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Uncertainty assessment of PM2.5 
contamination mapping using 
spatiotemporal sequential indicator 
simulations and multi-temporal 
monitoring data
Yong Yang1,2, George Christakos3,4, Wei Huang1,2, Chengda Lin1,2, Peihong Fu1,2 & Yang Mei1,2

Because of the rapid economic growth in China, many regions are subjected to severe particulate 
matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and 
uncertainty of air pollution can provide considerable benefits when developing risk assessments and 
environmental policies. The uncertainty assessment methods currently in use include the sequential 
indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be 
employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation 
(STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-
temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated 
atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used 
as the experimental dataset. Based on the number of STSIS procedures, we assessed various types 
of mapping uncertainties, including single-location uncertainties over one day and multiple days and 
multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with 
the SIS technique indicate that a better performance was obtained with the STSIS method.

Numerous studies have indicated that particulate matter (PM) in the atmosphere is related to various adverse 
impacts on human health1,2. China has experienced rapid economic growth and industrialization as well as a 
surge in car usage and urbanization, and these changes have generated severe amounts of particulate matter 
(PM) pollution3 and caused serious health impacts on China’s populace. For example, the statistical data from the 
National Health and Family Planning Commission of China showed that the current lung cancer incidence rate in 
China is growing by approximately 26.9% a year4. To evaluate the PM pollution conditions in China, the Chinese 
government has investigated the underlying characteristics of PM pollution. On February 29th, 2012, the third 
revision of the “Ambient Air Quality Standard” (AAQS) (GB 3095-2012) was released5, and starting in January 
2013, 113 of the major cities in China began releasing the recorded concentrations of seven pollutants, including 
sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter with aerodynamic diameters equal to or less 
than 10 μm (PM10), particulate matter with aerodynamic diameters equal to or less than 2.5 μm (PM2.5), carbon 
monoxide (CO), 1 h peak ozone (O3), and 8 h peak O3

6. Based on these monitoring data, a number of studies have 
been performed to determine the spatiotemporal variability of pollutants in the air3,7,8. In addition, a number of 
studies have used spatio-temporal geostatistical methods, including Bayesian maximum entropy (BME)9–11 and 
kriging interpolations12, to determine the spatiotemporal distribution of pollutants. However, a smoothing effect 
commonly occurs in maps generated by these techniques, and it can cause underestimations or overestimations 
of pollutants13 and misclassifications of polluted areas. However, the kriging estimate at each unsampled location 
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includes a kriging variance that measures the estimation uncertainty. A contaminated area cannot be reliably clas-
sified without considering this uncertainty14; thus, estimation uncertainty is an important factor when assessing 
the level of risk resulting from a pollutant15.

Generally, risk assessments are based on the quantification of specific uncertainties involved in classifying 
contaminated sites, and the results are expressed in terms of exceedance probabilities. In certain cases, quanti-
tative uncertainty assessments can be performed using two main groups of techniques: the first group includes 
non-linear geostatistics techniques, such as disjunctive kriging (DK) and indicator kriging (IK)16–18; and the sec-
ond group includes stochastic simulation algorithms, such as sequential indicator simulations (SISs) and sequen-
tial Gaussian simulations (SGSs), which generate a set of equiprobable representations (realizations) of the spatial 
distribution of target attribute values and uses the differences among the simulated maps as a measure of uncer-
tainty19,20. In general, SIS is more commonly used (or perhaps is more “fashionable”) than IK for uncertainty 
modeling21. Moreover, SIS can overcome the limitations inherent in IK, such as the smoothing effect22 and an 
inability to consider variation in estimations at unsampled locations or simultaneously reproduce multi-points 
of uncertainty21.

However, long-term uncertainty information related to PM in the atmosphere for a region may be more mean-
ingful because a number of studies have linked long-term exposure to PM with certain diseases23,24. Nevertheless, 
the uncertainty assessment methods listed above are generally used for processing data in a single period because 
they are incapable of integrating multi-temporal data. Therefore, we cannot determine the spatial distribu-
tion of exceedance probabilities over a long period of time. Furthermore, it is important to determine whether 
multi-temporal data for an environmental variable can improve the accuracy of uncertainty models when the 
environmental variable is monitored continuously over many sites.

