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Knots cascade detected by a 
monotonically decreasing sequence 
of values
Xin Liu1 & Renzo L. Ricca2

Due to reconnection or recombination of neighboring strands superfluid vortex knots and DNA plasmid 
torus knots and links are found to undergo an almost identical cascade process, that tend to reduce 
topological complexity by stepwise unlinking. Here, by using the HOMFLYPT polynomial recently 
introduced for fluid knots, we prove that under the assumption that topological complexity decreases 
by stepwise unlinking this cascade process follows a path detected by a unique, monotonically 
decreasing sequence of numerical values. This result holds true for any sequence of standardly 
embedded torus knots T(2, 2n + 1) and torus links T(2, 2n). By this result we demonstrate that the 
computation of this adapted HOMFLYPT polynomial provides a powerful tool to measure topological 
complexity of various physical systems.

Vortex filaments in classical and quantum fluids1,2, magnetic flux tubes3, phase defects4, polymers and DNA mac-
romolecules5,6 may interact and recombine through reconnection of neighboring strands. Details of the process 
depend on specific local mechanisms that may differ from case to case, but certain qualitative features — such as 
the preservation of the original strand orientation after recombination — are generic and common to all systems. 
In the majority of cases orientation-preserving reconnections occur when neighboring strands tend to align (at 
the time of closest approach) in an anti-parallel fashion7–10, before transversal merging and final separation. The 
prototype process is schematically shown in Fig. 1a, where the reconnection of two anti-parallel strands of a single 
structure (stage (i), in orange) produces a new structure given by a pair of loops (stage (ii), in orange and blue). 
In general, when two disjoint, closed tubes (representing vortex rings or DNA macromolecules) reconnect, the 
result is a single closed tube, and when a single closed tube reconnects with itself, the result is two closed tubes. 
Of course this process is not unique and depends crucially on the particular initial condition, as shown in Fig. 1b, 
where a trefoil vortex knot undergoing two simultaneous reconnection events produces two unlinked, unknotted 
vortex loops. The study of these processes is clearly of great importance, because the change of topology is often 
accompanied by a change in energy, entropy and function.

According to recent observations based on direct numerical simulations of decaying Bose-Einstein conden-
sates11,12 and recombinant DNA plasmids13, both systems initially given by torus knots and links are found to 
undergo an almost identical cascade process through an alternate sequence of T(2, 2n +  1) torus knots and T(2, 2n)  
torus links as n (integer) decreases to 0. After every reconnection the knot/link seems to gradually untie by 
removing a single crossing at a time, by reducing consistently topological complexity (measured by the minimum 
number of crossings). Remarkably, this sequence of topological transitions seem to follow an identical topolog-
ical decay pattern (shown in Fig. 2), irrespective of the physical context considered. This, we believe, is probably 
due to the particular choice of initial conditions given by the ideal shape configuration. Torus knots and links in 
ideal shape are maximally symmetric objects with optimal geometric regularity, crucial in the follow-up of the 
reconnection process. The counter-example of Fig. 1b (see also the envisaged process discussed in the section 
Concluding remarks) clearly shows how a very different initial condition far from ideal may produce a very dif-
ferent scenario.

In our recent derivation of Jones and HOMFLYPT polynomials for fluid knots14,15 we showed that these 
adapted polynomials can be used not only to detect topological differences between knots and links (as standard 
knot polynomials typically do), but also to measure topological differences between physical states. Here, by using 
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our adapted HOMFLYPT polynomial we show that the particular cascade above can be detected by a unique, 
monotonically decreasing sequence of numerical values.

