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Fractionation of Stable Cadmium 
Isotopes in the Cadmium 
Tolerant Ricinus communis and 
Hyperaccumulator Solanum nigrum
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Jian Hu2, Guangxu Zhu2, Hanzhi Zhang3, Liyan Tian1, Xiaokun Han1, Jie Ma1, Chuanwei Zhu2 & 
Yingxin Wan4

Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms 
in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-
hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient 
solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd 
isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector 
inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields 
isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of −0.70‰ to −0.22‰ in 
Ricinus communis and −0.51‰ to −0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation 
during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. 
Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may 
induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates 
potential applications of Cd isotopes for investigating plant physiology.

Cadmium (Cd) is a highly toxic heavy metal that can be accumulated in the human body through the food 
chain1,2. The health risks of environmental Cd pollution have caused global concern, since the ‘itai-itai’ disease 
caused by chronic Cd poisoning appeared in Japan in the 1950’s3. As a cost-effective and environmentally sustain-
able strategy4, phytoremediation could be used in the remediation and sustainable management of Cd polluted 
soils5. The mechanisms of Cd uptake, transport, and storage in plants are of high interest with respect to phytore-
mediation of Cd polluted soils.

Metal isotope signatures can be applied to identify the chemical process controlling metal transformation in 
plants and organisms6. Previous researchers have studied the metal toxicity in plants using different concentra-
tions and forms of heavy metals7,8. At present, some studies have comprehensively investigated the distribution 
of metal isotopes in plants, including isotopes of Fe9,10, Zn11–13, Cu14,15, Ca16–20, Mg21,22, and Ni23. Overall, these 
studies suggested that the identification of different isotopes within higher plants had specific mode of transport. 
Hence, metal isotopes could be used as valuable tracers when researching metal uptake, storage and translocation 
processes within plants.

High precision multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) has extended 
the application range of Cd isotopes. Cd stable isotopes were initially used to study mass-dependent fractionation 
in ordinary chondrites and lunar samples, generated by partial evaporation and condensation24–26. In addition, 
some studies reported that anthropogenic processes might lead to Cd isotopic fractionations, suggesting that Cd 
stable isotopes could be used as tracers for anthropogenic Cd pollution of the environment27–30. Moreover, many 
studies have focused on the marine environment, suggesting that biological uptake and utilisation of dissolved 
seawater Cd generated significant Cd isotope fractionation in the oceans31–38.
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However, to date there has been limited research on Cd isotopic composition in plants. In the present study, 
three Cd tolerant Ricinus communis cultivars (Zibo-5, Zibo-6, Zibo-8) and one Cd hyperaccumulator Solanum 
nigrum cultivar were used to study Cd uptake and translocation. These three R. communis cultivars were all 
high-Cd accumulators, and S. nigrum was a relatively fast-growing and high-biomass Cd-hyperaccumulator39,40 
used to develop new techniques for phytoextraction41. We conducted hydroponic culture experiments with these 
plant species and two nutrient solutions with differing Cd concentrations to 1) characterise the Cd isotope frac-
tionation associated with Cd transfer in the Cd-tolerant and -hyperaccumulator species; and 2) explore possible 
mechanisms of Cd mobilisation from the solution to various physiological compartments.