Based on these considerations, the aim of the present work was to use the spatiotemporal sequential indica-
tor simulation (STSIS) technique25 to assimilate multi-period data and generate many realizations. The many 
realizations generated by STSIS were subsequently used to estimate the various uncertainties associated with the 
delineation of PM2.5, and the results were compared with those obtained using the SIS. For illustration purposes, 
we used a data set of PM2.5 concentrations in the air recorded in 2014.

Materials and Methods
Study area and data sources. The study area is located in Shandong Province, China, and it covers a 
national territorial area of 157.9 thousand Km2. The data presented in this study were obtained from 96 national 
air quality monitoring sites during the period from January 1, 2014 to December 31, 2014 (data were obtained 
from the following website: http://113.108.142.147:20035/emcpublish). The spatial distribution of monitorting 
was shonw in Fig. 1. The ambient concentration of PM2.5 was measured according to the China Environmental 
Protection Standard HJ655-201326. At each site, the daily PM2.5 concentration was calculated by averaging the 
hourly data.

Spatiotemporal sequential indicator simulation (STSIS) algorithm. To distinguish between space 
(S) and time (T), let Z(x) =  {Z(s, t)|s ∈  S, t ∈  T} represent a variable defined on a geographical domain S ∈  R2 and 
a time interval T∈ R. The STSIS algorithm used in this study involves the following steps. The first step is to code 
each PM2.5 concentration observation value z(s, t) into vector K indicator values using the indicator transforma-
tion function I(s, t; zc):
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Figure 1. Location of the study area and the spatial distribution of the monitoring sites. (Created by 
ArcMap, version 10.2, http://www.esri.com/).

http://113.108.142.147:20035/emcpublish
http://www.esri.com/
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where zc is a desired cutoff value of PM2.5 concentrations. In this study, the cutoff values were set to 34 μg · m−3 
(20% percentile), 53 μg · m−3 (40% percentile), 74 μg · m−3 (60% percentile), and 106 μg · m−3 (80% percentile). For 
each of the four PM2.5 concentration cutoff values (zc), the experimental spatio-temporal (ST) semivariogram of 
the indicator code was calculated using the following equation:

∑γ = − + +
=

^ h h
N h h

I s t z I s h t h z( , ) 1
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where hS and hT are the spatial and temporal lags, respectively, and N(hs, hT) is the number of pairs in the ST lag 
for the indicator codes of PM2.5 concentrations.

There are two main approaches to fitting a theoretical model to the spatiotemporal experimental variogram. 
The first approach relies on separable variogram modeling, which assumes separate spatial and temporal variation 
structures and represents the total ST variogram as the sum of these structures. This approach facilitates struc-
tural analyses; however, it presents a number of important drawbacks caused by assumption of a strict separation 
of spatial and temporal structures. For example, this approach implies that the spatial behavior must be the same 
for all time points and the temporal behavior must be the same at all spatial locations. However, such consistency 
is not observed in practice, where different spatial patterns emerge at different times and time series at different 
locations show different behaviors27,28. The second approach relies on a non-separable model that can overcome 
some of the above drawbacks. There are various non-separable covariance and variogram models29–32. In this 
study, the experimental ST semivariogram was modeled using a non-separable spatiotemporal semivariogram 
model.
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The parameters c0, c, v, w, ξ and α should be calculated from the data. The parameters of the model (3) were 
calculated simultaneously using a genetic algorithm to simultaneously estimate the parameters33 using a fitness 
minimization function, such as the root mean square error (RMSE):

∑∑ γ γ= −
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where ns and nt denote the number of spatial and temporal data pairs, respectively.
A random path visiting each ST node of a grid defined over the study area was established. Base on the proce-

dures of SIS34,35, at each unsampled location, the following procedures were employed.

(i)   The probability that the PM2.5 concentration will not exceed 34, 53, 74 and 106 μg · m−3 was estimated at 
each point (si, ti) of the random path as a linear combination of the neighboring indicator values using ST 
ordinary kriging. These probabilities were formally expressed by the corresponding conditional cumulative 
distribution function (CCDF), whereas the spatiotemporal distances between (si, ti) and the neighboring 
indicator data points were determined by hs +  αhT.

