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Effectiveness of the Young-Laplace 
equation at nanoscale
Hailong Liu & Guoxin Cao

Using molecular dynamics (MD) simulations, a new approach based on the behavior of pressurized 
water out of a nanopore (1.3–2.7 nm) in a flat plate is developed to calculate the relationship between 
the water surface curvature and the pressure difference across water surface. It is found that the water 
surface curvature is inversely proportional to the pressure difference across surface at nanoscale, and 
this relationship will be effective for different pore size, temperature, and even for electrolyte solutions. 
Based on the present results, we cannot only effectively determine the surface tension of water and the 
effects of temperature or electrolyte ions on the surface tension, but also show that the Young-Laplace 
(Y-L) equation is valid at nanoscale. In addition, the contact angle of water with the hydrophilic material 
can be further calculated by the relationship between the critical instable pressure of water surface 
(burst pressure) and nanopore size. Combining with the infiltration behavior of water into hydrophobic 
microchannels, the contact angle of water at nanoscale can be more accurately determined by 
measuring the critical pressure causing the instability of water surface, based on which the uncertainty 
of measuring the contact angle of water at nanoscale is highly reduced.

The behavior of liquids at nano-environments has attracted extensive research investigations thanks to its impor-
tant applications in nanopipets1, programmable catalysis2, bimolecular detection and separation3, water desali-
nation4, nanofluidic battery5, nanofluidic damper6 and so on. Most of the aforementioned important applications 
are closely related to the pressure-driven infiltration behavior of liquids into nanochannels. For example, the 
mechanism of nanofluidic damper is that the liquid is pushed into the nonwetting nanopore by the external 
impact, and thus, the work done by external impact will be converted into the solid-liquid interfacial energy to 
realize the function of energy-damping7–9.

At microscale, the Y-L equation is used to define the equilibrium of liquid surface (e.g., capillary surface)10:
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where γ is the liquid surface tension (for liquid-air surface), ΔP is the pressure difference across the liquid surface, 
and R1 and R2 are the principal radii of surface curvature. In addition, in a sufficiently narrow tube (circular shape 
with the radius a), the liquid surface will be a portion of spherical surface (with radius R) and R is related to a by 
the liquid-solid contact angle θ (R =  a/cos θ). Thus, the Y-L equation can be modified as11:
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The surface tension represents the potential energy change caused by per unit liquid surface area change, 
which is typically considered to be a constant, e.g., the γ of water is measured as 72 mN/m at room temperature. 
It is also reported that the surface tension of water decreases with the temperature12,13, and slightly increases with 
the electrolyte ion concentration (e.g., 74.0 mN/m for 1.0 M KCl14). Currently, the Y-L equation is also widely used 
to describe the capillary pressure when the channel/pore size is down to nanoscale15–19.

There is a significant scatter in the experimental results of contact angle at nanoscale since the contact angle 
is a quantity defined at macroscale, which is difficult to be accurately measured at nanoscale and also very sen-
sitive to the surface quality. Consequently, it is challenging to accurately measure the surface tension at nanos-
cale. Currently, most investigations about surface tension or contact angle are based on the MD simulations of 
the behavior of nanobubble/nanodroplet. However, the reported results are highly in conflict: Matsumoto and 
Tanaka20 reported that the surface tension is independent of the surface curvature on the basis of the nanobubble 
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in the Lennard-Jones (L-J) liquid, whereas Nejad H.R. et al.18 and Park et al.21 shown that the surface tension of 
nano-bubble increases with the surface curvature. However, the MD simulations of nanodroplets of L-J liquid 
shown that the surface tension decreases with the increase of surface curvature.22 Homman et al.23 recently shown 
that the water surface tension has a non-monotonic curvature dependence from MD simulations. The MD sim-
ulations of curved octane-water interface by Sodt et al.24 demonstrated that the water surface tension is not size 
dependent. Therefore, it is still not clear whether the Y-L equation is effective at nanoscale or not.

Based on the MD simulations of the infiltration behavior of water into single-walled carbon nanotubes 
(SWCNT), it was found that the infiltration pressure (ΔP) increases with the decrease of the tube radius (a) but 
ΔP is not linearly scale with 1/a as shown by Equation (2) 25–28 Walther et al. further reported that the infiltration 
pressure determined in their MD simulations is consistent with that estimated from the Y-L equation.19 However, 
Mo et al.29 recently reported that the Y-L equation is invalid for nanochannels, which is also based on MD simu-
lations. Therefore, a systematic investigation on the effectiveness of Y-L equation at nanoscale is highly necessary.

