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Finding Communities by Their 
Centers
Yan Chen1, Pei Zhao1, Ping Li1, Kai Zhang2 & Jie Zhang3

Detecting communities or clusters in a real-world, networked system is of considerable interest in 
various fields such as sociology, biology, physics, engineering science, and interdisciplinary subjects, 
with significant efforts devoted in recent years. Many existing algorithms are only designed to identify 
the composition of communities, but not the structures. Whereas we believe that the local structures 
of communities can also shed important light on their detection. In this work, we develop a simple 
yet effective approach that simultaneously uncovers communities and their centers. The idea is based 
on the premise that organization of a community generally can be viewed as a high-density node 
surrounded by neighbors with lower densities, and community centers reside far apart from each other. 
We propose so-called “community centrality” to quantify likelihood of a node being the community 
centers in such a landscape, and then propagate multiple, significant center likelihood throughout the 
network via a diffusion process. Our approach is an efficient linear algorithm, and has demonstrated 
superior performance on a wide spectrum of synthetic and real world networks especially those with 
sparse connections amongst the community centers.

Many real-world systems take the form of networks in which the functional units can be considered as nodes or 
vertices, which are connected by links depending on their interactions. One of the most prominent features of a 
network is its community structure, i.e. the organization of vertices in groups, with more interactions amongst 
the same group than between its group members and the reminder of the network.

The community structures are closely associated with functions of specific network, thus identifying such 
structures yields insights into the functional organization of the network. However, finding communities within 
an arbitrary network can be a computationally difficult task. A growing number of community detection methods 
have recently been proposed since the seminal work by Girvan and Newman1. One popular criteria is to optimize 
the modularity measure2–5, like the Louvain algorithm6 and the Fastgreedy algorithm7. More recent advances 
involve machine learning techniques such as seeding and semi-supervised learning method8, neural network 
approaches9,10, and Bayesian11,12. For more recent developments in community detection, see13–18. Modularity 
measures internal connectivity of communities and uses the randomized null model as the reference. However, 
random networks have been found to show high-modularity subsets19. Moreover, for general networks, there 
exists a resolution limit below which modularity based methods cannot find the communities20.

In general, community detection falls in the scope of clustering5,21–24. A key concept in clustering is the meas-
ure of similarity, which to a large extent determines the clustering result. Existing similarity measures typically 
include the distance between two nodes25, common neighbors26, or local paths27,28. However, one limitation of 
these similarity measures is that they usually do not take into account the fine local topological structures of 
the network, such as the connection pattern among the neighbors of a node, and the connections among the 
important nodes. This information is crucial in determining right community structures, and clustering without 
consideration of these patterns may be sub-optimal.

The same limitation applies to many existing community detection algorithms, i.e., they are only designed to 
identify the composition of communities, but not to unravel the detailed, local structures of communities. Here 
we argue that the local structures of communities can also shed important light on their detection. In this paper, 
we leverage the concept of node density in a network, and exploit the resultant distance landscape to devise an 
effective algorithm that simultaneously detects communities and their centers. Our basic idea is to design a com-
munity centrality indice to quantify the relative significance of a node with respect to its neighbors in the commu-
nity. Nodes with higher community centrality indice are more likely to be centers in some communities. Based 
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on the election of the central nodes in the communities, we are then able to categorize the reminder of nodes into 
communities using an iterative and greedy propagation strategy. This strategy resembles a multi-source diffusion 
and decision-making process which is simple with low complexity.

We show that by incorporating the local topological, structural modeling in the process of community detec-
tion, our approach can detect communities more accurately in several benchmark systems including both syn-
thetic and real-world scenarios against state-of-the-art. The superiority of our approach is particularly significant 
for networks with their centers far away from each other. However, for some networks in which the centers may 
have more connections among them, it can be challenging for our approach to identify exact communities due to 
the less clarified boundaries between communities.

Very relevant to our work is that of Rodriguez and Laio29, who presented an efficient clustering approach 
for data points in the Euclidean space. The basic idea is that these cluster centers are those surrounded by more 
points (so-called density) than their neighbor points and they have relatively large distance from each other. 
This algorithm need not be an iterative procedure and thereby is very fast. In comparison, however, the task of 
community detection is to cluster nodes in the topological space, which is very different from data clustering in 
many respects. Topological properties and local connection profiles must be considered for reliable community 
detection in complex networks or graphs.

Results
We test the performance of our method on both synthetic and real-world networks by comparing the outcome of 
our algorithm with the ground-truth community structures and results of other community detection methods. 
The synthetic networks are generated by the LFR-benchmark model30, which produces networks with power-law 
degree distribution and with implanted communities within the networks, and the real-world networks are of 
different types and different scales. The networks used in our experiments are shown in Table 1.