(ii)   The order relation deviations of the obtained probabilities were corrected, and a continuous model of the pri-
or CCDF of the PM2.5 concentration at location (si, ti) was built by interpolating or extrapolating the CCDF 
values.

(iii)   A simulated PM2.5 concentration value was randomly drawn from the prior CCDF at each spatiotemporal 
point (si, ti).

(iv)   The indicator code of the simulated value at location (si, ti) was added to the prior CCDF modelling at the 
next point (si+1, ti+1).

(v)   Following the random path, the procedure (i)–(iv) above was repeated until all of the nodes were visited and 
each node was assigned a simulated value, thus obtaining a STSIS realization.

By selecting various random paths, a number of STSIS realizations were generated. Each realization used a 
different path to visit all of the nodes of the grid covering the study area, thus representing a possible spatiotem-
poral distribution of PM2.5 concentrations. In this way, the mapping uncertainty was determined using a number 
of STSIS realizations. In the present study, 1000 realizations were generated using STSIS.

Uncertainty Assessment
Single location uncertainty for one day. The uncertainty of PM2.5 estimation at a single spatiotemporal 
location p′  =  (s′ , t′ ), which indicates that the probability of a PM2.5 concentration z(p′ ) is higher than the thresh-
old level of contamination (zc; e.g., 75 μg · m−3), can be represented by the following exceedance probability:

′
′

> = µ ⋅ =−P z g m np p[z( ) 75 ] ( )
1000 (5)STSIS c

3

where the threshold value of 75 μg · m−3 represents the lower limit of light pollution for PM2.5 concentrations 
according to the China National Ambient Air Quality Standards5 and n(p′ ) is the number of PM2.5 realizations 
generated by STSIS in which the concentration values were greater than the threshold zc (out of a total of 1000 
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realizations). The exceedance probability of Eq. (5) expresses the likelihood that a designated value (zc) will be 
exceeded. In addition, the variance ′s p( )p

2  of PSTSIS[z(p′ ) >  zc] is obtained as follows:

′ = −s p pp( ) (1 )
1000 (6)p

2

where p is the value of ′ >P zp[z( ) ]STSIS c .

Single-location uncertainty for multi-days. A single-location uncertainty refers to the joint PM2.5 esti-
mation uncertainty at a spatial location over multiple days, and it indicates that the probability of PM2.5 concen-
trations z(p′ ) over multi-days may be higher than the contamination threshold zc:

′ ′
′

> …… > =P z z np p p[z ( ) , , z ( ) ] ( )
1000 (7)STSIS t c t c
t
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where nt(p′ ) is the number of realizations in which the PM2.5 concentrations generated by STSIS over the 
multi-day period were greater than the threshold in each one of the 1000 realizations. A location with multi-day 
uncertainties can reveal the pollution risk over the long term. The variance of Eq. (7) can also be obtained from 
Eq. (6).

Multi-location uncertainty for one day. A one-day multi-location uncertainty represents the joint 
uncertainty at several specified locations over a single day, and it can be used to measure the reliability of con-
tamination assessments based on the probability map of PSTSIS[z(p′ ) >  zc] for a given critical probability pc. For 
example, for a given pc and PM2.5 concentrations zc, the number of points p′  where the following condition applies 
should be determined:

′ > ≥P z pp[z( ) ] (8)STSIS c c

Accordingly, the probability that the PM2.5 concentrations at n locations in an area will all be greater than the 
threshold zc can be calculated based on the following equation:
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where ′ …. ′n p p( , , )m1  is the number of realizations in which all of the simulated PM2.5 values at the m locations 
are greater than zc (in this case, out of a total of 1000 realizations). The variance can also be calculated as follows:
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−
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where pj is the value of the probability in Eq. (9).

Multi-location uncertainty over multi-days. Multi-day multi-location uncertainties represent the joint 
uncertainty at a set of specified locations over the multi-day period of interest, and they can be used to assess the 
reliability of contamination assessments based on the following probability map for a given pc:

′ ′> …. >P z zp p[z ( ) , , z ( ) ]STSIS t c t cq1

Based on Eq. (9), the multi-day multi-location uncertainty can be calculated as follows:
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where ′ …. ′n p p( , , )m1  is the number of realizations in which all of the simulated PM2.5 concentration values at m 
locations in an area exceed zc over a multi-day period (out of a total of 1000 realizations). The variance can also be 
calculated as in Eq. (10).