Methods
In general, polynomial computations for knots and links are based on the recursive application of two skein rela-
tions, by the use of diagrams16 obtained from the indented projection of a given knot with minimal crossings (see 
top diagram of Fig. 3). For tubular filaments these diagrams simply represent the tube centerline, with 
over-crossings and under-crossings to denote respectively over-passes and under-passes of tube strands. The first 
skein relation simply states that the polynomial value of the unknot (the trivial knot) is equal to 1. The second 
skein relation prescribes how a “state” associated with a particular crossing type, represented for example by the 
over-crossing , is related to its opposite, the under-crossing , and the relative “smoothing” given by two par-
allel strands (the non-crossing ). Standard knot polynomials are powerful topological invariants readily availa-
ble from dedicated web-sites (such as KnotAtlas17). By identifying a physical knot with a space curve K of physical 
strength Φ (circulation, in the case of a vortex), we can extend standard knot polynomials by new polynomials 
that characterize physical knots in terms of knot type and strength15,18.

For physical knots the skein relations of the HOMFLYPT polynomial PK(a, z) (a two-variable polynomial in 
a and z) are given by15

Figure 1. Time sequences of interaction and anti-parallel reconnection of (a) a physical filament in space and 
(b) a trefoil vortex knot governed by the Gross-Pitaevskii equation. Physical knots and links are identified by 
oriented tubular filaments (orientation denoted by arrows, red online) of given strength Φ. (a) Time evolution 
of (i) an unknotted, folded loop (orange online); when neighboring strands come into close contact in an anti-
parallel fashion a reconnection event takes place by transversal merging. As a result (ii) a pair of unknotted, 
unlinked loops (blue and orange online) are produced. (b) Numerical simulation of the evolution of (i) a trefoil 
vortex knot governed by the Gross-Pitaevskii equation (images adapted from ref. 25). Vortex strands reconnect 
simultaneously at two different locations to produce (ii) a pair of distinct, unknotted, unlinked loops.

Figure 2. Cascade of torus knots and links produced by single reconnection events. Time sequence of a 
cascade of torus knots (orange online) and links (blue and orange online) produced by single reconnection 
events, that consistently reduce topological complexity by stepwise unlinking: in the example the torus knot T(2, 7) 
is shown to gradually decay to a pair of unknotted, unlinked loops T(2, 0) through the alternate production of 
distinct torus knots and links.
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with z =  k −  k−1 and

= =ω τk e a e, , (3)2

where ω =  λωWr and τ =  λτTw denote respectively reference values of writhe Wr and twist Tw of K19,20, weighted 
by the relative uncertainty (probability) factors {λω, λτ} ∈  (0, 1).

Since a and z admits respectively interpretation in terms of twist and writhe (independently), eq. (2) pre-
scribes a relationship between twist contribution (from the left-hand-side) in terms of writhe. Hence eq. (2) 
provides a framing prescription for physical knots: thus, reduction of HOMFLYPT polynomial to Jones, that is a 
one-variable polynomial, implies that

λ λ λ λ= = ⇒ = = − .τ ω
τ ω

+ak e Wr Tw1 ( /4 ) (4)2 4

Results
Let us make the following assumptions:

A1:  all torus knots T(2, 2n +  1) and links T(2, 2n) (with n =  0, 1, 2, …) considered here are standardly embedded 
on a mathematical torus in closed braid form;

A2:  all torus knots T(2, 2n +  1) and links T(2, 2n) form an ordered set {T(2, n)} ( ∈n ) of elements listed accord-
ing to their decreasing value of topological complexity given by the minimum number of crossings cmin =  n;

A3:  any topological transition between two contiguous elements of {T(2, n)} is determined by a single, anti-par-
allel reconnection event21.

We can then prove the following, general result.

Theorem. Let us consider the family {T(2, n)} of torus knots and links. The HOMFLYPT polynomial of T(2, n) is 
given by
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where PT(2,3) =  2a−2 +  a−2z2 −  a−4 and PT(2,2) =  a−1z +  (a−1 −  a−3)z−1.

