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Bone marrow-derived cells in the 
population of spinal microglia after 
peripheral nerve injury
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Makoto Tsuda1,2

Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that 
are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have 
reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into 
microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be 
heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of 
experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, 
we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced 
myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically 
labelled microglia, models without irradiation and BM transplantation. Results obtained from these 
independent approaches provide compelling evidence indicating little contribution of circulating BM-
derived cells to the population of spinal microglia after PNI.

Neuropathic pain occurring after peripheral nerve injury (PNI) is a highly debilitating chronic pain state and is 
often resistant to all treatments currently available, including non-steroidal anti-inflammatory drugs and opi-
oids1,2. Therefore, unravelling the molecular and cellular mechanisms for the development and maintenance of 
neuropathic pain is necessary for the discovery of new treatments for neuropathic pain. A growing body of evi-
dence from diverse animal models of neuropathic pain indicates that spinal cord microglia play a pivotal role 
in the development and maintenance of PNI-induced pain hypersensitivity2–8. Thus, microglia have received 
much attention as key players for discovering new mechanisms of neuropathic pain and as potential therapeutic 
targets7,9–11.

Microglia are known as tissue-resident macrophages in the central nervous system (CNS) and constitute 
5–20% of the total cells in the adult CNS12–14. Recent evidence indicates that the origin of microglia are primi-
tive macrophages in the yolk sac11,15,16. Fate mapping studies have revealed that microglia arise from early yolk 
sac-derived precursors that leave the yolk sac, migrating to the neuroectoderm via the primitive bloodstream17. 
These precursors have erythromyeloid potential18. Interestingly, microglial generation is independent of the 
transcription factor Myb19, which is essential for bone marrow (BM)-derived macrophages20,21. Therefore, it is 
assumed that microglia might remain throughout life and be maintained by self-renewal in the healthy adult CNS 
with little contribution from BM-derived monocytes/macrophages22.

Under pathological conditions, microglia become activated and more numerous (referred to as microgliosis). 
Following PNI, spinal microglia are positive to proliferation markers8,23–27. The proliferation activity of micro-
glia peaks around 2 days after PNI and then declines to basal levels8,23,25,27, which results in an increase in their 
number by 2- to 4-fold3,28–30. These findings have suggested an acute, local expansion of spinal microglia after 
PNI. However, it has been reported that a considerable percentage (about 30–40%) of spinal microglia after PNI 
might be BM-derived cells that infiltrate into the spinal dorsal horn parenchyma presumably through periph-
eral blood circulation31–34. Interestingly, these infiltrated BM-derived cells have proliferative activity following 
PNI, express ionized calcium-binding adapter molecule-1 (Iba1, a marker of microglia/macrophages) and show 
a microglia-like morphology31. Moreover, recent transcriptome studies have shown that resident microglia have 
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a distinct gene expression profile as compared with circulating monocytes or macrophages derived from BM35–37. 
Thus, these findings raise the possibility that the population of spinal cord microglia after PNI may be phenotyp-
ically and functionally heterogeneous. This is intriguing in terms of advancing our understanding on the mecha-
nisms involved in neuropathic pain and also their clinical implications. However, one limitation of these studies 
is that all were investigated in chimeric mice receiving lethal whole-body irradiation with a high dose coupled 
with BM transplantation. This strong irradiation has been reported to produce multiple toxic side effects includ-
ing an induction of chemoattractants and a disruption of the blood brain barrier (BBB)38–41 which might allow 
the infiltration of circulating blood cells into the spinal cord. Thus, the extent at which BM-derived monocytes/
macrophages recruit in the spinal cord after PNI remains an important unresolved question.

In this study, we evaluated the infiltration of BM-derived cells into the spinal cord after PNI using chimeric 
mice generated using two different approaches: one was myeloablation by whole-body irradiation with various 
conditioning regimens to reduce undesired side effects, and the other was parabiosis in which two mice were 
surgically joined, a model without irradiation and transplantation. We also used Cx3cr1GFP/+ mice in which all 
microglia are visualised by replacing the Cx3cr1 gene with the Egfp gene42. By using Cx3cr1GFP/+ mice, microglia 
and peripheral monocytes/macrophages are able to be distinguished by the level of GFP expression43,44. Our 
results all show that BM-derived cells do not contribute to the population of spinal microglia after PNI. We pro-
pose that PNI-induced spinal microgliosis may not be a consequence of recruitment of BM-derived cells.