Goodness of uncertainty assessment. For comparative analysis purposes, the SIS technique21 was used 
to assess single-location PM2.5 uncertainties using data recorded for the same day only. Then, we compared the 
results obtained by SIS with those obtained by STSIS.

Based on the CCDF F (u; z|(n)) at any test location u (where the notation |(n) expresses conditioning to the 
local information, such as n neighboring data), the series of symmetric p probability intervals (PI) considered 
were bounded by the corresponding p-percentile. For example, the 0.5 PI is expressed as F−1(u; 0.5|(n), +  ∞ ] or 
as F−1(u; 0.5|(n), zmax] in practice. Adequate local uncertainty modeling requires that 50% of the true values over 
the study area locally exceed the CCDF median. Given a set of sampling points and independently generated 
CCDFs by the STSIS and SIS techniques at  the corresponding N  sampling locat ions u j, 

| = …z F n j Nu u{[ ( ), ( ; z ( ))], 1, , }j j , where |(n) denotes the conditioning to the local information (e.g., n 
neighboring data), the fraction of true values falling into the symmetric p PI was calculated as follows:
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At this point, the root mean squared error (RMSE) for the T technique (in this case, T =  SIS and STSIS) was 
defined as follows:
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where T =  SIS and STSIS and = = … =p i n n( 1, , ; 50)i
i
n

. Smaller RMSE values suggest more accurate assess-
ments of PM2.5 contamination uncertainty. The true value should fall into the PI according to the expected prob-
ability, and this interval should be as narrow as possible to reduce the value’s uncertainty. Therefore, a better 
probabilistic model would generate a smaller spread (less uncertain). In this study, the average width of the PIs for 
a series of probabilities p, W p( ), was calculated as follows:
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Smaller W p( ) values indicate that the PIs are narrower and the method has greater accuracy.

Results and Discussion
Preliminary data description. A summary of the descriptive statistics of the PM2.5 concentrations recorded 
in 2014 is presented in Fig. 2. The temporal trend of the average values for all of the monitoring sites is presented 
in Fig. 3. Figure 2 shows that the PM2.5 concentrations for all of the collected data ranged from 1 to 1000, and the 

Figure 2. Statistical characteristics of the PM2.5 concentrations for all of the collected data from Shandong 
Province in 2014. (SD, standard deviation; CV, coefficient of variation).

Figure 3. Daily variation of the PM2.5 means for all of the monitoring sites from 2014.1.1 to 2014.12.31. 
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mean concentration was 74.84. The coefficient of variation (CV) was 0.69, which indicates that the PM2.5 for all of 
the monitoring data presented a medium variability (i.e., 0.1 <  CV <  1). The skewness and kurtosis values were 
2.31 and 14.95, respectively, indicating that the null hypothesis of normality was rejected for the monitoring data.

Figure 3 shows that a characteristic seasonal variation in the PM2.5 occurs in the study area, with elevated con-
centrations occurring in spring and winter. These variations are related to seasonal fluctuations in the emissions 
as well as to meteorological effects3,32.

Spatiotemporal indicator semivariograms. Eq. (1) was used to obtain the indicator values for all of the 
original values, and then Eq. (2) was used to calculate the experimental spatiotemporal indicator semivariograms 
and fit the models of Eq. (3) to the four cutoff values. These models were subsequently used with the STSIS tech-
nique to build the prior CCDF. In Fig. 4, the indicator semivariograms of the non-separable models of Eq. (3) are 
fit to the experimental semivariograms. The values of the model parameters are listed in Table 1.

Mapping PM2.5 concentrations: STSIS vs. STOK. To compare the results generated by STSIS and a 
general ST prediction method, spatiotemporal ordinary kriging (STOK)36 was employed to predict the ST dis-
tribution of PM2.5. As shown in Fig. 2, the null hypothesis of normality was rejected for the original monitoring 
data. Thus, before performing the STOK, the data were logarithmically transformed. After the logarithmical 
transformation, the K-S test value, the skewness value and the kurtosis value were 4.725, −0.252, and 0.145, 
respectively. Thus, the PM2.5 concentrations after the logarithmical transformation followed a normal distribu-
tion. The experimental ST variograms were calculated, and the theoretical model was fit. The results are shown 
in the last row of Table 1 and Fig. 4(e). A STOK prediction was then performed on the LgPM2.5 concentration 
data based on the ST theoretical variogram model. Finally, the predicted LgPM2.5 values were translated into the 
original values by antilogarithms (Fig. 5(a)). Three randomly selected STSIS realizations out of 1000 realizations 
are shown in Fig. 5(b–d).