Proof. Let us consider the diagram of T(2, n +  2), and in particular a portion of it represented by the top dia-
gram of Fig. 3 and apply the second skein relation to relate crossing sites. From (2) we have

− =+
−

+aP a P zP , (6)T n T n T n(2, 2)
1

(2, ) (2, 1)

that is

Figure 3. Application of the skein relation (2) to a portion of torus knot/link diagram. The skein relation 
(2) prescribes a relationship between the polynomial of the knot represented by the top diagram (with over-
crossing encircled) and the polynomials of the knots represented by the bottom diagrams (with under-crossing 
and non-crossing sites encircled). Double arrows denote topological equivalence between diagrams. By direct 
application of eq. (2) to the top diagram we can determine the corresponding relationship between PT(2, n+2), 
PT(2,n) and PT(2,n+1).



www.nature.com/scientificreports/

4Scientific RepoRts | 6:24118 | DOI: 10.1038/srep24118

= + .+
−

+
−P a zP a P (7)T n T n T n(2, 2)

1
(2, 1)

2
(2, )

This is a recurrence relation between polynomials, so it can be written as

α β α− = 
 − 

+ + +P P P P , (8)T n T n T n T n(2, 2) (2, 1) (2, 1) (2, )

where α and β are two undetermined coefficients. By comparing (8) and (7) we have α +  β =  a−1z and αβ =  − a−2, 
that combined together give a quadratic equation, with solutions

α β α β= = − = − = .− − − − − −i a k a k ii a k a k( ) , ; ( ) , (9)1 1 1 1 1 1

On the other hand, by applying (8) recursively we have
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By rewriting (10) and computing recursively each contribution, we have
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Now, by substituting consecutively each term we have
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By direct substitution we can see that both solutions (9) reduce (11) to the same, identical recurrence equation 
given by (5). This completes the proof. ◼ 

We can now apply the specifications (3). For simplicity, and without loss of generality, let’s set Φ =  1. By using 
(3) we can re-write (5) as
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The family of torus knots and links considered earlier11–13 correspond to positive T(2, n) (i.e. of type shown in 
Fig. 2, with all over-crossings); for this knot family, denoted by {T(2, n)}+ reference values for Wr and Tw must be 
taken between 0 and 122. For the family {T(2, n)}− of mirror knots with all under-crossings, i.e. for negative T(2, 
n), the HOMFLYPT polynomial can be readily obtained by using the following lemma.

Lemma. Given the knot K, the HOMFLYPT polynomial of the mirror knot K̃  is given by replacing 

→ → → −− −a a k k z z, ( ), (13)1 1

into the HOMFLYPT polynomial of the knot K.

A straightforward proof of this Lemma is obtained by using the second skein relation (2).
For negative T(2, n) reference values for Wr and Tw must be taken between − 1 and 022. Note that by using 

(13) and by replacing τ →  − τ and ω →  − ω, equation (12) remains unchanged. Hence, for any choice of Wr and 
Tw (consistently with positive or negative T(2, n)) and for any choice of the uncertainty values {λω, λτ} ∈  (0, 1) 
we obtain, for decreasing n, a monotonically decreasing sequence of HOMFLYPT values. We can thus prove the 
following corollary in full generality.

Corollary. Let us consider the family of torus knots and links {T(2, n)}±. HOMFLYPT computation of PT(2,n) gener-
ates, for decreasing n ( ∈n ), a monotonically decreasing sequence of numerical values given by (12).
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Initial values are given by the HOMFLYPT computation of the 2-component unlink unknot T(2, 0), unknot 
T(2, 1), Hopf link T(2, 2) and trefoil knot T(2, 3)15. For the sake of example we can take λω =  λτ =  1/2 (equivalent to 
an equi-distribution of uncertainty of writhe and twist values) and |Wr| =  |Tw| =  1/2 to obtain the numerical values 
of the sequence shown in Fig. 4. Other values of λω and λτ would equally give a monotonically decreasing sequence.

The sequence is clearly independent from the specific physical context and it appears to be consistent with the 
typical behavior of global geometric properties of standard torus knots. Computations of various quantities, such 
as first-order elastic energy (bending and torsional) of thin rods22 and kinetic energy of vortex filaments23 (see inset 
of Fig. 4) demonstrate a remarkable similarity with the monotonically decreasing sequence of HOMFLYPT values.