Synthetic Networks.  To demonstrate the effectiveness of the proposed method, we generate four bench-
mark networks using procedures presented in ref. 30 and the detailed parameters are shown in Table 1. Among 
the 4 artificial networks, three of them have clear, non-overlapping community structures; and the other network 
has 5 overlapping communities. We use the Normalized Mutual Information (NMI)31 to measure the perfor-
mance of different algorithms on detecting communities of these networks.

As can be seen from Table 2, for the first three networks with completely disjoint communities, our approach 
achieves a 100% accuracy in identifying actual communities. The communities in the fourth network generated 

Synthetic Networks

Networks n km φ(r) μ t1 t2 cmin cmax no mo

LFR-1 50 3 0 0.1 2 1 25 25 0 0

LFR-2 1000 15 0.18 0.1 2 0 500 500 0 0

LFR-3 1000 20 0.07 0.1 2 1 100 500 0 0

LFR-4 50 3 0 0.1 2 1 25 25 5 2

Real-world Networks

Networks n km φ(r) Description

Karate 34 4.59 0 Zachary’s social network of a karate club32

Dolphins 62 5.13 0.67 Dolphin social network33

Polbooks 105 8.40 0.4 Books about US politics2

Football 115 10.66 0.3 Network of American football games2

SFI 118 3.40 0.3 Collaboration network of scientists at the Santa Fe 
Institute1

Jazz 198 27.70 0.94 Network of Jazz musicians43

E-coli 328 3.03 0.13 Transcriptional regulation network of Escherichia coli45

Email 1133 9.62 0.27 Network of e-mail interchanges44

Polblogs 1222 27.36 0.5 Blogs about politics34

Power Grid 4941 2.67 0.02 The Western States Power Grid of the United States46

Wiki-vote 7066 28.51 0.55 Wikipedia who-votes-on-whom network47

CA-HepTh 9877 5.74 0.1 Collaboration network of Arxiv High Energy Physics 
Theory48

PGP 10680 4.55 0.17 Web of trust of PGP49

CA-CondMat 23133 8.55 0.28 Collaboration network of Arxiv Condensed Matter48

Email-Enron 36692 10.73 0.45 Email communication network from Enron50

Table 1.   Networks used in the experiments. Here n denotes the numbers of vertices, for networks that are not 
fully connected, the largest graph components are considered. km is the averaged node degree, μ is the mixing 
parameter, t1 is the negative exponent for the degree distribution, t2 is the negative exponent for the community 
size distribution, cmin and cmax is the minimum and maximum size of communities, respectively, no is the 
number of overlapping nodes, and mo is the number of memberships in the overlapping nodes. The φ(r) is the 
rich-club connectivity of the network40. Here we choose r ∼  log N/N.
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from the model is shown in Fig. 1(b) and our result is shown in Fig. 1(c). It is obvious that the overlapping nodes 
in the benchmark are not quite reasonable, while our approach can properly partition the nodes into explicit two 
parts.

Real-world Networks.  Several real-world networks are used to test the validity of our algorithm. The first 
one is Zachary karate club network32 which is a famous de facto network. A conflict between club president John 
(node 33) and the instructor Mr. Hi (node 0) leads to 34 members of the university sports club to split into two 
groups. Figure 2(a) shows that the communities discovered by our algorithm agree exactly with the result given 
by Zachary32. The leaders of the two groups are node 0 and node 33, which is consistent with the ground truth too.

The second network is the social network of bottlenose dolphins reported by Lusseau33, which is an undirected 
social network of frequent associations between 62 dolphins in a community living off Doubtful Sound. In this 
network, dolphins are represented as vertices, and a link is attached between two nodes if the corresponding 