A comparison of the summary statistics is shown in Table 2. The maximum value, the standard deviation (SD) 
and coefficient of variation (CV) of the STOK were obviously smaller than those of the STSIS and original data, 

Figure 4. ST indicator semivariograms for (a) zc1, (b) zc2, (c) zc3, and (d) zc4, and (e) ST semivariograms for 
Lg(PM2.5). Dots represent experimental semivariogram data. Curved surfaces depict the fitted theoretical 
models.

c0 c v w ξ α RMSE

zc1 0.0299 0.1188 0.6298 150000 148900 89980 0.0259

zc2 0.03384 0.1739 0.7331 150000 150000 90000 0.0131

zc3 0.03338 0.1663 0.1 150000 150000 135200 0.0159

zc4 0.02604 0.09751 0.1045 150000 150000 128400 0.0175

Lg(PM2.5) 0.04135 0.3132 97.26 3219000 530700 231400 0.0299

Table 1.  Parameters of the non-separable spatiotemporal semivariogram model.
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indicating an obvious smoothing effect of the STOK. However, the maximum value, SD and CV of the STSIS 
realizations were close to those of original data, indicating a similar variability in the STSIS results with that of 
the original data. As shown in Fig. 5. The STSIS polygons were more fragmented relative to those of the STOK 
because of the smoothing effect of the STOK. Thus, the STOK results only present a simplistic spatial pattern and 
do not capture important information that is revealed in the more detailed STSIS maps, such as hot PM2.5 spots. 
Moreover, the STSIS realizations covered all possible spatial patterns, indicating that mapping uncertainties can 
be fully assessed by using a sufficient number of STSIS realizations.

Contaminated sited classifications based on single-location uncertainties. In this study, 1000 
STSIS simulated realizations were used to determine the single-location uncertainties, which are measured on 
four time scales: one day, one month, one season, and one year. In addition, the uncertainties are expressed by 
the probabilities of the PM2.5 concentrations being higher than a certain threshold value. Figure 6 shows that the 
probability that the PM2.5 concentration will exceed 75 μg · m−3 for most of the study locations on the 1st day and 
100th day is close to 1, whereas the probability that the PM2.5 concentration will exceed 75 μg · m−3 for most of the 

Figure 5. 3-D plots of the spatiotemporal distribution of PM2.5 obtained by the (a) STOK, and (b–d) three 
randomly selected STSIS realizations (out of 1000 realizations).

Method Min Max Mean SD CV Skewness Kurtosis

STOK 0.84 538.16 79.77 49.01 0.61 1.722 4.649

STSIS_162 1 993.11 76.89 56.53 0.73 2.144 3.393

STSIS_369 1 992.77 75.86 60.39 0.80 2.143 3.387

STSIS_489 1 992.61 77.02 58.36 0.76 2.138 3.36

Original 1 1000 74.84 51.7 0.69 2.31 14.95

Table 2.  PM2.5 concentration summary statistics of (a) the original data, (b) the STOK estimates, and 
(c) the three randomly selected STSIS realizations (out of 1000 realizations). SD: standard deviation; CV: 
coefficient of variation.
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study locations on the 200th day and 300th day is close to 0. Moreover, the highest probabilities on the 200th day 
and 300th day are 0.98 and 0.99, respectively, indicating that none of the study sites will present a PM2.5 concentra-
tion that will definitely exceed 75 μg · m−3 for these two days.