Concluding Remarks
The results presented here hold true for any sub-sequence of standardly embedded torus knots and links in the 
family {T(2, n)}± under the assumption that any topological transition between contiguous knot/link types in 
{T(2, n)}± is produced by a single, anti-parallel reconnection event. Standard embedding implies maximal sym-
metry and minimal crossing presentation, that is, in a way, reminiscent of the ideal shape concept. Such a require-
ment mimics the initial conditions chosen for the cascade process11–13 and it is essential in the mathematical proof 
given above. A very different scenario can indeed be envisaged for an initial configuration far from “ideal”. Take 
for example the standardly embedded knot T(2, 5) shown in Fig. 5a. Consider the encircled region and its rep-
resentation given by the central diagram (top row). Suppose to deform one of the strands continuously around the 
other (as indicated by the dashed arrows) so that two neighboring parts of the coiled strand reconnect to produce 
a single loop. The resulting system, shown in Fig. 5b, is the connected sum of a trefoil knot and a Hopf link denoted 
by 3_1#2_2_1 (topologically different from the connected sum of the standardly embedded T(2, 3)#T(2, 2)).  
This composite knot has same topological complexity (cmin =  n =  5) of the original T(2, 5), but very different 
geometry and topology.

The same argument applied to the torus link T(2, 6) gives the composite knot 3_1#3_1 (connected sum of two 
trefoil knots), again with same topological complexity of T(2, 6) but very different geometry and topology. By 
using a basic property of the HOMFLYPT polynomial24 for composite knots (say K1 and K2), given by

=P K K P K P K( # ) ( ) ( ) (14)1 2 1 2

we can compute HOMFLYPT for the two cases above and compare these values with the values obtained for the 
sequence of standardly embedded knot types. We find

that shows that an alternative path of monotonically decreasing values (given by the bottom branch above) is 
possible if we drop the assumption (A1) of standard embedding. The same can happen for other knot types of 

Figure 4. Monotonically decreasing sequence of values obtained by HOMFLYPT computation. Inset: 
generic behavior of global geometric properties of positive torus knots. HOMFLYPT computation given by (12) 
for positive T(2, n), with λω =  λτ =  1/2, |Wr| =  |Tw| =  1/2 and n =  4, 5, … , 10: for decreasing n we obtain a 
monotonically decreasing sequence of numerical values (circles denote exact values, the dashed curve 
represents the best fit given by a quartic polynomial). Inset: typical behavior of global geometric properties of 
positive torus knots: writhe Wr, total squared curvature Eb, total curvature K and total length L (over-bars 
denote non-dimensional quantities)22.
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higher topological complexity. Work to establish probability paths associated with alternative topological cascade 
scenarios is currently under way (Mariel Vasquez, private communication) and no doubt these results will help to 
choose more appropriate values for the probability factors λω and λτ.

What HOMFLYPT computational values may say in terms of physics is not yet clear. However, as shown by 
the inset of Fig. 4, there is an unambiguous correspondence between HOMFLYPT computations and various 
properties of physical knots. As discussed in earlier work15 the present results demonstrate that HOMFLYPT val-
ues — rooted in writhe and twist helicity contributions — provide new information to identify and quantify the 
topology of complex systems. If standard knot polynomials can help to classify different topologies, our adapted 
HOMFLYPT polynomial can measure these topological differences by attaching a number to any stage of the evo-
lution. How these numbers can be related to energy (or some other fundamental physical property of the system) 
is not yet clear, but there is no question that further application of this technique to experimental or observational 
data will help to uncover and possibly establish new relationships between behavior of physical systems, energy 
and structural complexity. We believe this will open the door to a myriad of possible applications, from energy 
estimates in braided magnetic fields in solar flares to energy transfers in turbulent flows, from entropy measures 
in disordered systems to functional prescriptions of recombinant DNA plasmids.
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