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Low-threshold optical bistability 
of graphene-wrapped dielectric 
composite
Yang Huang1,2, Andrey E. Miroshnichenko2 & Lei Gao1

We theoretically study the effective third-order nonlinear response and optical bistability of the 3D 
graphene based composite consisting of graphene wrapped dielectric nanoparticles embedded in 
dielectric host at terahertz frequencies. Taking into account the nonlinear conductivity of graphene, we 
derive the analytical expressions for the effective third-order nonlinear coefficient χe

3( )
 in weakly 

nonlinear limit. Moreover, for strong applied fields, the criterion for achieving optical bistability in such 
a graphene coated sphere, as well as the switching thresholds of optical bistability are discussed. We 
find that both χe

3( ) and optical bistability are strongly dependent on the Fermi energy of graphene and it 
is possible to achieve very low switching thresholds under the normal graphene dissipation. We further 
propose a scheme to study the transmittance of this nonlinear composite slab. These results reveal 
novel regime of the optical bistability of the transmittance of light. We show that this kind of graphene-
wrapped composite, which has tunable and low threshold optical bistability, can be the best candidate 
for unique nonlinear optical materials.

Graphene is a two-dimensional hexagonal crystal carbon sheet with only single layer of atoms, which has recently 
attracted enormous interest for its outstanding optical properties1–4 and abundant potential applications in opto-
electronic devices5–13, such as ultrafast optical modulator3, graphene photodetectors11 as well as graphene touch 
screens12. One novel feature of graphene is its controllable optical properties due to tunability of conductivity 
of graphene, which could give rise to some guidances on tunable optical sensor14, graphene metamaterials15–17, 
graphene plasmonics18–25, terahertz absorber26–28 and tunable Casimir force29.

One remarkable feature of graphene is its nonlinear properties which have already been considered both in 
theory and experiments30–37. Some exploitations have focused on the problems of bistability in graphene based 
structures38,39. Optical bistability (OB) existing in nonlinear optical systems shows the possibility to exhibit two 
different values of the transmitted light intensity for one input intensity40. It can give the optical structures the 
function to control two distinguishing stable transmission states with the history of the input light, which can be 
further used in switching, logic functions, modulation and so on. One challenge of OB in discipline is to achieve 
significant nonlinear interaction at ever smaller excitation powers and interaction volumes, while maintaining its 
tunability. Normally, strong OB can be realized in a media with high Kerr nonlinearity, where the material’s 
refractive index is efficiently modulated by the input light41,42. However, conventional Kerr-type nonlinear mate-
rials generally have very weak nonlinear response. In this connection, graphene is shown to has a large nonlinear 
Kerr index32,38, which result in its superior third-order nonlinear optical properties. Using graphene’s analogous 
Kerr nonlinearity on conductivity σ σ σ= + E0 3

2 32, OB has been widely investigated in one or two dimension 
structures38,39,43.

Although graphene is employed not only for planar geometries, it is possible now to create graphene wrapped 
objects experimentally44,45. To the best of our knowledge, few works are aimed at OB in 3D graphene based struc-
ture46. In the present work, we propose the 3D graphene based composite in which graphene coated dielectric 
spheres are randomly embedded in the linear host medium. Within the quasi-static approximation, we derive 
and theoretically study its effective third-order nonlinear coefficient, which is an important parameter in the 
nonlinear response of the composite. In addition, OB is reported in this novel 3D graphene wrapped spheres with 
our proposed theoretical method. By rigorous derivation, we show that the composite system could provide more 
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parameter space to achieve low threshold OB with a lower Fermi-level energy of graphene at terahertz frequency, 
compared to the low-dimensional structures. Furthermore, we investigate the optical transmittance of the nonlin-
ear composite slab. Zero transmittance is found at all incident angles with subwavelength thickness of the linear 
composite system, and unusual nonlinear OB behavior is reported in which the transmittance can be switched 
from almost zero to a very high level at low incident field strength. This proposed 3D graphene based nonlinear 
composite might provide a new thought to the design of tunable optical devices.