Results
To evaluate the infiltration of BM-derived cells into the spinal cord after PNI, we first used BM chimeric mice 
generated by transplantation of BM cells from transgenic mice ubiquitously expressing green fluorescent protein 
(GFP) into lethally γ -irradiated adult C57BL/6 mice (single dose of 10 Gy). After 4 weeks, we counted the num-
bers of GFP+ cells in peripheral blood by flow cytometry and confirmed efficient chimerism as demonstrated by 
the large proportions of circulating blood leukocytes expressing GFP (97.7%). At 8 weeks, the BM chimeric mice 
were subjected to PNI, and 2 weeks later the recruitment of GFP+ BM-derived cells to the spinal dorsal horn was 
evaluated immunohistochemically, according to previous studies showing that GFP+ Iba1+ BM-derived cells in 
the spinal cord are observed 2 weeks after PNI31–34. We observed many GFP+ cells in the spinal cord ipsilateral 
to the PNI compared with the contralateral side where few GFP+ cells were present (Fig. 1a). GFP+ cells were 

Figure 1. Bone marrow-derived cells in the spinal dorsal horn in γ-irradiated mice with BM 
transplantation after PNI. (a) GFP+ bone marrow (BM)-derived cells in the spinal dorsal horn 2 weeks after 
PNI. C57BL/6 mice were irradiated with a single dose of 10 Gy and transplanted with BM cells from CAG-
EGFP mice. GFP and Iba1 are shown in green and red, respectively. Scale bar, 200 μm. (b–d) High magnification 
of GFP+ cells in the ipsilateral dorsal horn stained for Iba1, a marker for microglia (b), the endothelial cell 
marker CD31 (c), and the T-lymphocyte marker CD3 (d). Scale bar, 20 μm. (e) GFP+ BM-derived cells in the 
spinal dorsal horn 2 weeks after PNI in BM chimeric mice generated by two doses of 5 Gy irradiation (5 Gy ×  2) 
and GFP+ BM transplantation. GFP and Iba1 are shown in green and red, respectively. Scale bar, 200 μm.
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immunolabelled with Iba1 and displayed a ramified morphology (Fig. 1b). Among BM-derived GFP+ cells in the 
dorsal horn (452 cells from 5 sections), the percentage of Iba1+ cells was 83.0% (375 cells), and in this population, 
ramified morphology was 94.1%. There were also some rod-shaped GFP+ cells (9.1% per total GFP+ cells) along 
the vasculature that stained positive for the marker of endothelial cells CD31 (Fig. 1c) and round-shaped cells 
(4.2% per total GFP+ cells) co-labelled with the marker of T cells CD3 (Fig. 1d). These results are comparable to 
data reported previously31.