Figure 7 shows the spatial distribution of the probabilities in which the PM2.5 concentrations will exceed 
25 μg · m−3 (guideline provided by the WHO)37 for each month of 2014. These maps show the points with high or 
low ′ ′> … … >Prob p p[z ( ) 25, , z ( ) 25 ]STSIS t1  values according to Eq. (7). As shown in Figs 7 and 8, the highest 
probabilities from January to September are 0.88, 0.91, 0.91, 0.86, 0.8, 0.8, 0.77, 0.84, 0.53, 0.87, 0.89, and 0.83, 
indicating that there are a number of areas in which the PM2.5 concentrations might always exceed 25 μg · m−3 
during each month. The smallest probability is 0, and 12.7%, 46.6%, 8.7%, 37.6%, 41.5%, 33.6%, 54.9%, 47.5%, 
58.5%, 50.3%, 28.1%, and 28.8% of the study locations presented a probability of 0 from January to December, 
indicating that the PM2.5 concentrations in these areas are not always >25 μg · m−3 during the corresponding 
month. As shown in Fig. 8, the low mean values with high coefficients of variation (CVs) are found in May, July 
and September, and these values indicate lower PM2.5 pollution risks and high variation. Furthermore, the highest 
mean value and lowest CV are found in March, indicating that the highest PM2.5 pollution risk occurs for almost 
the entire study area in this month. In terms of spatial distribution, a high PM2.5 pollution risk (Fig. 7) is observed 
in the southwestern region of the study area during January, February, March, October, and November; and an 
absence of PM2.5 pollution risk is observed in the eastern region of the study area at the month scale for the entire 
year.

Contaminated site classification with multi-location uncertainty. The CCDF generated by the 
STSIS can be used to measure the local uncertainty at a single location; however, a series of single-point CCDFs 
cannot be used to measure multi-point spatial uncertainties21. Therefore, an adequate reliability assessment of 
PM2.5 contamination distributions requires a multi-location uncertainty assessment for 1 day (multi-location/
single-day uncertainty) and multiple days (multi-location/multi-day uncertainty) at a set of locations in the con-
taminated area based on the corresponding single-location uncertainty for 1 and multi-days (single-location/
single-day uncertainty and single-location/multi-day uncertainty, respectively).

Figure 9 shows two types of maps for different days classified as contaminated based on the probability maps 
determined by

′ > ≥P pp[z( ) 75] (16)STSIS c

where the critical probabilities pc =  0.9 and 0.8. Figure 10 shows the maps for every month classified as contami-
nated based on the exceedance probability maps determined by

Figure 6. STSIS-generated maps of the PM2.5 exceedance probabilities (probabilities of PM2.5 concentrations 
exceeding 75 μg · m−3) on the (a) 1st day, (b) 100th day, (c) 200th day, and (d) 300th day. (Created by ArcMap, 
version 10.2, http://www.esri.com/).

http://www.esri.com/
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′ ′> …. > ≥P pp p[z ( ) 25, , z ( ) 25] (17)STSIS t tn c1

where the critical probability pc =  0.5.
Tables 3 and 4 list the multi-location uncertainties for different days and different months (given pc) expressed 

by the corresponding pj (i.e., the joint probabilities of the PM2.5 concentrations at m simulated locations of the 
contaminated sites all exceeding 75 μg · m−3 over different days). The associated variances ′s p( )pj

2  of Eq. (10) are 
also listed. The pj value can be used to represent the reliability of the contaminated site classification. For example, 
the joint probability pj is 0.76 based on 9234 simulated locations of the contaminated sites based on a given critical 
probability pc =  0.8 for day 1, which means that for day 1, the probability of the PM2.5 concentration at all 9234 
simulated locations exceeding the threshold (75 μg · m−3) is 76%. If the critical probability pc =  0.9 is adopted, the 
joint probability is pj =  0.9 in day 1, and the likelihood that the PM2.5 concentrations in the contaminated area will 
exceed 75 μg · m−3 is greater. However, the joint probabilities of all months are pj =  0, indicating a zero likelihood 
that the PM2.5 concentrations at all of the simulated locations will exceed 25 μg · m−3 for each month.

Figure 7. STSIS-generated maps of the PM2.5 exceedance probabilities (probabilities of PM2.5 
concentrations exceeding 25 μg · m−3) in each month of 2014. (Created by ArcMap, version 10.2, http://www.
esri.com/).

Figure 8. Maximum, mean and coefficient of variation of the PM2.5 exceedance probabilities (probabilities 
of the PM2.5 concentration exceeding 25 μg · m−3) for each month of 2014. 

http://www.esri.com/
http://www.esri.com/
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Figure 9. Contaminated sites determined by the conditions in Eq. (12) for (a) day 1 at pc =  0.8; (b) day 1 at 
pc =  0.9 (c) day 100 at pc =  0.8; (d) day 100 at pc =  0.9; (e) day 200 at pc =  0.8; (f) day 200 at pc =  0.9; (g) day 300 at 
pc =  0.8 and (h) day 300 at pc =  0.9. (Created by ArcMap, version 10.2, http://www.esri.com/).