Results
Analytical Derivation. We consider a random composite in which graphene wrapped spherical dielectric 
nanoparticles with radii a are randomly embedded in the linear dielectric host as shown in Fig. 1. On the experi-
mental side, the graphene wrapped sphere can be achieved by using electrostatic self-assembly, in which process 
the spherical dielectric core is initially modified to acquire a positive charge and then co-assemble with the nega-
tively charged graphene sheet. Based on this method, many graphene-wrapped nanoparticles have been fabri-
cated44,45,47, even for some more complicated particles with hollow core48,49. One specific example was in the work 
done by Zhao’s group50, who fabricated graphene wrapped mesoporous Silica nanoparticles with the total radius 
around ~50 nm which is very similar to our model. Besides the electrostatic self-assembly, graphene wrapped 
dielectric particles can be fabricated in an emulsification process51 as well. Though experimental deviation from 
an idealized spherical graphene coating, as well as surface roughness, can’t be avoided, the above experimental 
evidences underscore the relevance of the geometry beyond a theoretical perspective. Therefore, in the theoretical 
model22,34,52, the dielectric constants of the dielectric spherical particles and host are given as ε and εh, respec-
tively. Assuming the electric displacement vector Dn inside (n =  c) and outside (n =  h) the sphere have linear 
relation with the electric fields En, so that Dn =  εnEn. In the case when a is far less than the wavelength of the 
incident light, we can adopt the so-called the quasi-static approximation. Hence the electric potentials both inside 
and outside the spherical particles would satisfy the Laplace equation: φ∇ = 0n

2 . In the case of linearly polarized 
plane monochromatic electromagnetic wave incidence ( ω= −ˆE z ik y i tE exp( )i 0 0 ), the general solutions of the 
Laplace equations can be derived to be,

φ θ

φ θ

= −

= − − −
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( )cos (1)

c 0

h 0
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Here, the electric potential inside the particles includes the incident part and induced one, i.e., 
φ+ = −∇E Ei ind c. As to φh, we have φ+ = −∇E Ei s h in which Es is the scattering field in the host. E0 is the 

amplitude of the external applied field and A, B are the unknown coefficients to be determined with the appropri-
ate boundary conditions. For this monolayer graphene coated dielectric sphere in which the graphene layer is 
considered as an extremely thin conducting shell with conductivity σ, we employ the non source-free boundary 
conditions34,
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where ρ is the surface density of charge which has the relation ωρ∇ ⋅ = ijs //  with surface density of linear current 
j// at the frequency ω. Here, the operator ∇ s stands for surface divergence and σ=j E// // with the tangential field 
component E// of the induced field and the surface conductivity σ.

Solving the above equations, one yields the unknown coefficients,

Figure 1. Schematic diagram of the graphene wrapped composite in which the dielectric spherical 
inclusions are coated by graphene layers. 
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where σ ω εΘ = i a/( )0  and B is dipole polarizability of the coated sphere. According to the Clausius-Mossotti 
relation, we can get the effective dielectric coefficient53,

ε ε π
π

= +
−

NB
NB

12
3 4

, (4)e h

in which N is the numbers of spherical particles per volume. Substituting B into the Eq. (4), we have
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where π≡f Na4/3 3 is the volume fraction of the particles.
In the weakly nonlinear limit, to derive the third-order coefficient of the composite, it is convenient to intro-

duce the macroscopic effective linear dielectric constant εe
(0) and the effective third-order nonlinear optical sus-

ceptibility χe
(3) as follows54,55:

ε ε χ= + .E (6)e e
(0)

e
(3)

0
2

Next, we rewrite Eq. (5) in the form of Eq. (6) with nonlinear surface conductivity of the monolayer graphene 
and derive explicit expression for χe

(3) by comparing them. To model the surface conductivity of the graphene, we 
introduce the simplified version within the random-phase approximation,