Splitting irradiation in lower doses results in milder toxicity than a single strong dose41. Thus, C57BL/6 mice 
were subjected to split-dose irradiation [two doses of 5 Gy (5 Gy ×  2), 3-h interval: total 10 Gy]. We confirmed 
efficient reconstitution of donor GFP+ cells in the blood of split-dose irradiated mice (97.8%), which was iden-
tical to lethal single-dose irradiated mice described above. Surprisingly, despite clear reactive microgliosis by 
PNI (Fig. 1e), we detected substantially less infiltrated GFP+ BM-derived cells into the spinal dorsal horn after 
PNI (Fig. 1e). To quantitatively examine PNI-induced spinal infiltration of BM-derived cells, the number of 
GFP+ cells was assessed by flow-cytometry. Microglia were detected by immunostaining with CD11b, a marker 
of microglia, in the spinal cord and brain. Indeed, by using Cx3cr1GFP/+ mice in which all microglia express 
GFP42,45, we confirmed by flow-cytometry that almost all CD11b+ cells in the spinal cord are positive for GFP 
(99.8%). In irradiated BM chimeric mice (10 Gy ×  1) with PNI, the number of CD11b-gated GFP+ cells was 
increased in the ipsilateral spinal cord, but in split-dose irradiated mice (5 Gy ×  2), the cell number dramatically 
decreased (Fig. 2a,b). We also examined the number of CD11b+ GFP+ cells in the spinal cord after PNI using 
BM-chimeric mice with various irradiation doses. We found little contribution from BM-derived cells in the spi-
nal cord after PNI (Fig. 2a,b). However, the percentage of GFP+ cells in circulating blood leukocytes was almost 
identical among the groups with 7 Gy ×  1 (95.4%) and 3.5 Gy ×  2 (93.7%) (Fig. 2b). Furthermore, PNI-induced 
microgliosis was similarly induced in the spinal cord: the increase in total CD11b+ cells in the ipsilateral spinal 
cord was on average 2.6-fold (5 Gy ×  1), 2.8-fold (3.5 Gy ×  2), 2.6-fold (7.5 Gy ×  1) and 2.6-fold (5 Gy ×  2) over 
the contralateral side (Fig. 2c). In the group with 10 Gy ×  1, the increase in total CD11b+ cells was slightly less 
(2.2-fold), which may be due to a toxic effect of strong irradiation. In addition, we examined the different time 
points after PNI (day 0, 3, 14, 28 and 56). The number of CD11b-gated GFP+ BM-derived cells in the spinal cord 
was also low at all time-points tested (Fig. 2d). These results showed that the number of CD11b+ GFP+ cells in the 
spinal cord of irradiated mice (10 Gy ×  1) is exceptionally high and that there is no correlation between peripheral 
blood reconstitution and GFP+ BM-derived cell infiltration into the spinal cord.

To further examine the contribution of BM-derived cells to the population of spinal microglia after PNI, we 
used mouse parabiosis, in which parabionts (C57BL/6 mice) had been surgically joined with GFP mice, which in 
turn shares circulating blood between the two mice. As reported previously46, 2 weeks after parabiosis, parabionts 
had an average of 43.4± 1.5% GFP+ cells in circulating blood leukocytes (n =  5). The parabionts were subjected 
to unilateral PNI 4 weeks after establishment of parabiosis. Two weeks later, we assessed the presence of GFP+ 
BM-derived cells in the spinal cord. Flow cytometry revealed that CD11b-gated GFP+ cells were almost absent 
in the spinal dorsal horn of parabionts (Fig. 3a,b), while the PNI-induced microgliosis in the dorsal horn was 
clearly induced (Fig. 3a,b). The lack of CD11b+ GFP+ cells and the presence of PNI-induced microgliosis was 
confirmed by immunohistochemical analyses (Fig. 3c). In addition, CD11bneg CD45high GFP+ cells (presumably 
T-lymphocytes) in the spinal cord was observed after PNI (14.6 ±  1.2% per total CD11bneg CD45high cells), indi-
cating that all types of cells derived from BM do not necessarily infiltrate into the spinal cord after PNI. In the 
dorsal root ganglia (DRG), GFP+ cells were readily observed in the ipsilateral side (Fig. 3d), which is consistent 
with evidence indicating that a population of macrophages in the DRG are derived from BM cells47,48. Our data 
using parabiotic mice provides evidence that circulating peripheral blood cells do not contribute to the spinal 
microglia population.

Resident microglia and circulating peripheral monocytes can be distinguished by the expression of the 
chemokine receptor CX3CR1 because microglia highly express this receptor43,44. We thus used Cx3cr1GFP/+ mice 
as a model without irradiation chimerism or parabiosis surgery. Using flow cytometry, a single population of 
GFPhigh cells (resident microglia) in the spinal cord in the contralateral side were detected (Fig. 4a). After PNI, the 
number of spinal GFPhigh microglia increased (Fig. 4b), but the percentages of GFPhigh and GFPlow or negative micro-
glia in the ipsilateral spinal cord were almost identical to that in the contralateral side [GFPhigh: ipsilateral 99.7% 
and contralateral 99.6% (Fig. 4c); GFPlow or negative: ipsilateral 0.3% and contralateral 0.4%]. Thus, these results 
suggest that circulating peripheral monocytes do not participate in the population of spinal microglia after PNI.