Materials and Methods
Plant Growth. Seeds of three R. communis cultivars (Zibo.5, Zibo.6 and Zibo.8) and S. nigrum were obtained 
from the Zibo Academy of Agricultural Sciences (Shandong, China) and the Institute of Applied Ecology, Chinese 
Academy of Sciences (Shenyang, China), respectively. All seeds were washed in running deionized water before 
germination in the substrate for 14 d. The seedlings were then transferred into polycarbonate pots containing 
half strength Hoagland’s solution39. The macronutrient solution consisted of 2 mmol·L−1 Ca(NO3)2, 2.5 mmol·L−1 
KNO3, 0.5 mmol·L−1 KH2PO4, 1 mmol·L−1 MgSO4 and 0.5 mmol·L−1 NH4NO3, as well as the micronutrient solu-
tion consisted of 0.25 μmol·L−1 H3BO3, 0.25 μmol·L−1 MnSO4, 0.25 nmol·L−1 CoCl2, 12.5 nmol·L−1 KI, 75 nmol·L−1  
ZnSO4, 0.25 nmol·L−1 CuSO4, 2.5 nmol·L−1 Na2MoO4 and 25 μmol·L−1 Fe-EDTA. After 7 d, CdCl2·2.5H2O was 
added to the Cd concentration of 2 mg·L−1 (Low Cd) and 5 mg·L−1 (High Cd). No Cd was added to the control 
check (CK).

Plants were cultivated under controlled conditions (16 h photoperiod with a white light intensity of 350 μ mol 
photons m−2 s−1; day: night temperatures 25 °C: 18 °C; relative humidity 60% ~ 70%). The isotopic composition 
(δ 114/110Cdspex) of the initial nutrient solution relative to Spex Cd standard solution was + 0.14 ±  0.08‰ (2SD, 
n =  3).

Sample Preparation. Three plant samples as replicates were harvested 30 d after their transplantation, 
washed with tap water, and then rinsed thrice with deionized water. Each plant was divided into root, stem and 
leaf. Plant materials were freeze-dried and weighed prior analysis.

0.2 g of plant samples were digested in concentrated aristar grade HNO3 (5 mL) and HF (1 mL) for 48 h in 
acid-cleaned Teflon beakers. The closed beakers were placed on a hot plate for 8 h at 80 °C and then at 160 °C 
until the plants were completely digested. Then 2–3 mL of HClO4 was added to the digested solutions to remove 
organic materials. After evaporation at 165–180 °C, the samples were dried and redissolved in 5 mL 1% (v/v) 
HNO3 (to convert the residue into the nitrate form). 2 mL of supernatant were transferred into pre-cleaned pol-
yethylene bottles for the determination of the Cd content. The remaining fractions were evaporated to dryness, 
redissolved in 10 mol·L−1 HCl (to convert the residue into the chloride form), dried again, and finally taken up in 
2 mL 2 mol·L−1 HCl for loading on columns.

Cd was purified by anionic exchange chromatography from nutrient solution (initial and final), root, stem 
and leaf following the procedure of Wei et al.42. Just prior to determination, the solutions were evaporated to near 
complete dryness and taken up in an appropriate volume of 1% HNO3 to obtain the desired Cd concentration for 
mass spectrometric analysis. The recovery of Cd purification in this study was higher than 95%.

Cadmium Isotope Analysis. The Cd concentration of nutrient solutions, root, stem and leaf was measured 
prior to Cd purification by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) (Elan DRC-e, 
Perkin Elmer, USA). The Cd isotope ratios were measured by multiple collector inductively coupled plasma mass 
spectrometry (MC-ICPMS). Cd isotope ratios were measured by 30 cycles for each sample with an internal preci-
sion of ±0.01‰ ∼  ±0.02‰ (RSD). The Cd isotope values were expressed as permil deviation relative to the Spex 
Cd standard solution:

δ = 


+ − 

×( )Cd 2( Cd/ Cd) / ( Cd/ Cd) ( Cd/ Cd) 1 1000 (1)

114/110 114 110
sample

114 110
standard1

114 110
standard2

Standard 1 and Standard 2 represented the standard solution measured before and after the sample.
All concentration data were corrected for the procedural blank, which ranged from 8.8 ng to 13.2 ng during 

the course of this study. At this level, the blank has a negligible effect on the measured isotope compositions, 
because it constitutes less than 0.0132‰ of the indigenous Cd present in plant samples. Standard-sample brack-
eting was applied in this study to correct the mass bias. The instrumental reproducibility based on repetitive 
δ 114/110Cd measurements of Spex Cd standard solution was 0.09‰ (2SD, N =  214). The accuracy of the measure-
ments was verified by measuring the Münster Cd standard solution and the results (+ 4.53 ±  0.08‰ of δ 114/110Cd) 
were in good agreement with previously published values30,43.