In the present work, the effectiveness of Y-L equation at nanoscale is checked using MD simulations, and 
the influences of surface size, temperature and electrolyte ions on the water surface property at nanoscale are 
also considered. Figure 1 shows the schematic of the approach used to validate the effectiveness of Y-L equa-
tion at nanoscale in the present work: the water is enclosed inside a reservoir and the top of reservoir is cov-
ered by a plate with a nanopore. With the increase of the reservoir pressure (Pa), the curvature of water surface 
over nanopore will be changed. The relationship between surface curvature and reservoir pressure is calculated 
using MD simulations. Figure 2 shows the MD computational model used in the present work: a water reservoir 
(4.7 ×  4.7 ×  8.1 nm) includes 6000 water molecules confined between two rigid carbon-atom planes, and the 
periodic boundary is applied along the lateral directions (x, y). The reservoir center density (ρ) is about 0.997 g/
cm3. There is a circular hole (with radius of a =  1.3–2.7 nm) in the center of the top plane which is fixed, and 
the bottom plane (also called piston) is moveable along z-direction to adjust the internal pressure of reservoir. 
Initially, the hole in the top plane is covered by a lid, and the system is equilibrated under the selected pressure 
using NVT ensemble for 200 ps. The Nose-Hoover thermostat30 is used to keep the temperature at 298 K and the 
time integration step is set to 2 fs. After the reservoir is equilibrated, the lid covered on the hole in the top plane 
is removed and the system is equilibrated for another 1 ns. Both the pressure of the water reservoir (Pa) and the 
number of water molecules coming outside the reservoir as well as their finial equilibrated locations (outside of 
reservoir) are monitored. For each pressure increment (ΔPa), the piston moves by 0.02 nm till the water molecules 
burst out of reservoir (i.e., the water molecules on the top of hole lose their stable conformation, see Fig. 2(e,f)).

The MD simulations are carried out using LAMMPS31, which is a classical molecular dynamics software 
from Sandia National Laboratory. The nonbond interactions between water molecules are modeled by the 
Lennard-Jones (L-J) potential and the Coulombic potential. The SPC/E model32 is used to simulate water mol-
ecules, which has been shown to provide the best agreement with the experimental value of water surface ten-
sion33–35. The SHAKE program is used to constrain the internal geometry of water molecules36. The long range 
Columbic potential is calculated using the particle-particle particle-mesh (PPPM) method37. The nonbond 
interaction between carbon-plane and water molecules are modeled by the L-J potential, which is simplified as 
the C-O nonbond interaction since the C-H nonbond interaction is very small. Two sets of the L-J parameters 
are used: set A (εOC =  0.114333 kcal/mol and σOC =  0.32751 nm) representing the hydrophilic surface and set B 
(εOC =  0.07493 kcal/mol and σOC =  0.319 nm) representing the hydrophobic surface38,39. The cut-off distance for 
the VDW interaction is set to be 1.2 nm which is considered to be accurately describe the VDW interaction of 
water in the MD simulations40,41. The simulation results are not sensitive to the reservoir size used in the present 
study, which has been checked by a larger reservoir (7.0 ×  7.0 ×  7.3 nm) including 12000 water molecules.

In the present model, the pressure outside reservoir is zero, and thus, the pressure across the water surface 
(the water molecules face the pore of top plane) is equal to the water pressure in reservoir (ΔP =  Pa). The res-
ervoir pressure can be determined by the water density change from the equation of state of water (derived 
from bulk water) or is approximated as the piston pressure (as shown in Figure S1). The MD simulation results 
shown that the curvature radius of water surface will be reversely proportional to the water pressure in reservoir  

Figure 1. The schematic of the model used to validate the effectiveness of Y-L equation at nanoscale. a is the 
pore radius, R is the radius of curvature of water surface, Pa is the reservoir pressure.
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(see Fig. 3(a)). Two principle curvature radii R1 (measured in xz plane) and R2 (measured in yz plane) of water 
surface can be measured in MD simulations by the average distribution of water molecules located at the surface 
(as shown in Figure S2). The ΔP-R relationship can be fitted as a function similar to Equation (1) (displayed as the 
dashed line in the Fig. 3a), where R is average radius of curvature (1/R =  (1/R1 +  1/R2)/2).The calculated values of 
surface tension of water from the different pore sizes and reservoir pressures based on Equation (1) are shown in 
Fig. 3b. The mean value of surface tension of water γ =  62.6 mN/m (displayed as the dashed line in Fig. 3b) and 
the standard deviation is 0.8 mN/m (as shown in Figure S3), which clearly shows that there is no size dependence 
of γ when the pore size is even down to 1-2 nm. Therefore, it is seen that the Y-L equation is valid at nanoscale 
from the MD simulations.

