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Controlled synthesis of Ni/CuOx/
Ni nanowires by electrochemical 
deposition with self-compliance 
bipolar resistive switching
Kyuhyun Park & Jang-Sik Lee

We demonstrate synthesis of Ni/CuOx/Ni nanowires (NWs) by electrochemical deposition on anodized 
aluminum oxide (AAO) membranes. AAO with pore diameter of ~70 nm and pore length of ~50 μm 
was used as the template for synthesis of NWs. After deposition of Au as the seed layer, NWs with a 
structure of Ni/CuOx/Ni were grown with a length of ~12 μm. The lengths of 1st Ni, CuOx, and 2nd Ni were 
~4.5 μm, ~3 μm, and ~4.5 μm, respectively. The Ni/CuOx/Ni device exhibits bipolar resistive switching 
behavior with self-compliance characteristics. Due to the spatial restriction of the current path in NW 
the Ni/CuOx/Ni NW devices are thought to exhibit self-compliance behaviour. Ni/CuOx/Ni NWs showed 
bipolar resistive changes possibly due to conducting filaments that are induced by oxygen vacancies. 
The reliability of the devices was confirmed by data retention measurement. The NW-based resistive 
switching memory has applications in highly scalable memory devices and neuromorphic devices.

Resistive switching random access memory (RRAM) is based on electrical resistance changes by applied electrical 
biases. They are candidates for next-generation non-volatile memories because of their simple metal/insulator/
metal structure, low power consumption, high stacking density, fast switching speed, high scalability, simple fab-
rication, and multistate behaviors1–5. Resistive switching behavior has been reported in transition metal oxides, 
such as TiO2

6, ZnO7, HfO2
8 and NiO9.

To improve the device performance and to increase the density of memory, the size of the devices must be 
reduced. Such reduction can be studied by using low-dimensional nanomaterials such as nanowires (NWs), nano-
tube, or nanodots. Low-dimensional materials have different characteristics from bulk and thin-film materials 
due to nanoscale sizes, since the materials are confined in low dimensions and have very high surface-to-volume 
ratios. These nanomaterials have unique chemical, physical, or optical behavior that makes them candidates for 
use in nanoscale device applications. The resistive switching characteristics of nanostructure materials, such as 
Cu2O10,11, NiO12, Co3O4

13, Zn2SnO4
14 and ZnO NWs15, was investigated.

Currently, bottom-up approaches have been used to synthesize various nanomaterials, e.g. nanodots, nanow-
ires, and nanotubes11,16,17. Bottom-up methods have many advantages such as fast processing, simple fabrication 
steps, production of highly-uniform layers, and low cost. Bottom-up methods require a template on which to 
grow the nanomaterials. Electrochemical deposition (ECD) is one of the bottom-up processes and a low-cost pro-
cess to fabricate nanomaterials on anodized aluminum oxide (AAO) membranes on large scale at room temper-
ature (RT)18–20. AAO membranes are commonly used as such templates because the depth, shape, pore diameter, 
and periodic pattern of AAO can be controlled by changing the anodizing voltage and time21,22. CuOx NWs have 
been shown to exhibit RRAM characteristics, but only resistive switching layer was synthesized using AAO tem-
plate11. In this study, we fabricated complete metal/oxide/metal NWs and characterized the electrical properties. 
Due to the spatial restriction of the current paths in NWs the Ni/CuOx/Ni NW devices exhibit self-compliance 
bipolar resistive switching behavior.

Results and Discussion
The synthesis process of Ni/CuOx/Ni NWs is schematically illustrated in Fig. 1. The details about the synthesis 
methods of NWs can be found in Methods.
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The AAO template (Fig. 2(a)) had pore size ~70 nm and inter-pore distance ~110 nm, and was ~50 μm thick 
(Fig. 2(b)). We used it as the template on which to fabricate Ni/CuOx/Ni NW RRAM devices. After Ni, CuOx, and 
Ni NW growth, total NW length was ~12 μm (Fig. 3(a)). The lengths of the 1st Ni, CuOx, and 2nd Ni layers were 
~4.5 μm, ~3 μm, and ~4.5 μm, respectively (Fig. 3(b)). Energy dispersive spectroscopy (EDS) data were obtained 
from a vertical cross section of AAO (Fig. 3(b)). EDS data confirmed the well formation of Ni/CuOx/Ni layer on 
AAO template. The NWs are synthesized using well-organized AAO templates, so the dimension of NWs, i.e. 
diameter and length, is found to be very uniform. The diameter of NWs is the same as the diameter of AAO pores 
since NWs are grown from bottom-up growth by ECD. There is some distribution of NW lengths, but this is 
because there are some broken NWs during removal of AAO templates and/or centrifugation of NWs for device 
fabrication.

Figure 1. Schematic synthesis processes for Ni/CuOx/Ni NW array. (a) Deposition of Au seed layer on one-
side of AAO template, (b) Ni growth by ECD, (c) CuOx growth by ECD on bottom Ni, and (d) Ni growth by 
ECD on bottom CuOx/Ni.