To express the isotope fractionation between two components A and B, we used δ 114/110CdA−B that equaled the 
difference δ 114/110CdA −  δ 114/110CdB.

The isotope composition of the whole plant Cd δ 114/110 CdWP has be established according to the following:

δ δ δ+ = +Cd (M M ) Cd M Cd M (2)114/110
WP Cd,root Cd,shoot

114/110
root Cd,root

114/110
shoot Cd,shoot

The Cd isotope composition of shoot and the whole plant (WP) relative to Spex Cd standard solution, as well 
as the isotopic variation between the different organs are shown in Table 2.

Data Analysis. Cadmium bioconcentration factor (BCF) was defined as the ratio of Cd in shoot or root of the 
plant to that in the nutrient solution. Cadmium translocation factor (TF) was described as the ratio of Cd in the 
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shoot to that in the root. Tolerance index (TI) was defined as the ratio of the plant biomass after Cd treatments to 
that of the control group. The indexes were defined as follows:

=BCF C /C (3)organ medium

where, Corgan (mg·kg−1) and Cmedium (mg·L−1) represent the Cd concentration in the shoot or root and the Cd 
concentration in the nutrient solution, respectively.

=TF C /C (4)shoot root

where, Cshoot (mg·kg−1) and Croot (mg·kg−1) represent the Cd concentration in the shoot and the Cd concentration 
in the root, respectively.

=TI W /W (5)Cd control

where, WCd (g) and Wcontrol (g) represent the biomass after Cd treatment and the biomass of the control group, 
respectively.

Results
Cd concentration and mass in organs of R. communis and S. nigrum. The Cd concentrations in 
different organs of R. communis and S. nigrum are shown in Fig. 1a,b. The Cd concentration of the leaf is much 
higher in S. nigrum than that in R. communis, whereas it is equal to or lower in stem and root of S. nigrum than 
that of R. communis. Cd concentrations in different organs of R. communis exhibit a significant gradient with a 
progressive increase from upper to lower organs, by the order of leaf < stem < root, independently of the Cd con-
centration in the nutrient solution. In contrast, the Cd concentration in the leaf of S. nigrum is higher than that in 
the stem under low Cd conditions.

It is essential to precisely determine mass-balances for Cd in the different organs when Cd transfer in the 
plants is investigated13,44. The Cd mass is calculated using the dry weight and Cd concentrations of the plant 
organs as shown in Fig. 1c–f. The total Cd mass in R. communis is higher than that in S. nigrum. The Cd mass in 
the root of R. communis is higher than that in the shoot independently of low or high Cd conditions. In contrast, 
Cd mass in the root of S. nigrum is much lower than that in the shoot under low Cd conditions. The Cd mass in 
the two tested plant species exhibits a consistent gradient that progressively increase from upper to lower organs, 
by the order of leaf < stem<  root.

Cd bioconcentration factor, translocation factor and tolerance index of R. communis and  
S. nigrum. All bioconcentration factors (BCFs) of the four plant cultivars are higher than 1 (Table 1). The 
BCFs of the four cultivars under soil condition are lower than those under hydroponic conditions, consider-
ing that Cd in soil occurs in complicated forms because of its association with many physicochemical environ-
ments that impact Cd availability. The root BCFs of different cultivars increase by the order of Zibo-5 >  Zibo-
8 >  Zibo-6 >  S. nigrum under low Cd conditions, whereas they increase by the order of Zibo-5 >  Zibo-8 >  S. 
nigrum >  Zibo-6 under high Cd conditions. The shoot BCFs of different cultivars increase by the order of S. nigru
m >  Zibo-8 >  Zibo-5 >  Zibo-6 under low Cd conditions, whereas they increase by the order of S. nigrum >  Zibo
-6 >  Zibo-8 >  Zibo-5 under high Cd conditions. Consequently, the root BCFs are highest in Zibo-5, followed by 
Zibo-8, whereas the shoot BCFs are highest in S. nigrum.