Discussion
Microgliosis in the spinal cord induced by PNI has been assumed to be associated with a local expansion of res-
ident microglia and/or with the recruitment of BM-derived cells from the bloodstream. Previous investigations 
in BM chimeric mice with irradiation at 10 Gy, a dose that is used for achieving full myeloablation41, showed 
infiltration of BM-derived cells into the spinal cord31–34. Consistent with these studies, we reproduced the spinal 
infiltration of GFP+ BM cells in irradiated mice (single dose of 10 Gy) and these GFP+ cells differentiated into 
microglia-like cells. While transplantation of BM cells to irradiated recipients (10 Gy) leads to high chimerism in 
the blood, it has been shown that such a high dose of whole-body irradiation induces inflammatory mediators and 
obvious BBB changes38–41. In this study, splitting irradiation using repeated lower doses, which results in milder 
toxicity than a single strong dose41, revealed that exposing mice to low doses of irradiation (5 Gy ×  2) dramatically 
reduced the infiltration of CD11b+ BM-derived cells in the spinal cord compared with mice exposed to a single 
dose of 10 Gy, even though blood chimerism in both groups was almost identical (> 97%). The marked reduction 
in spinal infiltration of CD11b+ GFP+ BM-derived cells was consistently observed in other groups with three 
different conditioning regimens. In these groups, the number of CD11b+ GFP+ cells was slightly increased in the 
spinal cord after PNI, which may be due to undesired side effects at lower doses41. Considering that all groups of 
BM chimeric mice induced PNI-induced spinal microgliosis, our findings suggest that the spinal recruitment of 
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BM-derived cells after PNI, which has been reported previously, may be an experimental artefact. The artefact 
possibly results from irradiation that might cause BBB disruptions, and upregulation of chemokines and adhesion 
molecules, which leads to recruitment of cells38–41. To investigate the differential effect of the various radiation 
dosing regimens on blood-spinal cord-barrier (BSCB) permeability after PNI will require further investigation.

Our study using BM chimeric mice indicates few BM-derived CD11b+ GFP+ cells recruited to the spinal cord 
after PNI (although one limitation was to use the contralateral, but not sham-operated, spinal cord as controls). 

Figure 2. Effects of various doses of γ-irradiation on the infiltration of bone marrow-derived cells in the 
spinal cord after PNI. (a) Representative pseudocoloured scatterplots of CD11b-gated cells in the spinal cord 
2 weeks after PNI. Mice were irradiated with various conditioning regimens (1 dose of 5, 7 or 10 Gy; 2 doses of 
3.5 or 5 Gy, 3-h interval) and transplanted with GFP+ bone marrow (BM) cells. CD11b+ cells were delineated 
by the expression of GFP (Y-axis) and CD11b (X-axis), with the upper-right quadrant (red frame) representing 
infiltrating CD11b+ GFP+ BM-derived cells. (b) Number of CD11b-gated GFP+ BM-derived cells in both 
sides of the spinal cord 2 weeks after PNI (left Y-axis). n =  4–7, ***P <  0.001 vs. contralateral side of group with 
10 Gy ×  1. Grey circles indicate the percentage of GFP+ cells in blood leukocytes (right Y-axis). n =  4–7 mice, 
##P <  0.01 vs. group with 10 Gy ×  1. Data are the mean ±  SEM. (c) Total number of CD11b+ microglia in both 
sides of the spinal cord 2 weeks after PNI. n =  4–7, ***P <  0.001 vs. contralateral side of each group. Data are 
the mean ±  SEM. (d) Scatterplots of CD11b-gated GFP+ BM-derived cells in the ipsilateral spinal cord 3, 14, 28 
and 56 days after PNI. The percentage of cells in the upper and lower-right quadrants per total CD11b+ cells are 
shown.
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This is strongly supported by our further findings using the parabiosis model showing that in the absence of two 
experimental manipulations, irradiation and BM transplantation, there is no evidence of participation of BM 
cells to the population of spinal microglia after PNI. One technical limitation of parabiosis is the relatively lower 
frequency of blood chimerism than irradiated mice with BM transplantation. However, the lack of CD11b+ GFP+ 
cell recruitment seems to be selective to this cell type and to the spinal cord, as GFP+ cells in the DRG (which are 
presumably macrophages that are of haematogenous origin47,48) and CD11bneg CD45high GFP+ cells in the spinal 
cord were all detected after PNI. These data exclude the possibility that the little contribution of BM cells to spinal 
microglia populations is simply due to the level of circulating blood chimerism. From these results, we conclude 
that few BM-derived cells infiltrate into the spinal cord parenchyma after PNI and propose that microgliosis 
might be a consequence of a local expansion of spinal-resident microglia. This is supported by our data using 
Cx3cr1GFP/+ mice, a genetic approach without irradiation chimerism or parabiosis. Thus, our findings should 