σ σ σ= + E , (7)0 3 c
2

in which the linear term σ0 =  σintra +  σinter, σintra and σinter are the intraband and interband terms which have the 
following forms39,
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In the above equation, ν π=E n( )F F 2D
1/2 is the Fermi energy which can be electrically controlled by an 

applied gate voltage due to the strong dependence of the carrier density n2D on the gate voltage, τ is the 
electron-phonon relaxation time, and T is the temperature in K. e, , kB and νF are the electron charge, reduced 
Planck constant, Boltzmann constant, and the Fermi velocity of electrons respectively. Here we would like to 
mention that the conductive response of the graphene thin shell is approximated by its planar equivalent. Such a 
treatment has been adopted in recent theoretical works22,34,52. Generally, zone folding for planar graphene quan-
tizes the allowable electronic momenta and hence modifies the linear energy dispersion. However, these pertur-
bation incur only negligible changes to the conductive response provided the inverse circumference remains 
small relative to the Fermi momentum kF, i.e., provided k b 1F

22. Moreover, in this work, we consider the die-
lectric core having a radius ~100 nm, which is much larger than the thickness of graphene. Hence the graphene 
coating can be characterized well as a two-dimension homogenized conducting film where the non-spherical 
elements and microscopic details are neglected4. The third-order nonlinear surface conductivity σ3 can be 
expressed as32
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In THz frequencies, the nonlinear term of the surface conductivity of graphene is much weaker, i.e., 
σ σE3 c

2
0. Thus, using Taylor expansion method, we can approximate Eq. (5) as
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where ε ε ε ε= − + Θ + − Θ −P f f(1 ) [2( / 1) (2 / 1)]0 0 h 0 h h, σ ω εΘ = i a/( )0 0 0  and σ ω εΘ = i a/( )3 3 0 .
On the other hand, in the composite system, for the local electric field inside the sphere Ec and outside the 

sphere Eh there is a relation

= .AE E (11)c h

To derive the relationship between the external field E0 light upon the composite and Ec, one may introduce 
an average field theory for the composite,
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Therefore, we can finally derive the following relation
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In the weakly nonlinear limit, substituting Eq. (7) into Eq. (13) and keeping terms only to first order in σ3, we 
obtain

ε
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It is sufficient to only retain the first term in Eq. (14) and substitute for Ec in Eq. (10),
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By comparing Eq. (15) and (6), we can obtain εe
(0) and χe

(3) as
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In what follows, we would like to check the strong field case. Generally, Eq. (13) is the nonlinear equation for 
the local field Ec inside the particles as the function of E0. Taking the square of modulus of Eq. (13) one yields,
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For frequencies ω>E2 F , σ σ≈0 intra because the interband transitions in graphene are forbidden by the 
Pauli exclusion principle. And E k TF B  in the room temperature (T =  300 k), hence the linear part of the sur-
face conductivity in Eq. (8) can be a simplified version as,
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In the case that εh and ε are pure dielectric and have no dissipation, we can alternatively rewrite Eq. (18) as
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In order for Eq. (20) to achieve OB response, the following additional inequalities should be satisfied56,

≥ − ± − > .A B A A B3 , ( 2 3 )/3 0 (24)2 2 2 2

Thus the positions of the local minimum (maximum) y x( ) are at = − ± −±x A A B( 2 3 )/32 2 , and the 
switching-up/down threshold of OB is ± ±y x( ).

Effective Third-order Nonlinear Coefficient. In Fig. 2, we plot χe
(3) as functions of several variables 

based on Eq. (17). Within the parameters we choose, large Fermi energy level will generally lead to small magni-
tude of the resonant nonlinearity enhancement peak, accompanied by the blue-shift. In addition, increasing the 
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radius a and permittivity ε of the particles could further reduce the magnitude of the resonant peak. However, in 
contrast to EF, increasing the radius a and permittivity ε of the particles will result in the peak of χe

(3) red-shifted. 
As a result, in order to get large nonlinear response of the composite, one may either reduce the geometric/phys-
ical parameters, i.e., a and ε, or decrease the graphene related variable EF. Note that, for larger χe

(3) we concentrate 
on the peak value in spectra, we do not compare χe

(3) as the function of a, ε and EF at a specific λ. This conclusion 
may be derived directly from analysis of Eq. (17). We would like to mention that the wavelength range chosen 
here could keep the quasistatic approximation valid, and smaller a and ε will go a further step to verify this 
validity.