The translocation factors (TFs) of four plant cultivars are low, which indicates that the Cd concentration is 
higher in root than that in shoot. The TFs of different cultivars increase by the order of S. nigrum >  Zibo-8 >  Zibo
-6 >  Zibo-5 under low Cd conditions, whereas they increase by the order of S. nigrum >  Zibo-6 >  Zibo-8 >  Zibo
-5 under high Cd conditions. Thus, S. nigrum accumulates the highest Cd concentrations during Cd translocation 
from root to shoot, whereas Zibo-5 accumulates the least, regardless of Cd concentration in solution.

A tolerance index (TI) based on biomass exposed to heavy metals is used to evaluate the heavy metal toxicity 
in the plants45. The TIs of different cultivars increase by the order of Zibo-6 >  Zibo-5 >  Zibo-8 >  S. nigrum under 

Plants Cd treatment

BCF

TF (%) TI (%)root shoot

Zibo.5
2ppm 1107.2 ±  211.6a 38.5 ±  8.7a 3.5 ±  0.6 a 104.7 ±  9.4a

5ppm 900.2 ±  75.0b 31.9 ±  6.7a 3.5 ±  0.7a 97.0 ±  9.1a

Zibo.6
2ppm 521.2 ±  168.3b 20.7 ±  4.6b 4.0 ±  1.3b 141.5 ±  15.0a

5ppm 679.4 ±  65.3a 46.5 ±  2.8a 6.9 ±  0.8a 89.4 ±  11.8b

Zibo.8
2ppm 662.7 ±  99.3b 41.3 ±  5.7a 6.2 ±  0.1a 84.1 ±  15.8a

5ppm 824.0 ±   86.8a 33.9 ±  4.7b 4.1 ±  0.9b 83.1 ±  6.0a

S. nigrum
2ppm 452.1 ±  123.1b 117.2 ±  11.2a 25.9 ±  8.9a 37.9 ±  9.4b

5ppm 753.6 ±  70.3a 61.4 ±  8.7b 8.2 ±  1.0b 59.8 ±  11.3a

Table 1.  Effects of Cd stress on bioconcentration factor (BCF), translocation factor (TF) and tolerance 
index (TI) of three R. communis cultivars and S. nigrum in hydroponic conditions. Mean values (n =  3) with 
different letters in the same column for each cultivar are significantly different according to the independent 
samples T-test (p <  0.05).
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low Cd conditions, whereas they increase by the order of Zibo-5 >  Zibo-6 >  Zibo-8 >  S. nigrum under high Cd 
conditions. R. communis reveals higher TI than S. nigrum under hydroponic conditions, showing higher Cd tol-
erance of R. communis than S. nigrum.

According to an independent samples T-test (p <  0.05), the Cd treatments exert significant effects on trans-
port and accumulation in Zibo-6, Zibo-8, and S. nigrum but have no significant effects on shoot accumulation 
and transport in Zibo-5. Overall, R. communis is characterised by a higher Cd tolerance, whereas S. nigrum has 
a higher potential to translocate Cd from root to shoot. In the organs of these four plant cultivars, more Cd is 

Figure 1. Cd concentration (a,b), dry weight (c,d), Cd mass (e,f) and Cd distribution (g,h) of root, stem, and 
leaf of three R. communis cultivars and S. nigrum during the 2ppm and 5ppm Cd solution conditions. Error bars 
show standard deviation (SD) of the three replicates.
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accumulated in the root of R. communis, whereas more Cd is translocated from root to shoot in S. nigrum than 
R. communis.