Networks

Ground Truth Ours Louvain Fastgreedy Infomap Eigenvector LP

C Q C NMI Q NMI Q NMI Q NMI Q NMI Q NMI Q

LFR-1 2 0.43 2 1.00 0.43 0.40 0.56 0.51 0.56 0.46 0.56 0.51 0.52 0.40 0.51

LFR-2 3 0.52 3 1.00 0.52 1.00 0.40 0.88 0.39 1.00 0.40 1.00 0.40 1.00 0.40

LFR-3 2 0.40 2 1.00 0.40 1.00 0.52 0.99 0.51 1.00 0.52 0.88 0.49 1.00 0.52

LFR-4 2 0.39 2 0.51 0.41 0.45 0.54 0.34 0.53 0.39 0.55 0.43 0.51 0.33 0.46

Karate 2 0.37 2 1.00 0.37 0.59 0.42 0.69 0.38 0.70 0.40 0.68 0.39 0.70 0.40

Polbooks 2 0.41 2 0.60 0.46 0.51 0.52 0.53 0.50 0.49 0.52 0.52 0.47 0.57 0.50

Football 12 0.55 12 0.86 0.59 0.88 0.60 0.70 0.55 0.92 0.60 0.70 0.49 0.92 0.60

Dolphins 2 0.38 2 1.00 0.38 0.48 0.52 0.61 0.50 0.50 0.52 0.54 0.49 0.69 0.50

Polblogs 2 0.41 2 0.72 0.42 0.63 0.43 0.65 0.43 0.48 0.42 0.69 0.42 0.69 0.43

Table 2.  Performance comparison in the networks with ground truth. Here C is the number of communities, 
Q is the modularity result and NMI the normalized mutual information.

Figure 1.  Two networks of LFR-benchmark. (a) LFR-2 with 1000 nodes and three communities. The result of 
our algorithm agrees with the ground truth. (b) The real communities of LFR-4 given by the LFR benchmark 
algorithm. 5 overlapping nodes are shown using pie vertex in two different colors. (c) Our partition of LFR-4.
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dolphins are observed together more often than expected by chance over a period of seven years from 1994 to 
2001. The groups of dolphins are mainly divided into the male ones and female ones. Our result is shown to be 
completely the same as the ground truth. The two communities are marked by purple and blue, respectively 
(shown in Fig. 2(b)).

The third network is the political blogs data-set which is a directed network of hyperlinks between weblogs 
on US politics, recorded in 2005 by Adamic and Glance34. The network is separated according to the political 
orientation of blogs, conservative or liberal. Due to the unconnectedness of the original network, we consider the 
undirected version of the network and retrieve the maximum component to detect communities. The maximum 
component has 1222 nodes and 16717 edges. The diameter is 8 and the average shortest path is 2.858. The NMI 
between our identified communities and the ground truth is 0.72. The visualization of communities detected is 
shown in Fig. 2(c).

The fourth network is the SFI collaboration network with 271 scientists at the Santa Fe Institute1, an interdisci-
plinary research center in Santa Fe, New Mexico, with the largest component consisting of 118 scientists. An edge 
is drawn between a pair of scientists if they coauthored one or more articles. The network includes all journal and 
book publications by the scientists involved, along with all papers that appeared in the institute’s technical reports 
series. The network has several hub nodes with high degrees. In this network, we have tried different types of den-
sity indices in the implementation of our algorithm. We first consider the “strong-tie” density as the measure to 
select the central nodes, leading to a modularity of 0.65. We then use the classical degree density to select nodes as 
the centers of communities, and the resultant modularity is 0.70, showing the effects of different local centralities 
on the performance. The partition result by the degree-density is shown in Fig. 2(d).

We also test our method on several networks without ground-truth community partitions, with the size of 
the networks ranging from a hundred to tens of thousands, see Table 3. The comparison with other approaches is 
provided in the next section.

Comparison With Other Methods.  To further assess our method, we compare our partition results with 
five popular algorithms: Louvain, Fastgreedy, Infomap35,36, Eigenvector37 and Label propagation (LP)38, using 
NMI and modularity39 as the evaluation metrics. From Table 2, we can see that for networks with ground truth 
communities, our method is better than or similar to other algorithms using the NMI criterion, except on the 
American football network.

For those networks without the ground truth information (the networks in Table 3), we use the modularity to 
measure the quality of community detection results. It can be seen that the modularity values of our partitions are 
lower than those obtained by the Louvain and Fastgreedy algorithms. This can be expected because our method 

Figure 2.  The partition results by the proposed method for real-world networks. (a) Zachary karate club 
network: the two communities we detected are identical with the real communities. (b) Dolphins network: the 
2 communities we detected are identical with the 2 real groups of male and female. (c) Pol-blogs network: the 
2 communities we discovered. (d) The SFI collaboration network: this network has obvious tree structure, the 
degree density indice can be used to find the centers.
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is not specifically designed to optimize the modularity as Louvain and Fastgreedy algorithms do. However, the 
modularity values obtained by our method are almost always better than the other three algorithms, i.e., Infomap, 
Eigenvector and Label propagation, especially for large sparse networks with low rich-club connectivity (e.g. PGP, 
CA-HepTh and Power Grid), see Table 3.