Optical Bistability of Near –Field. The effective third order nonlinear coefficient χe
(3) indicates how 

strong nonlinearity the composite may possess. Normally, it is important to find a high χe
(3) for composites if one 

wants to achieve dramatic OB with low switching threshold. On the other hand, OB only occur when the param-
eters satisfy some specific conditions as shown in Eq. (24). Here we derive the OB criterion for the composite as
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Only for the condition that Criterion >  0, this composite could exhibits OB. Viewing Fig. 3, two conclusions 
can be made, one is that OB could not be achieved where χe

(3) reaches its maximal value with the present param-
eters. The other one is that the critical boundary for OB in composite is more close to high χe

(3) at lower ε and λ 
within our interested parameters regions. To achieve low switching threshold for OB, we choose ε =  2.25 and 
λ= 19.3 μm as our primary parameters in Fig. 4(a) because they just lie on the critical boundary for OB and have 
a corresponding high value of χe

(3). The solid back line shows this critical condition that the switching-up and 
switching-down thresholds E0  are the same, and their switching thresholds are very low, almost one order of 
magnitude smaller than the enhanced local field Ec . To make comparison, another two curves with longer wave-
length (λ =  20 μm and λ =  22 μm) are plotted in the same figure. The longer the λ is, the lower value of χe

(3), hence 
the higher switching thresholds. With the explicit expressions for χe

(3) and criterion of OB, it is easy to find appro-
priate parameters to achieving low switching thresholds for OB.

Considering the relation between χe
(3) and the switching threshold of OB, the dependence of the switching 

thresholds on λ, a, ε and EF should be the same as that of χe
(3). To one’s interest, the parameters space for achiev-

ing OB always lie on the right side of the maxima line of χe
(3) in Fig. 3. That means the switching thresholds are 

monotonically increasing (or decreasing) by the changing of these variables (λ, a, ε and EF), which are shown in 
Fig. 4 (b–d) and can be indicated by Eq. (17) as well. In details, we found that longer λ and higher EF would lead 
to higher switching thresholds. On the contrary, larger ε and a give rise to lower switching thresholds. Below, we 
will further demonstrate that the switching thresholds always vary monotonically with these variables.

Figure 2. Upper panel: the effective third order nonlinear coefficient χe
(3) as the functions of external incident 

wavelength λ and the particle radius a with EF being (a) 0.3 eV, (b) 0.5 eV and (c) 0.8 eV respectively. The 
dielectric constant of the dielectric particle is chosen as ε =  12.25. Lower panel: χe as the functions of λ and ε 
with EF being (d) 0.3 eV, (e) 0.5 eV and (f) 0.8 eV respectively. The radius of the dielectric particle a is 100 nm. 
Other parameters are: ε = .2 25h , = .f 0 01, and τ = .0 1 ps.
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Role of the Relaxation Time. In the discussion above, we employ the relaxation time of carriers as 
τ =  0.1 ps in our calculations. It is interesting to see how the relaxation time τ influence the third-order nonlinear 
coefficients and optical bistability. As an example, we replot Fig. 3 in Fig. 5 but with different τ. By comparing 
these two figures, we found that the magnitude of the optical nonlinearity peaks in our interesting spectra is gen-
erally increased with the increase of τ, especially for high ε. And the peak positions of χe

(3) are slightly red-shifted 
as well. This is easy to understand because long relaxation time means low dissipation in graphene, hence result-
ing in small imaginary part of χe

(3) in Eq. (17). In addition, the parameters space for OB has been broadened when 
τ becomes larger, and the critical boundary (Criterion =  0) goes closer to the maxima line of χe

(3). Based on the 

Figure 3. (a) Same as shown in Fig. 2(d). (b) Criterion as the functions of the external incident wavelength λ 
and the particle radius a. Other parameters are the same as (a). Solid lines with numbers are contours of the 
theoretical results of Eq. (25). Only the parameters laid on the regions where the contours are larger than 0 can 
give rise to optical bistability in the composite.