Cd isotopic composition in R. communis and S. nigrum. The four plant cultivars reveal small differ-
ences in δ 114/110CdStem-Root (Table 2). The stem of Zibo-5 is enriched in lighter isotopes relative to the root, whereas 
Zibo-6 and S. nigrum are enriched in heavy isotopes relative to the root. In contrast, the δ 114/110CdStem-Root values of 
Zibo-8 behave differently under low and high Cd conditions. In low Cd conditions, the stem of Zibo-8 is depleted 
of heavy isotopes relative to the root, which is consistent with Zibo-5, whereas, in high Cd conditions, the stem 
of Zibo-8 is enriched in heavy isotopes relative to the root, which is consistent with Zibo-6 and S. nigrum. The 
three R. communis cultivars show similar distributions of heavy and light Cd isotopes in stem and leaf, which are 
different to S. nigrum. The leaf of the three R. communis cultivars is all enriched in lighter isotopes relative to the 
stem, whereas those of S. nigrum are depleted of light isotopes relative to the stem (Fig. 2).

The Cd isotope compositions in the organs of Zibo-5, Zibo-6, and S. nigrum under low and high Cd condi-
tions behave similarly, but differently to Zibo-8. The observed isotopic fractionations between the solution and 
organs increase by the order of δ 114/110CdRoot-Solution >  δ 114/110CdStem-Solution >  δ 114/110CdLeaf-Solution for Zibo-5, whereas 
they increase in the reverse order by δ 114/110CdLeaf-Solution > δ 114/110CdStem -Solution > δ 114/110CdRoot-Solution for S. nigrum. 
In contrast, the isotope value of δ 114/110CdStem-Solution in Zibo-6 is larger than values of δ 114/110CdRoot-Solution and 
δ 114/110CdLeaf-Solution. The Cd isotopic fractionation between the solution and organs of Zibo-8 under low condi-
tions behave similar to Zibo-5, but those under high conditions behave similarly to Zibo-6.

Discussion
The average δ 114/110CdWP-Solution values observed from solution to plants for Zibo-5, Zibo-6, Zibo-8, and S. nigrum 
are − 0.36‰, − 0.40‰, − 0.30‰ and − 0.46‰, respectively (Table 2). The observed enrichment of light Cd iso-
topes is consistent with previous studies on other metal isotopes (e.g. Cu, Fe, Zn, Ca) in plants, except for Mg 
exhibiting isotopically heavy plant biomass6,13–15,23,46. The physiological and molecular mechanisms of Cd hyper-
accumulation and tolerance include root proliferation in Cd-rich substrate, influx into cytosol or vacuole by 
specific and non-specific transporters, and complexation of Cd by certain ligands in cells47. Based on the physi-
ological and molecular mechanisms of Cd in higher plants, the speciation and diffusion in solution, adsorption 
on the root cell walls, uptake by ZIP proteins (Zinc-regulated transporter, iron-regulated transporter protein), 
complexation by phytosiderophores in solution and uptake of the entire complex through the membrane may 

Figure 2. Cd isotope compositions (reported as δ114/110Cdspex) in final solution, root, stem, and leaf of three 
R. communis cultivars and S. nigrum. Error bars show standard deviation (SD) of the three replicates.

δ114/110Cd (‰)

Low Cd (2ppm) High Cd (5ppm)

