium consisting of DMEM/
High Glucose (1x) medium (Hyclone, USA), 10% fetal bovine serum (FBS) (GIBCO, USA) and 1% non-essential 
amino acids (NEAA) (GIBCO, USA) was fed into the microchannel on the 1st spacer; the culture medium con-
taining DMEM/high glucose(1x) supplemented with 10% fetal bovine serum, 10 ng/ml EGF, 10 mM nicotinamide 
and 1% ITS-X (GIBCO, USA) was fed into the microchannel on the 4th spacer; DMEM/F12 medium (Hyclone, 
USA) was fed into the microchannel on the 6th spacer. Additionally, the drugs and reagents used in this study 
were completely dissolved in tank of the 1st culture medium and fed into the device by a peristaltic pump for the 
pharmacokinetic and toxicity studies. The overall operation time was 72 hours, during which all cells and tissues 
in the microdevice remained viable.

Non-uniform tubing was used to avoid the generation of air bubbles in the device (the set-up is described in 
detail in the S.I.). After operation, the fluids were recycled into the culture medium tanks via the outlets at the top 
of the PMMA plate.

Isolation of primary hepatocytes and tissues. Primary hepatocytes were isolated from male SD rats 
(weighing 180–220 g) according to a modified two-step method described by Seglen26. The viability of hepato-
cytes was > 85% based on Trypan blue exclusion. The heart, lung and fat tissues were also excised from the male 
SD rats. Fresh tissues less than 1 mm3 in volume were minced into fragments on ice, resuspended in cold PBS 
buffer, and centrifuged 3 times to remove the blood. The tissue fragments were filled in the central holes (2-mm 
diameter) of the 5th PDMS spacer separately before assembly, and weighed respectively before the detection of 
propranolol and pentobarbital in the tissue. The primary hepatocytes and tissues were isolated in accordance with 



www.nature.com/scientificreports/

7Scientific RepoRts | 6:25022 | DOI: 10.1038/srep25022

the laws set forth by the Chinese government and the regulations of the State Project for Essential Drug Research 
and Development in China. All experimental protocols were approved by the Specific Pathogen Free Animal 
Laboratory of the Dalian Medical University in China.

Cell culture. The Caco-2 intestinal epithelial cells were cultured in DMEM/High Glucose medium (1x) con-
taining 10% fetal bovine serum (FBS) and 1% non-essential amino acids (NEAA). HUVEC and MCF-7 cells were 
cultured in DMEM/F12 medium containing 10% fetal bovine serum. The primary hepatocytes were cultured in 
DMEM/high glucose (1x) medium supplemented with 1% fetal bovine serum, 10 ng/ml EGF, 10 mM nicotina-
mide and 1% ITS-X. 100 units/ml of penicillin and 100 mg/ml of streptomycin (Hyclone, USA) were added to all 
the aforementioned media.

Porous polycarbonate membrane was cut into round pieces with a diameter of 7 mm, sterilized with 75% alcohol. 
Dried pieces were arranged in 35 mm-dishes and coated with different concentration of type-I collagen (Lifetech, 
USA.), 5 μ g/cm2 for HUVEC and Caco-2 cells, and 40 μ g/cm2 for hepatocytes and MCF-7 cells. The Caco-2, HUVEC 
, MCF-7 cells (harvested with trypsin (0.25%)/EDTA (0.02%) solution) and fresh primary hepatocytes were cultured 
in 35 mm-dishes at concentrations of 8 ×  104/cm2, 1 ×  105/cm2 and 3 ×  104/cm2 and 8 ×  104/cm2, respectively.

The 35 mm-dishes containing porous membranes with cells were maintained at 37 °C in a humidified incuba-
tor under 5% CO2 in air. The porous membranes bearing hepatocytes and MCF-7 cells were assayed after 1 day of 
culture. HUVEC and Caco-2 cells were seeded on porous membranes for 3 days and 17 to 20 days, respectively, to 
ensure maturity and tight junctions. Then, the porous membranes loaded with cells were taken out and assembled 
with PDMS spacers.