Figure 4. Dependence of the local electric field intensity Ec  on the external incident field E0  with various (a) 
λ, (b) a, (c) EF and (d) ε, respectively. Parameters are EF =  0.3 eV, a =  100 nm, ε =  2.25 for (a), = .E 0 3 eVF , 
λ =  20 μm, ε = .2 25 for (b), a =  100 nm, λ =  20 μm, ε =  2.25 for (c) and a =  100 nm, λ =  20 μm, = .E 0 3 eVF  for 
(d). Other parameters are εh =  2.25, = .f 0 01 and τ = .0 1 ps. The inserts in (a) are the near-field distributions of 
inclusions before and after Ec  dumping at Eup respectively.
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analytical solutions of Eq. (20), we plot the switching-up and switching-down threshold electric fields E0  in the 
function of EF with different τ in Fig. 6. As expected, the switching threshold E0 up

 and E0 down
 are both lower on 

the condition of τ  =  1 ps than that of τ  =  0.1 ps. However, the magnitudes are quite different. The switching-down 
threshold E0 down

 is much more sensitive to τ, and it decreases dramatically with longer τ especially for high EF 
region. In contrast, E0 up

 is less sensitive to the change of τ and shows slight decreasing. Figure 6 also confirms 
our conclusion that both E0 up

 and E0 down
 go higher with the higher EF. In other words, if we further reduce the 

Fermi energy EF, the switching thresholds will be even lower. It should be noted that the parameters for the solid 
lines in Fig. 6 are chosen right on the critical boundary for OB when EF =  0.3 eV. That is why these two solid (red 
and black) lines finally cover each other at the leftmost. In this case, further reducing EF will go beyond the con-
dition for OB. But in the dashed line case, there still exists the region for decreasing EF, hence achieving lower 
switching thresholds.

Increasing τ, on one hand, will reduce the switching thresholds especially for E0 down
. On the other hand, it 

provides us more parameter space to realize OB with low switching thresholds. In Fig. 5(b) we plot the results for 
three points along the critical boundary and plot their OB curves in Fig. 7(a). It clearly shows that they have very 
low switching thresholds on the order of ~10 V/m4  which are two order of magnitude smaller than these in Fig. 4. 
One can find a lot of other points in Fig. 5(b) which could provide very low switching thresholds with different 
parameters, in order to satisfy the realistic requirement in experiments.

Next, we want to discuss about one specific case in which τ =− 01 . The situation can be quite different and 
interesting if we totally neglect the τ−1 term in the linear part of the surface conductivity. Therefore Eq. (19) would 
reduce to σ π ω= ie E /( )0

2
F

2 , and other derivations would be rewritten accordingly. The criterion condition for 
OB is reduced to

Figure 5. The same as Fig. 3 but with τ = 1 ps.

Figure 6. The dependencies of the switch-up and switch-down threshold electric fields |E0| on the Fermi 
energy EF of the graphene with relaxation time τ = 0.1 ps (solid lines) and τ = 0.1 ps (dashed lines). The 
other parameters are = .f 0 01, a =  100 nm, ε =  2.25, εh =  2.25 and λ =  19.3 μm.
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π ω ε
ε ε= − − − + + .Criterion f e E

a
f f2(1 ) [ (1 ) (2 )]

(26)

2
F

2 2
0

h

It is interesting to note that Eq. (26) is the same as P0 in the non-dissipation case. As a consequence, χe
(3) in 

Eq. (17) apparently reaches to the maxima when the criterion equation equals zero. This means that one can not 
achieve OB with the maximal effective nonlinear coefficient χe

(3). However, there is still room for OB with strong 
nonlinearity by slightly removing the wavelength λ into a bit higher value so that the OB criterion can be satisfied. 
Once the τ −1 is neglected hence σ0 is pure imaginary, the switching thresholds E0 up

 and E0 down
 would be much 

more simplified and could be written as,
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We are surprised to see the switching-down threshold is theoretically zero with any parameters only if the OB 
criterion is satisfied. After Ec  jumping to a high level when the external electric field intensity E0  reaches to 
E0 up

, further decreasing E0 up
 could only slightly reduce Ec . Ec  could keep a very high level and would not drop 

down to zero until E0  is completely zero [see Fig. 7(b)]. That means that the local field can be very high even the 
composite is incident by a light with extremely low field intensity. In realistic situations, the relaxation time τ 
should be included and any small τ−1 will lead to ≠E 00 down