Zibo-5 Zibo-6 Zibo-8 S.nigrum Zibo-5 Zibo-6 Zibo-8 S.nigrum

Root (δ 114/110Cdspex) − 0.12 − 0.23 − 0.08 − 0.25 − 0.01 − 0.13 − 0.14 − 0.25

Shoot (δ 114/110Cdspex) − 0.22 − 0.05 − 0.13 − 0.19 − 0.08 − 0.14 − 0.09 − 0.10

WP (δ 114/110Cdspex) − 0.14 − 0.20 − 0.09 − 0.22 − 0.02 − 0.13 − 0.13 − 0.22

Root-Solution − 0.35 − 0.49 − 0.31 − 0.44 − 0.34 − 0.34 − 0.28 − 0.51

Stem-Root − 0.08 0.19 − 0.03 0.02 − 0.03 0.01 0.06 0.14

Leaf-Stem − 0.18 − 0.04 − 0.14 0.09 − 0.33 − 0.28 − 0.08 0.01

WP-Solution − 0.37 − 0.46 − 0.32 − 0.41 − 0.35 − 0.34 − 0.27 − 0.48

Shoot -WP − 0.08 0.15 − 0.04 0.03 − 0.05 − 0.01 0.04 0.11

Table 2.  δ114/110Cd values in root, shoot, and whole plant (WP) of the three R. communis cultivars and S. 
nigrum relative to Spex Cd standard solution, as well as the isotopic variations between different organs.
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affect the metal isotope fractionation6,14,44. The Cd isotopic composition in root and shoot possibly reflects a 
combination of all these processes.

Two possible abiotic processes could lead to isotope fractionation at the solution-root interface: diffusion 
and adsorption. Rodushkin et al.48 found that lighter isotopes diffused faster than heavier isotopes and free ions 
diffused faster than complex ions. Diffusion from solution to root could lead to an enrichment of the lighter iso-
topes at the root surface. In addition, adsorption could also result in Cd isotope fractionation. A previous study49 
showed a small Cd isotope fractionation occurred during sorption of Cd to synthetic birnessite from low ionic 
strength solution, with lighter isotopes sorbed and heavier isotopes remaining in solution. In the present study, 
the δ 114/110Cd Root-Solution in R. communis and S. nigrum is − 0.51‰ to − 0.28‰ (Table 2). The root is enriched in 
the lighter Cd isotope. Therefore, diffusion may be a dominant process, leading to Cd isotope fractionation at the 
solution-root interface of R. communis and S. nigrum.

Cd transport across the root cell and other cell membranes are possibly metabolically controlled14. In addition, 
within plants Cd can be transported along the electrochemical gradient via carrier proteins and ion channels or 
against the electrochemical gradient via electrogenic pumps13,14. Carrier-mediated transport favours heavy iso-
topes because it involves covalent binding to a carrier protein on the outer side of the membrane, with subsequent 
release on the inner side as a result of conformational changes in the carrier13. Conversely, transport through 
ion channels or via electrogenic pumps favours light isotopes because of its greater diffusion coefficient14. The 
observed net enrichment of the lighter isotopes in root and the differences between the plant cultivars, there-
fore, suggest that membrane transport is dominated by ion channels and electrogenic pumps rather than by 
carrier-mediated transport.

The differences in Cd isotopic fractionation from root to stem of four plant cultivars might be due to the dif-
ferent Cd supply limitation, which is associated with the tolerance of plants. Although the Cd mass in nutrient 
solutions is sufficiently supplied, the Cd mass translocated in the extracellular and cellular plant organs might be 
limited in different plant cultivars. The magnitudes of the isotopic shifts during the solution-to-organ transfer 
slightly increase with decreasing Cd concentrations in the organs (Fig. 3). Moreover, the plant biomass is higher 
under low Cd conditions than that under high Cd conditions (Fig. 1c,d). Therefore, the Cd stress affects the mag-
nitude of the isotopic shift during the solution-to-organ transfer. Gault-Ringold et al.34 proposed that Cd uptake 
of phytoplankton did not result in no net Cd isotopic fractionation under ‘supply-limited’ condition, but it could 
be kinetically driven resulting in Cd isotopic fractionation under sufficiently high Cd levels. This could explain 
the different Cd isotope fractionation from root to stem between the cultivars.