Discussion
We present a simple and novel method to detect community structures in complex networks. In our approach, 
a structural central node in each community will be determined firstly, and other nodes will be partitioned into 
different communities according to a multi-source diffusion and majority voting process (see detailed discus-
sions in Methods). Compared with popular algorithms in the literature, our algorithm has robust performance 
in both synthetic and real-world networks with which ground truth is known, and the modularity results is also 
competitive in most of the networks. The whole algorithm has a linear time complexity, which fits it for large-scale 
problems.

From Table 3, we can also observe that for some networks, such as Jazz and Wiki-vote, the modularity 
obtained by our approach could be inferior to several other methods under comparison. We speculate that in 
these networks, there exist dense connections among detected community centers, therefore it becomes more 
challenging to identify exact communities. On the contrary, for networks whose community centers demonstrate 
sparse inter-connections among each other, our approach is expected to produce significant performance gains 
(e.g. PGP, CA-HepTh and Power Grid).

In general application scenarios, we can use the rich-club connectivity of the network40,41 as an indicator 
of the performance of our approach. The rich-club connectivity is an interesting property that describes the 
amount of linkages among “rich” nodes of a network (i.e., nodes with high degrees, which are very likely the 
community centers). Typically, the lower the rich-club connectivity, the sparser the inter-connections among 
the center nodes, and hence our approach is expected to give a better performance; on the contrary, the higher 
the rich-club connectivity, the denser the inter-connections among the center nodes, and our approach may give 
inferior results.

To validate this indicator, we have included the rich-club connectivity of different networks in Table 1. Note 
that the rich-club connectivity φ(r) is a function of r, where r is the position of the node in the ordered list 
(from larger degrees to small degrees), normalized by the number of nodes N. In practice, we first choose the 
number of high-degree nodes k, and then examine whether the rich-club connectivity computed using r =  k/N 
is above/below a pre-defined threshold (such as 0.5). In our experiments, k is chosen as a small number based 
on the logarithm of the number of nodes (as shown in Table 1). For example, the rich-club connectivity φ(r) 
for Jazz and Wiki-vote is 0.94 and 0.55, respectively; both of which are quite high, and as a result our approach 
does not produce a good modularity on these networks. In comparison, the rich-club connectivity φ(r) for PGP, 
CA-HepTh and Power Grid is lower than 0.2, and the performance of our approach on these networks are much 
more superior. This demonstrates the usefulness and applicability of the rich-club connectivity in predicting the 
performance of the proposed method.

Methods
The key intuition in our algorithm is that the central node in a community should be highly surrounded by other 
members in this community, namely it has a high density; while neighbors of the central node may not connect 
tightly with each other. We elaborate the three steps of our method in the following subsections.

Calculating Density Indice.  We first calculate a density indice, denoted by η, for each node. The density 
indice can be defined in two ways: degree indice (ηd) and strong-tie indice (ηs). As we know, a node’s degree is the 
number of neighbors of the node. Larger degree means that the node has more neighbors and therefore it has a 
high local density. Strong-tie indice42 is defined in our algorithm as the number of triangles involving node i. A 
large strong-tie indice means that node i has more neighbors and its neighbors have more connections amongst 
themselves. The existence of such nodes strongly indicates the existence of communities. From Table 4 we can 
find that the performance by adopting strong-tie is better than the case of using degree in some networks but vice 

Networks 

Ours Louvain Fastgreedy Infomap Eigenvector LP

C Q C Q C Q C Q C Q C Q

CA-CondMat 105 0.63 55 0.72 261 0.63 1347 0.63 34 0.54 1537 0.62

Email-Enron 267 0.42 246 0.60 560 0.51 1554 0.52 2 0.34 887 0.32

CA-HepTh 60 0.76 53 0.82 79 0.78 520 0.73 22 0.57 541 0.74

PGP 121 0.82 102 0.88 190 0.85 1070 0.80 25 0.68 955 0.81

Power Grid 35 0.90 40 0.93 39 0.93 483 0.82 35 0.83 479 0.81

Wiki-vote 9 0.34 9 0.43 31 0.34 254 0.38 10 0.42 3 9e-05

Jazz 2 0.29 4 0.44 4 0.44 7 0.28 3 0.39 2 0.28

Email 19 0.43 12 0.54 16 0.51 68 0.52 7 0.49 8 0.28

E-coli 10 0.66 14 0.75 15 0.75 39 0.71 11 0.64 42 0.68

SFI coli 5 0.70 8 0.75 8 0.73 14 0.72 7 0.71 11 0.70

Table 3.   Performance comparison in the networks without ground truth. Here C is the number of 
communities, Q is the modularity result.
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versa in other real networks. Our findings indicate that for large-scale networks, degree indice is more suitable 
than strong-tie. In the following we call both these two indices density η-score to simplify notations.