2 . E0 down
 becomes large with the increase of τ−1. In 

addition, any amount of τ−1 will lead to the criterion boundary deviating from the maxima line of χe
(3) and always 

laying on the right side of it. That’s why the switching thresholds always vary monotonically with these variables.
Up to now, we demonstrate that, in order to reduce the switching thresholds one can either increase the 

particle radius a and permittivity ε of the particle, or reduce the external wavelength λ and Fermi energy EF. The 
introduction of graphene provides us a new freedom to operate the OB in the composite. Once the structure 
parameters, i.e., a and ε are fixed, we can still change the OB profile by varying EF as well as the conventional 
variable λ. In principle, we can achieve very low switching threshold OB at both low and high THz frequencies. 
Unlike the graphene-dielectric multilayer structures38,39, the presented composite can exhibit OB at high THz 
frequencies with very low EF, as well as low switching thresholds.

Figure 7. Dependence of the local electric field intensity Ec  on the external incident field E0  with (a) τ = 1 ps 
and (b) τ−1 being 0. Where = .E 0 3 eVF , = .f 0 01, a =  100 nm, εh =  2.25 and λ =  17.5 μm. The permittivity of 
the sphere ε is 2.25 in (b).
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Transmittance of the Composite Slab. In order to verify the properties of this composite material for 
more practical purpose, we next study the transmittance and reflectance of the subwavelength slab consisting of 
this kind of composite. Without loss of generality, we employ the field-dependent effective permittivity εe similar 
as Eq. (5) to describe the nonlinear optical response of the composite slab. The reflectance and transmittance are 
written as follows,
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where ω ε θ=⊥k c( / ) cos1 1  and ω ε ε θ= −⊥k c( / ) sine e 1
2  are the normal components of the wave vectors in 

the surrounding medium with permittivity ε1 and slab with field-dependent permittivity εe respectively. θ and d 
are the incident angle and thickness of the composite slab [see Fig. 8]. First, we consider the transmission spectra 
from the linear composite slab. For the normal incidence, Fig. 8(b) shows a completely zero dip of transmittance 
at the surface plasmon resonant wavelength λ =  17.4 μm in the spectrum, and high transmittance dominates in 
the spectrum for the non-resonant incident wavelengths. Actually, this surface plasmon resonant wavelength can 
be well determined by our effective permittivity of the composite system Eq. (5) [or Eq. (15)], i.e., the imaginary 
part of the denominator in Eq. (5) equals to zero. At the surface plasmon resonant wavelength, the local field 
within graphene thin shell will be largely enhanced due to the confining optical mode on the graphene shell layer 
[see the left insert of Fig. 8(b)], resulting in zero transmission at λ= 17.4 μm. Therefore although the composite 
slab is only 5 μm thin the light can not go through the slab, not only at normal incidence but also at all angles [see 
Fig. 8(c)]. On the contrary, transmittance would be very high due to the low inherent dissipation of graphene off 
the surface resonant wavelengths [see Fig. 8(d)].

The enhancement of local fields within the nonlinear graphene thin shell at the surface plasmon resonant 
wavelength represent an ideal condition to boost the nonlinear effects in the graphene thin shell. Next we would 
like to check the transmittance spectra when the high field is applied. We find that it still has the opportunity to 
go through the composite slab and has a very high transmittance for EF =  0.3 eV at the resonant wavelength 
λ =  17.4 μm [see the red line in Fig. 9(a)]. In detail, at the beginning, with increasing E0 , the transmittance of the 
slab increases slowly, after that however it goes high rapidly until E0  reaches to ∼ 5 ×  105 V/m. With the present 
parameters, the red line does not show a bistable curve. Once we adjust the Fermi energy EF =  0.35 eV, the trans-
mittance curve indicate OB. In contrast to the red line, the transmittance of OB (black line) is high at low E0  and 