The variation in the Cd isotopic composition between stem and leaf in R. communis and S. nigrum is distinct. 
It may be attributed to the complexation with organic acids, phytochelatins (PCs), and metallothionein in the 
xylem of S. nigrum. Sun et al.50 identified that complexation with organic acids, phytochelatins (PCs), and metal-
lothionein was an important mechanism for Cd detoxification, transportation and storage in S. nigrum. In addi-
tion, previous work14 also showed that complexation with organic ligands led to an enrichment of heavy isotope 
in the organs. Figure 1g,h show that a higher amount of Cd is stored in the root of R. communis, whereas more 
Cd is translocated to the stem and leaf of S. nigrum. This can be explained by the complexation of organic acids, 
phytochelatins (PCs), and metallothionein in S. nigrum with Cd, which catalyse the translocation of Cd from root 
to shoot. The observed difference between root and shoot in the Cd-tolerant and -hyperaccumulator species may 
reflect the different Cd transportation mechanisms of the species.

Until recently, limited studies have reported the Cd isotopic composition in plants, including Cyperus alterni-
folius (− 0.37‰ of δ 114/110Cdspex), Pteris vittata (− 0.34‰ of δ 114/110Cdspex) and some birch leaves (ranged from 
+ 0.30‰ to + 1.3‰ of δ 114/110Cdspex)42,51. In the present study, all Cd isotopic compositions of plants determined 
for R. communis (− 0.40‰ to − 0.01‰) and S. nigrum (− 0.25‰ to − 0.10‰) show negative values relative to 
the Spex Cd standard solution. This further suggests that these two plant species preferentially take up lighter 
Cd isotope. In comparison, Pallavicini et al.51 reported that the δ 114/110Cdspex values of birch leaves favoured the 

Figure 3. Relationships between the Cd concentration and δ114/110Cd in the organs of R. communis and  
S. nigrum under different Cd conditions. 
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enrichment of heavier Cd isotopes. Wei et al.42 suggested that different Cd isotopic compositions in different plant 
samples could result from distinct mechanisms of Cd accumulation in plants or different sources of Cd (from soil 
or nutrient solution).

The Cd isotopic composition of R. communis and S. nigrum are enriched with Cd isotope reservoirs in 
nature. Fig. 4 shows Cd isotope investigations on natural materials, such as meteorites and lunar rocks24–26,52, 
seawater34–38,53–56, samples from Pb-Zn smelting and refining plants28,29, and soil polluted by the emissions from 
plants57,58. Compared with the Cd isotope values in those materials, the variation of Cd isotopic compositions 
in plants is small. However, plants represent a reservoir of Cd isotopes in nature. In previous studies28,29,57,58, 
the δ 114/110Cdspex values of source featured with ‘slag (+0.4‰)>  GSS-1 (+0.1‰)>  GSD-12 (−0.4‰)>  dust 
(−0.6‰)>  Zinc oxide ore (−1.2‰)>  residue (−1.4‰)>  Primary Zinc ore (−1.6‰)’ (Fig. 4). In the present 
study, the δ 114/110Cdspex ranges for R. communis (−0.40‰ to −0.01‰) and S. nigrum (−0.25‰ to −0.10‰) were 
between the δ 114/110Cdspex values of GSS-1(soil) and GSD-12 (sediment).

Conclusions
In the present study, the Cd isotope measurements show an isotopic shift to lighter isotopes during Cd transport 
from the nutrient solution to the plant organs of the Cd-tolerant R. communis and the Cd-hyperaccumulator  
S. nigrum. The observed isotope fractionation is enriched with the Cd isotope reservoirs in nature. In addition, 
the variation of the Cd isotopic compositions in leaf and stem differs between R. communis and S. nigrum imply-
ing different mechanisms of Cd translocation to the xylem in the Cd-tolerant and -hyperaccumulator species. 
Cd isotope fractionations of different organs provide new information to identify the chemical processes con-
trolling Cd uptake and translocation in plants and organisms. Plant uptake is an important factor of isotopic 
variation in the Cd biogeochemical cycle. Thus, Cd isotope fractionation by plants needs to be taken into account 
in future investigations on environmental pollution using Cd isotopes. Overall, studies on Cd isotopes in plants 
lay the groundwork for understanding the biogeochemical Cd cycle and mechanisms of plant Cd acquisition and 
allocation.
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