In order to further show the present result of γ is the intrinsic property of water, we changed the L-J potential 
parameters of the top plane (with pore) to make it a typical hydrophobic material (using the set B L-J parameters), 
which gives the contact angle of 110° for the water on graphene (the set A gives the contact angle of 65°)42. With 
the new top plane, the relationship between ΔP and R is still well fitted by Equation (1), as shown in Figure S4, the 
dashed line in the figure is the fitting function of Equation (1) with γ =  62.6 mN/m. In addition, we also changed 

Figure 2. The MD simulation models of the water conformation under the different pressure. (a,b) the 
initial water structure at Pa =  0; (c,d) the stable water surface at Pa >  0; (e,f) the unstable water surface at  
Pb (Pb is the burst pressure). (a,c,e) are side views and (b,d,f) are top views.
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the circular pore shape into elliptical shape, as shown in Fig. 3b. By doing so, the principle curvature radii R1 and R2 
are different, whereas the average curvature radius R is still inversely proportional to ΔP (displayed in Figure S4).  
The calculated γ from the elliptical pore as well as from the hydrophobic top plane are very close to the value 
shown in Fig. 3b (see Figure S5). When the top plane changes from hydrophilic to hydrophobic (the reported con-
tact angle increases from 65° to 110°) and the pore shape changes from circular to elliptical, the variation in the 
calculated surface tension is less than 5%. Thus, the surface tension calculated in the present work is considered 
to be the intrinsic property of water, which is not dependent upon the pore size, pore shape as well as the material 
property of top plane.

The present result of γ matches very well with the reported values of the surface tension of bulk water calcu-
lated based on MD simulations using the SPC/E water model: γ =  61.3 mN/m by Chen et al. and γ =  62 mN/m 
by Wynveen et al.33,43. The surface tension calculated by the SPC/E water model is still about 15% lower than its 
experimental counterpart, which might be caused by the difference between the modeled water and real water. 
For example, the SPC/E model is nonpolarizable44, and it overestimates the diffusion constant of water, which 
means that the hydrogen bonding is not sufficiently simulated by the model45. Actually, besides the SPC/E model, 
most water models developed in MD simulations, including TIP3P, SPC, TIP4P, TIP5P, and TIP6P models, will 
give a lower surface tension than its experimental counterpart33,46. Nevertheless, this difference will not affect 
effectiveness of our observation: the Y-L equation (Equation (1)) is effective at nanoscale and the surface tension 
of water is not dependent upon the surface size.

The experimental results show that the water surface tension will decrease with the temperature and increase 
with the electrolyte concentration33,47. To investigate the effects of temperature, we changed the aforementioned 

Figure 3. (a) The principal radii of curvature of water surface calculated by MD simulations varying with the 
reservoir pressure. (b) The surface tension values calculated from the data displayed in (a) using equation (1).
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MD simulation models to higher temperatures. The ΔP-R relationships of water surface under the different 
temperatures still follows the function similar to Equation (1), i.e., ΔP is inversely proportional to R, as shown 
in Fig. 4a. The calculated values of γunder different temperature are shown in Fig. 4b, in which the pore size 
a =  1.7 nm. With the increase of temperature, the surface tension of water decreases. The γ under different tem-
peratures obtained in the present work are very close to the corresponding values of bulk water reported by Chen 
et al.33 (displayed as the circular symbols in Fig. 4b) and the trend of γ varying with temperature in our work is 
also same as the experimental counterpart (displayed as the square symbols in Fig. 4b)47. Therefore, the effect of 
temperature on the surface tension of water is also independent with the surface size.

The ions of Na+ and Cl− are added into water reservoir to simulate the NaCl electrolyte solution. After adding 
the ions, the surface curvature radius R is still inversely proportional to the reservoir pressure, but the R of the 
NaCl solution is larger than that of pure water under a given pressure, as shown in Fig. 4a (the mass concentration 
of NaCl is 18.5%), which means that the surface tension of the NaCl solution is higher than that of pure water. The 
calculated γ is 74.5 ±  1.0 mN/m (displayed as the diamond symbol in Fig. 4b), which is also slightly lower than 
its experimental counterpart (78 ±  1 mN/m48). Therefore, our approach can also accurately predict the effect of 
ions on the surface tension of water.