Figure 8. Transmission spectra of the slab composed of linear composite material with thickness d = 5 μm. 
(a) The schematic diagram of the light scattering by the slab. (b) The reflectance (R) and transmittance (T) as the 
function of incident wavelength λ at normal incidence (θ = 0). R and T versus the incident angle θ at (c) 
λ =  17.4 μm and (d) λ= 17.8 μm. The insert in (b): (left) Eshell

2 as the function of incident wavelength; (right) 
the real (solid) and imaginary (dashed) parts of εe.
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jumps to a low level at a high value of E0 . When decreasing E0 , it first goes low which is almost zero (T ≈  0) but 
finally jumps to a dramatically high transmittance (T =  0.96) at low incident intensity. And we find its switching 
thresholds are not very high, only on the level of ∼ 105 V/m. This novel properties of transmittance can be used as 
tunable optical switches and sensors. For comparison, we plot the R/T curves off the resonant wavelength 
λ =  17.8 μm in Fig. 9(b). For = .E 0 35 eVF , low switching-threshold OB is predicted, but it is still higher than that 
at λ = . µm17 4  under the same condition [see Fig. 9 (a,b)]. Again, near the surface plasmon resonant wavelength, 
much optical energy is confined to the nonlinear graphene thin layer, resulting in lower optical threshold.

In the end, some comments are in order. At first, we assume that the model is within the quasi-static approxi-
mation since the radius of particle is far less than the incident wavelength. Note that the radius is less than100 nm, 
while the incident wavelength is around 10 μm, hence the quasi-static approximation is safely satisfied. Secondly, 
to describe the surface conductivity of graphene, we introduce the random-phase approximation, in which the 
surface conductivity has a simplified form. And this conductivity expression further reduces to a simpler one [see 
Eq. (19)] when we choose the condition ω>E2 F  . Finally, we neglect the influence of random fluctuation in 
potential along the surface of graphene in this work. Random fluctuations in potential will result in the fluctua-
tions in charge carrier density and play a role in the surface conductivity of the graphene. Actually, the fluctua-
tions in charge density and the corresponding electrostatic potential were found to affect the plasmon dispersion 
and damping of graphene plasmonics57. Since our main results are dependent on the assumed surface conductiv-
ity, therefore, it will be expected to influence the reliability of the proposed devices. The random fluctuations in 
potential may result in qualitatively the graphene’s surface conductivity being nonlocal and graded. For the quan-
titative calculations, one needs to adopt the first principle to derive the disorder-(random fluctuations) dependent 
graphene’s surface conductivity. For this part, it requires separate and exhaustive study, and will be reported 
elsewhere.

Conclusions
To conclude, we propose a new nonlinear composite composed of graphene-wrapped nanoparticles embedded 
in dielectric host. In the quasi-static limit, we derive the effective third-order nonlinear coefficient and study 
the optical bistability (OB) of the composite at terahertz frequencies. We found that by decreasing the Fermi 
energy of the graphene layer, as well as the radius and permittivity of the inclusions, one could effectively increase 
the third-order nonlinear response. With rigorous derivation, the conditions for achieving optical bistability is 
presented in addition with the switching thresholds of OB. It is shown that the switching thresholds are highly 
dependent on the Fermi energy of graphene, therefore, it provides a new degree of freedom to control the inside 
local field with input one. Moreover, tunable conventional variables (radius or permittivity of the inclusions) of 
the nonlinear composite could be used to reduce the switching thresholds in the meantime keeping a low Fermi 
energy level, which might be practicable for experiments. In general, longer λ and higher EF would lead to higher 
switching thresholds. And larger ε and a give rise to lower switching thresholds. Furthermore, the influence of 
the relaxation time of graphene is discussed. It is interesting to note that when the relaxation time is infinitely 
long, the switching-down threshold is down to zero which indicate the state that extremely small input could lead 
to large enhanced local field inside the composite. Finally, we study the optical reflectance and transmittance of 
the subwavelength slab consisting of such graphene-based nonlinear composite. Complete zero transmittance 
is found at all incident angles, and the transmittance also show giant OB with the variation of incident field 
intensity which can be tuned by the Fermi energy of the graphene. Graphene optical bistable devices appear to be 
particularly promising and could open a new possibility of all-optical switching, optical transistor, optical logic 
and memory.
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