Characterization of cell layers and tissue. The absorption and barrier capacities of the Caco-2 cell 
and HUVEC layers were evaluated by measuring the apparent permeability (Papp) of propranolol (Sigma, USA), 
sodium fluorescein (Sigma, USA), and labeled dextran (FITC-dextran, MW 40 kDa and Rhodamine B-dextran, 
MW 70 kDa, Sigma, USA) through cell layer. The cell layer was clamped by two PDMS spacers and fastened with 
PMMA plates. One milliliter of D’Hanks solution containing propranolol (240 μ M), sodium fluorescein (2 mg/ml),  
FITC-dextran (1 μ M) or Rhodamine B-dextran (1 μ M) was perfused through the microchannel of the upper 
PDMS layers, and blank D’Hanks solution was circulated through the lower microchannel at a flow rate of 5 μ l/min.  
We then sampled and detected the propranolol and sodium fluorescein in the lower circulating solution every 
30 mins. and Papp was calculated using equation 1:

= × ×P [cm/s] 1/(A C ) (dQ/dt) (1)app 0

where A =  area of mass transfer, C0 =  donor concentration of reagent in upper medium, and dQ/dt =  transmem-
brane transportation rate.

To measure the metabolism in the hepatocytes, 400 μ l of hepatocyte culture medium containing 125 μ M of 
CTX (Sigma, USA) was co-incubated with the hepatocytes in a 24-well plate at 37 °C for 12 h. One hundred 
microliters of medium was then sampled and added to a 96-well plate with containing MCF-7 cells and 100 μ l of 
fresh MCF-7 cell culture medium. Moreover, 100 μ l of blank hepatocyte culture medium or medium containing 
125 μ M CTX was added to a 96-well plate containing MCF-7 cells and 100 μ l of fresh MCF-7 cell culture medium. 
After 48 h, the proliferation of MCF-7 cells in all three 96-well plates was evaluated with an MTT assay.

To evaluate viability of tissues, the chip was assembled and operated at 37 °C for 72 h. The tissue fragments were then 
separated and stained with a LIVE/DEAD®  Viability/Cytotoxicity kit according to the manufacturer’s instructions.

Illustration of the drug-time curve. Propranolol, thiopentone (Wanjiashou bio-tech co., LTD, China) and 
pentobarbital (Wanjiashou bio-tech co., LTD, China) were added to the microfluidic device from the medium 
cycle into the first space at a concentration of 240 μ M. A 20-μ l sample was collected from the storage tank of 
the medium cycle in the fourth spacer at each time point, mixed with 20 μ l of methanol and centrifuged at 
12,000 rpm. The samples were then analyzed by HPLC (Agilent 1100 Series) with Agilent ZORBAX SB- C18 
(250 mm ×  4.6 mm, 5 μ m) columns. For propranolol, the mobile phase was methanol-water-KH2PO4(0.2 mol/l) 
(55:43:2, v/v), and detection was carried out at 210 nm. For thiopental and pentobarbital, the mobile phase was 
methanol-water (1:1, v/v), and detection was carried out at 240 nm and 220 nm, respectively.

Evaluation of distribution. The same concentration of propranolol and pentobarbital (240 μ M) was added 
to the microfluidic device from the medium cycle to the first spacer for 48 h. The tissue fragments were retrieved 
from the microfluidic device, washed 3 times with PBS, and dried with filter paper. After weighing, the tissue 
fragments were resuspended in 200 μ l of a water-methanol solution (1:1, v/v), lysed with ultrasound, and filtered. 
The propranolol and pentobarbital in the filtrate were analyzed by HPLC as described above.

Evaluation of antitumor activity. To evaluate the antitumor activity, 125 μ M cyclophosphamide, 5 μ M 
taxol or 55 μ M 5-fuorouracil was added to the microfluidic device via the medium cycle in the first spacer. As a 
control, MCF-7 cells in 96-well plates were exposed to the same concentration of the three types of drugs. After 
72 h, the MCF-7 cell layers were retrieved from the chip, and the proliferation of MCF-7 cells in both chips and 
the 96-well plates were evaluated with an MTT assay. A device with blank medium were used as a control.

Evaluation of hepatotoxicity. Paracetamol, propranolol, CTX, taxol or 5-fuorouracil was added to the 
microfluidic device from the medium cycle in the first spacer at the same concentration (240 μ M) for 48 h, and 
the blank medium cycle was used as a control. The hepatocyte culture medium was retrieved from the chip, and 
the activity of glutamic-pyruvic transaminase was detected with an alanine aminotransferase (ALT) analysis kit 
(Biosino, Shanghai, China).
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