Figure 10. Contaminated sites determined by the conditions in Eq. (13) for each month (pc = 0.5). (Created 
by ArcMap, version 10.2, http://www.esri.com/).
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Goodness of uncertainty assessment: STSIS vs. SIS. To assess the improvements provided by using 
multi-temporal data, we first applied the purely spatial SIS technique to the original data recorded for each day 
of interest. In addition, to determine the effect of performing a composite spatiotemporal data analysis, we used 
the STSIS technique. The results of the SIS and STSIS techniques were assessed using the methods introduced in 
section 2.4. The CCDFs were obtained using the SIS and STSIS techniques and a cross validation of the monitor-
ing points recorded during 2014.

As shown in Fig. 11(a), the distance between the estimated points on the plots and the 45° line was smaller 
for the STSIS technique than for the SIS techniques, and the RMSE values of Eq. (14) for the STSIS and SIS 
were 0.031 and 0.14, respectively. Hence, the STSIS probability analysis is more accurate than the SIS analysis. 
Figure 11(b) shows the PI widths, which in this case correspond to the differences between the maximum value 
and the (1-p)-quintile of the CCDF. All of the points of the STSIS analysis fall below the points of the SIS analysis, 

day pc m pj spj

1
0.9 7724 0.9 0.03

0.8 9234 0.76 0.04

100
0.9 5533 0.88 0.03

0.8 6405 0.76 0.04

200
0.9 49 0.29 0.05

0.8 162 0.09 0.03

300
0.9 5 1 0.00

0.8 5 1 0.00

Table 3.  Uncertainty assessment of the sites where the PM2.5 concentrations are >75 μg · m−3 based on the 
joint probabilities.

Month pc m pj spj

January 0.5 3976 0 0

February 0.5 1150 0 0

March 0.5 4236 0 0

April 0.5 1174 0 0

May 0.5 331 0 0

June 0.5 1048 0 0

July 0.5 38 0 0

August 0.5 315 0 0

September 0.5 1 0 0

October 0.5 1628 0 0

November 0.5 798 0 0

December 0.5 648 0 0

Table 4.  Uncertainty assessment of the sites where the PM2.5 concentrations are >25 mg/Kg based on the 
joint probabilities.

Figure 11. Plots of the (a) proportion of the actual PM2.5 concentrations falling within the PIs (accuracy plot); 
and the (b) PI widths vs. probability interval p. The STSIS and SIS algorithms were used to generate the CCDF 
models using cross validation.
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indicating that the PIs obtained by the STSIS are narrower than those of the SIS. Thus, the STSIS performs better 
than the SIS.

Conclusions
In this work, the STSIS technique was used to perform uncertainty assessments for the PM2.5 concentrations in 
Shandong Province, China. The results suggest that the STSIS can represent composite spatiotemporal variations 
of PM2.5 concentrations using a non-separable semivariogram model as well as assimilate multi-temporal mon-
itoring data.

A comparison of the results of the STSIS with that of the STOK showed that the map of PM2.5 concentrations 
generated by the STSIS exhibits more realistic variations and is closer to the experimental data than the map gen-
erated by the STOK. In addition, the PM2.5 maps for 2014 revealed marked spatial and temporal trends. In terms 
of the spatial trends, the western part of the study area was heavily polluted with PM2.5, whereas the eastern part 
of the study area presented relatively good air quality. In terms of the temporal trends, a significant seasonal trend 
was observed, with high concentrations observed in spring and winter and relatively low concentrations observed 
in summer and autumn.

The STSIS realizations can be used to determine various types of site classification uncertainties in terms of 
exceedance probabilities, including single-location/single-day uncertainties, single-location/multi-day uncertain-
ties, multi-location/single-day uncertainties, and multi-location/multi-day uncertainties. A comparative analysis 
showed that by using multi-temporal data, the STSIS provided a better performance than the SIS because the 
corresponding probability intervals of the STSIS were consistently narrower than those of the SIS.
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