At molecular level, the surface tension is created by the molecular energy difference between the surface 
molecule and its bulk counterpart. For water, it is commonly considered that the surface tension closely depends 
upon the distortion of the hydrogen bond between the surface water molecules. The hydrogen bond for water is 
typically described by the average near O-O distance of water (< 0.35 nm) and the H-O-O angle (< 30°)49. Since 

Figure 4. (a) The calculated principal radii of curvature of water surface varying with the applied pressure at 
different temperature as well as with adding electrolyte ions (NaCl). The mass concentration of NaCl is 18.5%. 
(b) The calculated water surface tension based on the data displayed in (a) using Equation (1).
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the rotation of the water molecule is much easier than the translation in the simulations (i.e. with less potential 
change), the hydrogen bond strength is considered to be approximately scale with the average near O-O distance 
of water (the effect of H-O-O angle variation is neglected here). The O-O distance of water molecules will increase 
with temperature, and thus, the hydrogen bond between water molecules will be weaker. When the water surface 
curvature changes, the energy increase caused by the distortion of a weaker hydrogen bond will be also lower at 
a higher temperature, which means that the water surface tension is lower. Adding the electrolyte ions into water, 
the liquid-liquid interaction energy will increase thanks to the electrostatic interaction between ions, which can 
be easily seen from its higher frozen and boiling points. Therefore, the energy increase created by the distortion 
of a stronger interaction will be higher, which means that the water surface tension is higher for the electrolyte 
solution (NaCl +  H2O).

When the surface curvature is down to a couple nanometers, it is commonly observed that the hydrogen bond 
of surface water molecules has a higher distortion due to a larger curvature, which can be shown by the lower 
coordination number for a lower curvature radius compared with that of bulk water. Based on this analysis, the 
hydrogen bond of the surface water molecules with a higher surface curvature will be weaker, i.e., the near O-O 
distance of water molecules will be larger. For example, it is reported that the water molecules infiltrated into nan-
opore have a higher volume or a larger near O-O distance50. In the present MD simulation results, we also found 
that the coordination number (the number of the nearest neighbors of the molecule) increases with the surface 
curvature radius (see Fig. 5a, the solid line in the figure is the linear fitting curve, and the slope is about 0.007/Å), 
and it will converge to the corresponding value of flat surface (~2) when R approaches to infinite. However, the 
near O-O distance of surface water molecules is not sensitive to the surface curvature, as shown in Fig. 5b. The 
average values of the near O-O distance are determined as ~2.73 Å, which is very close to that of flat surface. It 
should be noted that there is a thickness of water surface at nanoscale, which is defined from the outside bound-
ary of water molecules (see Figure S2) to the location with the converged near O-O distance (or the coordination 
number). Cross the surface thickness from outside to inside, the water density rapidly increases, the coordination 
number of water molecules also increases but the near O-O distance decreases. Finally, the coordination number 
and the near O-O distance converge to ~2.4 and ~2.7 Å, respectively. Consequently, the near O-O distance (or the 
coordination number) of water surface is defined as the average values of the whole surface region, and the details 
are shown in Figure S6 (or Figure S7).

The results show that the trend of the near O-O distance varying with the surface curvature is different 
than that of the coordination number. The main reason for this divergence is from the pressure compensation. 
Actually, there is a higher reservoir pressure corresponding to a lower curvature radius (see Fig. 3a). Under a 
higher pressure, the near O-O distance between water molecules in bulk state will decrease (i.e., a higher pres-
sure with a lower near O-O distance), and then, a higher surface curvature will cause a larger expansion of the 
near O-O distance of surface due to a small coordination number (i.e., a larger curvature leads to a larger O-O 
distance). When these two effects are balanced with each other, the O-O distance of surface water molecules will 
be insensitive to the surface curvature. Therefore, the surface tension of water is not dependent upon the surface 
curvature and the Y-L equation (Equation (1)) is effective at nanoscale.