Figure 2. SEM images of AAO nanotemplates. (a) Plane-view and (b) cross-sectional view of AAO 
nanotemplates.

Figure 3. Synthesis of Ni/CuOx/Ni NWs. (a) Cross sectional SEM image of Ni/CuOx/Ni NW arrays in AAO 
nanotemplates and (b) EDS data of Ni/CuOx/Ni NW arrays in AAO nanotemplates.
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In this experiment, Ni and CuOx were deposited using ECD process. The Ni existed in the solution in the 
form of monovalent, positive ions (Ni+). When current is applied, the Ni+ ions react with electrons (e−) and are 
changed to metallic Ni at the cathode side. The CuOx consisted of CuO and CuO2 formed simultaneously. The 
coexistence of Cu2O and CuO can be explained by the charge transfer reactions and diffusion. The reaction of 
copper ions with OH− can yield Cu2O or CuO during ECD process. Among various materials that can be syn-
thesized by ECD we chose Ni as the electrodes and CuOx as the resistive switching materials. Both Ni and CuOx 
can be easily deposited by ECD processes. In addition, the process is simple, inexpensive; can be done at low 
temperatures.

Electrical properties of the Ni/CuOx/Ni NWs were measured with Pt electrodes in voltage sweep mode (DC). 
The voltage was applied at one Pt electrode and the other Pt electrode was grounded. To compare Pt/Ni/CuOx/Ni/
Pt with Pt/SiO2/Pt, Pt electrodes without Ni/CuOx/Ni NWs were fabricated on the SiO2 substrate (Fig. 4(a)). The 
gap between Pt electrodes was 4 μm in both Pt/Ni/CuOx/Ni/Pt and Pt/SiO2/Pt. The current− voltage (I–V) curves 
of Pt/Ni/CuOx/Ni/Pt (Fig. 4(b)) and Pt/SiO2/Pt were measured at RT in air. The I–V curves without NWs under 
voltage sweep mode from − 10 V to 10 V demonstrate that the Pt/SiO2/Pt does not show RRAM characteristic in 
this voltage range, and that it is an insulator (Fig. 4(c), black line). However Pt/Ni/CuOx/Ni/Pt devices showed the 
RRAM characteristic, i.e., the Ni/CuOx/Ni device exhibited the resistive switching behavior (Fig. 4(c), red line).

I-V characteristics of a Ni/CuOx/Ni device were measured using the Pt deposited at the end of the NW 
(Fig. 5a). When a DC voltage was swept from 0 to 10.0 V with compliance current (CC) of 1 mA, a sudden 
increase of current was observed at 5.2 ~ 7.2 V; this is the set process. Afterwards, when the direct voltage bias was 
swept from 0 to − 5 V, the resistance of the NW returned to the high resistance state (OFF-state); this the reset 
process and the corresponding voltage is the reset voltage VRESET (in this device − 4.5 ≤  VRESET ≤  −4 V). When 
the set and reset voltages are of opposite polarity, the RRAM device is called a bipolar switching device. The oper-
ation voltage is found to be high in this device structure. This is due to the length of CuOx. The device is based 
on NWs and the length of CuOx is about 3 μm. It is believed that the operation voltage can be reduced if the NW 
length for resistive switching layer is reduced and/or the properties of CuOx layer is engineered by controlling the 
process parameters, for example, the current density, pH, deposition temperature, etc. Ni/CuOx/Ni device shows 
self-compliance behavior in the set part, which means that the devices do not need CC. Data retention by the  
Ni/CuOx/Ni NW device was measured at RT for 2 h. It maintained high resistance state (HRS) or low resistance 
state (LRS) for 2 h (Fig. 5b).

Resistive switching in the NWs is thought to be associated with migration of oxygen vacancies (Vos)23–25 and 
Joule heating under the electrical field11. In the initial state of Ni/CuOx/Ni NW device before set or reset process 
the CuOx layer contains many Vos. When positive bias is applied, Vos diffuse from anode to cathode (grounded 
electrode) and form metallic filaments under the electric field during the set process26,27. At the same time, elec-
trons move from cathode to anode. The metallic Cu nanoparticles included in CuOx layer can increase the diffu-
sion mobility of Vos and increase the local electric field. Furthermore, the one-dimensional nature of NWs in this 

Figure 4. Fabricated device structures. (a) SEM image of Pt electrodes on SiO2 layer without NWs, (b) SEM 
image of Pt electrodes with NW devices, and (c) I-V characteristics of samples (a) and (b).
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confined configuration provides a linear path for Vos diffusion, and can give a stable switching characteristic to 
the device. During the reset process heat released by Joule heating disrupts the conducting paths.

The range of VSET (5.2 to 7.2 V) was wider than the range of VRESET (− 4.5 to − 4.0 V). The difference is related 
to the nature of the processes. The set process is affected by the competition among different filamentary paths at 
randomly uncertain filament sizes, orientations, and locations, so the process has a large random component11. In 
contrast, during the reset process, existing filaments rupture when Joule heating exceeds the energy required for 
filament rupture, so rupture happens in approximate unison. Therefore a narrow VRESET distribution is expected.