Figure 3. Circulating peripheral blood cells in the spinal cord of parabionts after PNI. (a) Representative 
scatterplots of CD11b-gated cells in the spinal cord of parabiotic mice 2 weeks after PNI. Parabionts (C57BL/6 
mice) were surgically joined with CAG-GFP mice. Spinal CD11b+ cells in parabionts were delineated by the 
expression of GFP (Y-axis) and CD11b (X-axis), with the upper-right quadrant (red frame) representing 
infiltrating CD11b+ GFP+ cells. (b) The number of CD11b-gated GFP+ cells and total CD11b+ cells in the 
ipsilateral (I) and contralateral (C) sides of the spinal cord 2 weeks after PNI. n =  5 parabionts, ***P <  0.001 vs. 
contralateral side. Data are the mean ±  SEM. (c,d) Donor GFP+ cells in the spinal dorsal horn (c) and DRG 
(d) of parabionts 2 weeks after PNI. CD11b immunofluorescence is shown in red (c). Scale bar, 200 μm (c) and 
100 μm (d).

Figure 4. Circulating blood monocytes do not contribute to PNI-induced spinal microgliosis after PNI. 
(a) Representative pseudocoloured scatterplots of CD11b-gated cells in the spinal cord of Cx3cr1GFP/+ mice 2 
weeks after PNI. Spinal CD11b+ cells were delineated by the expression of GFP (Y-axis) and CD11b (X-axis), 
with the lower-right quadrant (red frame) representing infiltrated CD11b+ GFPlow/neg circulating monocytes. 
(b,c) Total number of GFP+ cells (b) and the percentage of GFPhigh per total CD11b+ cells (c) in the ipsilateral 
(I) and contralateral (C) spinal cord. n =  4 Cx3cr1GFP/+ mice, ***P <  0.001 vs. contralateral side. Data are the 
mean ±  SEM.
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prompt a careful reinterpretation of the previous literature describing the recruitment of BM-derived cells to the 
spinal cord after PNI and also using BM chimeric mice generated by a single high dose of whole-body irradiation.

Of course, all BM-derived cells do not necessarily infiltrate into the spinal cord after PNI. Indeed, we detected 
GFP+ cells with CD11bneg CD45high, a profile that corresponds to lymphocytes including T cells. The PNI-induced 
recruitment of T cells in the spinal cord has been reported previously49–51. The mechanism for the infiltration of 
this cell-type after PNI remains unclear, but the PNI-induced expression of chemokines and dysfunction of BSCB 
may be involved33,52,53. Nevertheless, considering the limited number of CD11b+ BM-derived monocytes/mac-
rophages in the ipsilateral spinal cord, such changes may not be sufficient for spinal infiltration of this cell type.

In the contralateral side of the spinal cord in irradiated mice (single dose of 10 Gy), the number of microglia 
was markedly decreased. The decrease appeared to occur in an irradiation dose-dependent manner, assuming the 
involvement of toxic inflammatory effects by the strong irradiation. Alternatively, given that resident microglia in 
the spinal cord are maintained by self-renewal22,54, the relatively high dose of irradiation may disrupt the prolifer-
ative capacity of resident microglia in the spinal cord54.