We compared our results with the reported results about the size effect of surface tension, most of which are 
mainly based on the MD simulations of nanobubble or nanodrops built by the L-J liquid18,20–24. In these works 
showing the conflict results of curvature dependence of surface tension, the surface tension is typically calculated 
from the integration of the gradient of the normal component of the pressure tensor of liquid molecules and the 
radius of the nanobubble/nanodrop. However, the effectiveness of using the local pressure tensor as the internal 
pressure might be problematic when the size of bubble/drop is very small, which has been also discussed by 
Sampayo et al.51 In addition, the curved molecular surface of small bubble/drop under no-constraint condition is 
rarely well defined.18,22 In our method, the surface tension can be simply determined from the reservoir pressure 
(or piston pressure) and the curvature of water surface (a small part of a sphere), both of which can be determined 
with a very low uncertainty (see Figures S2 and S3).

The water surface curvature will continually increase with ΔP till the reservoir pressure reaches some crit-
ical value ΔPc (defined as the burst pressure), at which the water surface will lose its stability (see Fig. 2(e,f)). 
The burst pressure can be determined from the sudden increase of the number of water molecules outside of 
the stable surface (Nout), as shown in Figure S8. Figure 6 shows the relationship between the burst pressure and 
the nanopore radius, which shows the perfect inversely proportional relationship: ΔP= k/a (the fitting param-
eter k =  104.5 mN/m), displayed as the solid line in the figure. It is surprisingly see that the ΔP-a relationship 
follows the Y-L equation (Equation (2)) for the hydrophilic plate with pore, which is conventionally used to 
describe the infiltration pressure of water into hydrophobic nanochannel. From the surface equilibrium condition 
at the critical point (see Fig. 1), the fitting parameter k =  2γsin θc, and using the value of γ we have determined 
(γ =  62.6 mN/m), it is found that the critical angle θc =  56.5°. Actually, the stability of the water surface over the 
nanopores is kept not only by the surface tension but also closely related to the pin effect of top carbon plane 
which is described by γSG − γSL =  γ·cos θc (as shown in Fig. 1) and the surface instability will occur when the 
solid-liquid contact point cannot be pinned, i.e., γSG − γSL >  γ·cos θ when θ >  θc. Thus, the critical angle θc should 
be the contact angle between carbon plane and water, and the following relationship can be derived:

γ θ
∆ =P

a
2 sin

(3)c
c

which is actually a modification form of the Y-L equation (Equation (2)).
The contact angle of the water droplet (radius of 4.24 nm) on carbon plate is reported as 65.4° based on MD 

simulation (with the same L-J parameters as set A used in the present work) by Werder et al.42 which is about 
15% higher than the value determined in the present work. However, they also shown that the contact angle 
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determined varies with their droplet size (i.e., contact angle is not a constant at nanoscale). In addition, there is 
spacing between water molecules and carbon plate due to the van der Waals repulsion (describe by L-J param-
eters). Since the contact angle is determined by the tangential line at the cross point of the circular line with the 
carbon plate in their work, they need to extrapolate the circular line (best fitting the droplet shape) to the carbon 
plate, which will increase the uncertainty of contact angle. However, in our approach, the contact angle is deter-
mined only by the burst pressure and the surface tension determined previously, both of which can be determined 
with a very low uncertainty. The most important thing is that the contact angle is actually not sensitive to the pore 
size (a) in the present work. Therefore, the contact angle determined from our approach is more stable, which is 
an intrinsic property of water.

In order to further show the validness of Equation (3), we simulated the burst pressures of water with high 
temperatures and the NaCl solution (with the mass concentration of 18.46%)as well as the burst pressure of an 
elliptical pore. The relationships between the burst pressure ΔP and pore size a of all above cases perfectly follow 
the inversely proportional relationship: ∆ =P k a/ , as shown in Fig. 7 (the burst pressure of an elliptical pore is 
displayed as the circular symbol in Fig. 6), and the lines in the figure are linear fitting function curves. If plugging 
the values of the surface tension (displayed in Fig. 4b), the contact angles of water with different temperatures as 
well as the NaCl solution can be also calculated. For example, for the pore size a =  1.7 nm, the contact angle 
θc =  70.9° for the present NaCl solution and θc =  56–57.5°when the water temperature is in the range of 

Figure 5. (a) The average coordination number of water surface varying with the mean radius of curvature 
of surface; (b) The average near O-O distance of water surface varying with the mean radius of curvature of 
surface. The dashed lines are the linear fitting functions in the figure. The square symbol represents the results of 
the infinite curvature radius (i.e., flat surface).
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283–353 K. Therefore, the contact angle will be increased by adding the electrolyte ions and it is not very sensitive 
to T in the present temperature range, which also match the experimental results52,53. Friedman et al.52 reported 
that the contact angle of water on graphite/quartz is actually insensitive to the temperature when T <  80 °C, and 
Zhang et al.53 shown that the contact angle of NaCl solution increases with the increase of concentration.