Identifying Central Nodes.  In this step the key objective is to remove non-central nodes based on η-scores. 
Intuitively, the central node should have a large distance to other central nodes (or nodes with higher η-scores); 
on the contrary, the central node will be relatively close to its neighbors (or nodes with lower η-scores). Based on 
this observation, we define the notion of Eta-reach-distance (ERD) ψ to facilitate the choice of central nodes. In 
particular, the ERD for ith node, ψi, is the minimum of the shortest path distances between node i and all other 
nodes with a higher η-score,

ψ = .
η η>
min d( )

(1)
i

j
ij

: j i

The usefulness of the Eta-reach-distance can be understood as follows. If a node i has a low ERD, that means i’s  
close neighbors have higher η-score than node i, then the node i will very unlikely be a central node; on the other 
hand, if the node i has a large ERD, then that means in order to find a node whose ERD is higher than node i, 
one has to go far away in the network, which means that node i is probably a central node. In fact, large ψi always 
appears at local or global maxima of the density scores. Given this property, we then identify the central nodes as 
those with particularly large ψi’s.

To reduce the computational cost, in searching the neighbors of node i, we will apply the breadth first search 
strategy. We first examine the first-order neighbors of a given node i, and if any of them has an η-score larger than 
node i, we will then set ψi =  1. Otherwise, we search the second order neighborhoods and if any of them has a 
larger η-score, we set ψi =  2; if not, we will examine all the 3rd-order neighbors of node i until the end. In general, 
it is enough to search in the neighborhood at depth 2, owing to dense connectivity structures of the community. 
So we will typically stop at ψi =  3 if we can not find a node with larger η-score and search no further. It should be 
noted that for some networks such as Jazz43 and Email44, etc, centers of the communities are directly connected 
with each other based on the ground truth available. In these cases, ψ for most of the nodes would be 1 and cannot 
be used to find the centers.

Sometimes, in order to consider the combined effect of local density and relative distance, we define the com-
munity centrality γi =  ηiψi to depict the importance of the node in a community, as shown in Fig. 3. Then we sort 
the γ values in an descending order and choose the largest C nodes as the centers corresponding to the C commu-
nities. Consider that we do not know the exact number of communities in a network, we try several C values to 
find the best one with the largest modularity. Sometimes, we may observe an obvious turning point on the sorted 
γ values, as is shown in Fig. 3. In such circumstance we can simply use this turning point to decide which nodes 
should be the central nodes. For example, for the karate club data, there are two nodes with significantly larger γ’s 
than others, thus it’s better to divide the karate club network into two groups.

Label Propagation.  After the central nodes have been identified and assigned proper community labels, 
their labels will diffuse in the whole network such that all the rest nodes can be labeled as well. We achieve this by 
using majority voting, namely, any node without a community label will accept one that presents most frequently 
in its (labeled) neighbors. To reduce the uncertainty in label propagation, we adopt a greedy, iterative scheme. In 
each iteration, among all the unlabeled nodes with sufficient labeled neighbors, we will only target on that node 

Networks 

Strong-tie Degree

C Q C Q

 Karate 2 0.37 2 0.37

Dolphins 3 0.48 3 0.43

Polbooks 7 0.48 3 0.44

Polblogs 2 0.42 2 0.42

Football 12 0.59 15 0.51

E-coli 10 0.66 15 0.63

SFI 3 0.65 5 0.70

Jazz 44 0.33 41 0.32

Email 18 0.41 19 0.43

CA-CondMat 105 0.61 145 0.63

Email-Enron 224 0.41 267 0.42

CA-HepTh 86 0.74 60 0.76

PGP 126 0.81 121 0.82

Power Grid 63 0.88 35 0.90

Wiki-vote 7 0.32 9 0.34

Table 4.   Impact of different density indice (strong-tie and degree) on the Performance of our approach. 
The results shown here are the modularity (Q) obtained by the proposed method and the number (C) of 
communities identified.



www.nature.com/scientificreports/

7Scientific Reports | 6:24017 | DOI: 10.1038/srep24017

with the largest γ value. By doing this, the propagation process will affect only the most confident node one at a 
time, which is not only computationally efficient but also improves the labeling quality.

Complexity.  Our algorithm consists of three steps. In the first step of calculating the density indice, the time 
complexity is O(n), where n is the number of nodes. In the second step, computing the ERD requires O(m) time, 
where m is the number of edges; sorting the γ values takes O(n) time if bucket sort algorithm is considered. The 
third step of community label assignment will require O(n) time. Thus, the total time complexity of our method 
is O(m +  n). As a result, this algorithm has linear time complexity and can be efficiently applied to a network of 
tens of thousands of nodes.
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