In conclusion, by using three different approaches, we provide evidence indicating little contribution of 
BM-derived cells in the population of spinal microglia after PNI. Thus, PNI-induced spinal microgliosis is not 
a consequence of infiltration of BM-derived monocytes/macrophages, but may rather be associated with a local 
expansion of resident microglia due to their proliferation activity in response to PNI8,23–27.

Methods
Animals. C57BL/6 (male and female), C57BL/6-Tg(CAG-EGFP) (male and female, Japan SLC) and B6.129P-
Cx3cr1tm1Litt/J mice (male, Jackson Laboratory) were used. All mice were aged 4–10 weeks at the start of each 
experiment, and were housed in groups of two or three per cage at a temperature of 22 ±  1 °C with a 12-hour 
light-dark cycle, and were fed food and water ad libitum. All animal experiments were conducted according to 
the national and international guidelines contained in the ‘Act on Welfare and Management of Animals’ (Ministry 
of Environment of Japan) and ‘Regulation of Laboratory Animals’ (Kyushu University) and under the protocols 
approved by the Institutional Animal Care and Use committee review panels at Kyushu University.

Generation of bone marrow chimera. Recipient C57BL/6 mice (male) at age 4–5 weeks were irradiated 
with various doses (1 dose of 5, 7 or 10 Gy; 2 doses of 3.5 or 5 Gy, 3-h interval) of γ -irradiation (Gammacell 
40 Exactor) for ablation of endogenous BM cells. For BM transplantation, BM cells were isolated from adult 
CAG-EGFP mice (male, donor) by flushing the femurs and tibias using a 25G needle with Dulbecco’s modified 
Eagle medium (DMEM; Invitrogen). After resuspension, BM cells were centrifuged (300 ×  g, 5 min, 4 °C). After 
resuspension with ice-cold DMEM, BM cells were filtered through a 35-μm filter. Irradiated recipient C57BL/6 
mice were anesthetised with isoflurane [2% (v/v)] and injected intravenously with 0.5–1.0 ×  107 donor BM cells 
(in 100 μL per recipient) through the retro-orbital sinus within 1 or 2 h after final irradiation. Four weeks after BM 
transplantation, a small amount of blood was collected through the retro-orbital sinus using a heparinised micro-
hematocrit capillary (Fisher Scientific). The erythrocytes were lysed with a lysing buffer (BD Pharm LyseTM, BD 
Bioscience), and after centrifugation (400 ×  g, 5 min, 4 °C), the leukocytes were washed in Hanks’ balanced salt 
solution (HBSS) including 2% (v/v) fetal bovine serum (FBS). Blood leukocytes were analysed by flow cytometry 
(FACSVerse) for GFP to examine the degree of chimerism of bone marrow cells. Three months after BM trans-
plantation, BM chimeric mice were subjected to PNI.

Peripheral nerve injury. We used the spinal nerve injury model with some modifications as described pre-
viously55. Under isoflurane [2% (v/v)] anaesthesia, a small incision at L3–S1 was made. Paraspinal muscle and 
fat were removed from the L5 traverse process, and the part of this traverse process was removed to expose the 
parallel-lying L3 and L4 spinal nerves, and then the L4 nerve was carefully isolated and cut. The wound and the 
surrounding skin were sutured with 5-0 silk and closed with staples.

Immunohistochemistry. Mice were deeply anaesthetised by i.p. injection of pentobarbital and perfused 
transcardially with phosphate buffered saline (PBS), followed by ice-cold 4% (w/v) paraformaldehyde/PBS. The 
L4 segments of the spinal cord, or the L4 DRG were removed, postfixed in the same fixative for 3 h at 4 °C, and 
placed in 30% (w/v) sucrose solution for 24 h at 4 °C. Transverse L4 spinal cord sections (30 μm) and L4 DRG 
sections (15 μm) were incubated in blocking solution [3% (v/v) normal goat serum] for 2 h at room temperature 
and then incubated for 48 h at 4 °C with primary antibodies: rabbit polyclonal anti-Iba1 (1:5000, Wako), and 
rat monoclonal anti-CD11b (1:1000, Serotec), rat monoclonal anti-CD31 (1:200, BD Pharmingen) and ham-
ster monoclonal anti-CD3 (1:100, eBioscience). Following incubation, tissue sections were washed and incu-
bated for 3 h at room temperature in secondary antibody solution (Alexa Fluor 546 and Alexa Fluor 405, 1:1000, 
Molecular Probes, OR, USA). The tissue sections were washed, slide-mounted and subsequently coverslipped 
with Vectashield hardmount (Vector Laboratories). Three to five sections from the L4 spinal cord and DRG of 
each mouse were randomly selected and analysed using an LSM700 Imaging System (Carl Zeiss).