When the top plane is changed to the hydrophobic material (using set B L-J parameters corresponding the 
reported contact angle of 110°), the case is significantly different. There is no critical pressure to cause the insta-
bility of water surface. The value of ΔP reaches the maximum value at θ =  90°, and then the value of Nout rapidly 
increase. Actually, it is straightforward to see that the maximum surface curvature will be obtained at θ =  90° for 
a given pore size (i.e., the vertical portion of surface tension reaches the maximum), which also means that the 
surface tension cannot balance the further increase of ΔP, and thus, the surface begins to move. However, the 
solid-liquid contact point is still well pinned since the contact angle θc >  90°. Therefore, the present approach 
only can be used to calculate the contact angle of hydrophilic material (i.e., θc <  90°). Actually, the contact angle 
of hydrophobic material can be estimated by the infiltration pressure of water into hydrophobic microchannel19. 

Figure 6. The relationship between the burst pressure and the reciprocal of pore size of water under 
T = 298 K. The solid line is the linear fitting curve.

Figure 7. The relationship between the burst pressure and the reciprocal of pore size of water under 
different temperature as well as adding electrolyte NaCl (the mass concentration is 18.5%). The lines in the 
figure are the linear fitting curves.
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In the present work, the infiltration pressure (Pin) of water into a rigid SWCNT (modeled by set B L-J parameter, 
which means that the present nanotube is hydrophobic) is also determined using MD simulations, as show in 
Figure S9. As shown in the inset figure of Figure S9, the water reservoir is connected with a SWCNT, the reservoir 
pressure Pa increases with the piston displacement, and Pa does not vary with the piston displacement when Pa 
reaches some critical value (Pin), which is defined as the infiltration pressure. Plugging the values of Pin, a and γ  
(62.6 mN/m) into the Y-L equation (Equation (2)), the contact angle of SWCNT (with the set B L-J parameter) 
can be calculated as θc =  112°, which is very close to the reported value42. Therefore, the contact angle of water 
with hydrophilic/hydrophobic surface can be effectively determined by measuring the burst pressure of a hydro-
philic pore (Fig. 2) or the infiltration pressure of a hydrophobic microchannel (Figure S9).

In summary, a new model including a water reservoir covered with a solid plate with a circular pore is estab-
lished in the present work, based on which the surface tension of water can be calculated using MD simulations. It 
is found that the applied reservoir pressure is inversely proportional to the curvature of water surface created over 
the nanopore, and the fitting parameter of this relationship corresponds to the water surface tension based on the 
Young–Laplace equation (Equation (1)). The results also show that the relationship holds for the different pore 
size, pore material, pore shape and water temperature as well as the electrolyte solution (NaCl solution). Thus, 
our approach can be effectively used to calculate the surface tension of water surface with different size, under dif-
ferent temperature as well as for the electrolyte solutions. In addition, for the hydrophilic solid plate (with pore), 
there is a well-defined relationship between the burst pressure (causing the instability of water surface) and the 
contact angle of water with the solid plate, which is similar to the Y-L equation (Equation (2)). Thus, our approach 
can be further effectively used to calculate the contact angle of water (with different size, different temperature 
or adding electrolyte ions) on the solid plate (hydrophilic type). Combining with the pressure-driven infiltration 
behavior of water into hydrophobic microchannels, the contact angle is actually determined by measuring the 
critical pressure causing the instability of water surface (e.g., the burst pressure or the infiltration pressure). By 
doing so, the uncertainty in determining the contact angle is highly reduced, and it is also found that the contact 
angle does not depend on the pore size (indicating an intrinsic property).

In the present work, the investigated nanopore radius range is 1.3–2.7 nm, but our method can be effective 
for an even larger pore size range. The accuracy of the surface tension determined using the present method 
actually depends on the accuracies of the measured values of surface curvature (decreases with the pore size) and 
reservoir pressure (decreases with the increase of pore size). Therefore, the lower-limit of the effective pore radius 
is decided by the lower-limit of the liquid surface curvature which can be accurately determined (this value is 
around 0.5 nm).

Finally, the most important thing is that our approach can provide an effective way to check the effectiveness 
of the Y-L equations (including both equations (1) and (2)) at nanoscale, which is much more stable (with lower 
uncertainty) than the conventional approach based on the behavior of nanobubble/nanodroplet. Therefore, the 
present work provided an important guideline to help us to understand the liquid behavior at nanoscale.
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