Flow cytometry. Mice were deeply anaesthetised by i.p. injection of pentobarbital and perfused transcardi-
ally with PBS to remove circulating blood from the vasculature. The spinal cord was rapidly and carefully removed 
from the vertebral column and placed into ice-cold HBSS. The 3rd and 4th lumbar segments (2 mm long) of the 
spinal cord ipsilateral and contralateral to PNI were separated. Unilateral spinal tissue pieces were treated with 
pre-warmed 0.8-mL enzymatic solution [0.2 U/mL Collagenase D (Roche) and 4.3 U/mL of Dispase (GIBCO)] 
in HBSS-FBS for 30 min at 37 °C. The tissues were homogenised by passing through a 23G needle attached with a 
1-mL syringe and were further incubated for 15 min at 37 °C. After that, the tissues were homogenised by passing 
twice through a 26G needle, and the enzymatic reaction was stopped by adding EDTA (0.5 M). Further process-
ing was performed at 4 °C. After centrifugation (400 ×  g, 5 min, 4 °C), the pellets were resuspended in ice-cold 
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HBSS-FBS. The resultant cell suspension [350 μL of the total suspension (500 μL)] was used for flow cytometry. 
The cell suspension was blocked by incubating with Fc Block (BD Pharmingen, 5 min, 4 °C) and immunostained 
with CD11b-A647 (BD Pharmingen, 1:10000, 30 min, 4 °C) and CD45-PerCP/Cy5.5 (BD Pharmingen, 1:1000, 
30 min, 4 °C) in the dark. After washing, the pellet was resuspended in ice-cold HBSS-FBS and filtered through 
a 35-μm nylon cell strainer (BD Biosciences, San Jose, CA) to isolate tissue debris from the cell suspension. 
The total number of microglia in the L3/4 spinal cord was analysed using a FACSVerse flow cytometer (BD 
Bioscience) and FlowJo software (TreeStar).

Parabiosis. Parabiotic pairs of female mice (CAG-EGFP and C57BL/6) were age-matched (6 to 7 weeks old) 
and housed together for 2 weeks before surgery. They were given a medicated Sulfa-Trim diet containing 0.124% 
(w/v) sulfamethoxazole and 0.025% (w/v) trimethoprim (TestDiet) 2 weeks prior to operation. Under isoflurane 
[2% (v/v)] anaesthesia, a mirror-image incision from elbow to knee along the flank of each mouse was made, and 
the subcutaneous fascia was bluntly dissected. Ligaments at the elbow and knee in each pair of mice were sutured 
together with 5-0 silk. The skin incisions were then closed with staples. Animals recovered in a heated cage. After 
the operation, each parabiont was subcutaneously injected with 1 mL of warm saline twice daily for 48 h. Two 
weeks after the operation, the medicated Sulfa-Trim diet was exchanged with a normal diet. One month after the 
operation, blood chimerism was analysed by flow cytometry. After that, parabionts (C57BL/6) were subjected to 
PNI and, 2 weeks later, the number of GFP+ cells in the spinal cord and DRG was analysed by flow cytometry and 
immunohistochemistry.

Statistical analysis. Statistical significance of differences was determined using two-way ANOVA with post 
hoc Bonferroni test (Fig. 2b,c), one-way ANOVA with post hoc Dunnett’s multiple comparison test (Fig. 2b,c) or 
Paired Student’s t test (Figs 3b and 4b,c) using GraphPad Prism 4 software. Differences were considered signifi-
cant at P <  0.05.
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