The device was fabricated with a metal/oxide/metal structure in a single NW using ECD process. In the Ni/
CuOx/Ni NW RRAM, both the metal (Ni) and oxide (CuOx) layers were ~70 nm in diameter. This small diam-
eter constrains the filament path along which the current flows. Therefore the device shows the self-compliance 
current behavior. The CC is essential to keep the RRAM from failing permanently. However these devices show 
self-compliance current and do not need CC during the operation process. The reason to show self-compliance 
behavior is related to defect concentration/species in resistive switching layer. Further study is under way to inves-
tigate the exact nature to show the self-compliance behavior in our device structure.

We used ECD process, which is a ‘bottom-up’ technique, to fabricate the NW structure. Bottom-up processing 
can be used to synthesize smaller geometries. ECD process does not require the vacuum equipment and etching 
step; process time is short and the process step is simple in comparison to top-down techniques. This experiment 
shows the feasibility of NW RRAM devices fabricated using ECD process. In this experiment, metal/insulator/
metal structured NWs could be scaled down to nanoscale dimension and exhibit RRAM characteristic with 
self-compliance behavior. The properties of oxide layers can be controlled by adjusting the current density, pH of 
solution, and/or deposition temperature during ECD process; NW diameter can be controlled by changing the 
dimension of AAO template. Furthermore NW lengths can be changed by controlling the deposition time. These 
properties suggest the possibility of controlling NWs for possible application to next-generation RRAMs.

Conclusion
Ni/CuOx/Ni NWs that show RRAM characteristics were synthesized by ECD process in an AAO template. We 
demonstrated the feasibility of using ECD to produce Ni/CuOx/Ni NW RRAM devices. The devices showed 
bipolar RRAM characteristic and self-compliance behavior. Due to the spatial restriction of the current path in 
NW the Ni/CuOx/Ni NW devices exhibit self-compliance behaviour. Because of the self-compliance behavior, 
this device did not need CC during the measurement process. The resistive switching mechanism is related to 
migration of Vos, which form conductive filaments when an electric field is applied, whereas Joule heating may 
break the filaments. The range of set voltage Vset (5.2 ~ 7.2 V), which is wider than the range of reset voltage VRESET 
(− 4.5 ~ − 4.0 V) because the set process, the formation of conducting filaments has a stochastic component. Ni/
CuOx/Ni NW devices retained data for more than 2 h. In this study the feasibility Ni/CuOx/Ni NW in RRAM was 
demonstrated. Since it is possible to control the NW lengths, diameters, and CuOx characteristics by controlling 
the deposition time, AAO diameters, and ECD process conditions, the technology presented in this work can be 
a good candidate for NW-based device applications.

Methods
Ni/CuOx/Ni NWs were fabricated using ECD on AAO nanotemplate with a pore diameter of ~70 nm obtained 
by two-step anodization28. An Al (99.997%) sheet (2 ×  10 cm2) was electro-polished twice in a perchloric acid 
HClO4/C2H5OH (1:4 in volume ratio) solution for 300 s at 7 °C. As the first anodization step, the Al sheet was 
anodized at 40 V in 0.3 M oxalic acid (H2C2O4) solution for 24 h at 7 °C. Then the AAO sheet was etched in a 
mixed solution of 0.2 M H2CrO4 and 0.4 M H3PO4 for 4 h at 60 °C. Then the second anodization was performed 
for 12 h. After the second anodization, the pores were widened in 0.1 M H3PO4 for 30 min at 30 °C. The Al sheet 
was sliced into 1 ×  2 cm2 samples, which were immersed in supersaturated HgCl2 solution. To obtain an AAO 
layer, the barrier layer was removed by immersion in 0.1 M H3PO4 for 40 min at 30 °C. This process yielded AAO 
with a thickness of 50 μm and a pore diameter of ~70 nm.

Figure 5. Electrical properties of Ni/CuOx/Ni NW devices. (a) Typical resistive switching characteristics of 
Ni/CuOx/Ni NW device. (b) Data retention characteristics of Ni/CuOx/Ni NW device.
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Ni/CuOx/Ni NWs were formed on the AAO template (Fig. 1). A 120-nm Au layer was deposited by E-beam 
evaporation in a vacuum of ~5 ×  10−6 Torr to form a seed layer. Ni was deposited by ECD on the seed layer of the 
AAO under constant current of 4 mA for 2 h at 20 °C in aqueous electrolyte containing 8.4 ×  10−2 M nickel chloride 
hexahydrate, 1.6 M nickel sulfamate tetrahydrate, and 0.3 M boric acid29,30. The ECD system used in this study has a 
conventional three-electrode cell that uses a graphite counter electrode. Magnetic stirring was applied to improve 
the diffusion of metal ions at the cathode. The samples were rinsed with DI water, then CuOx NWs were synthe-
sized from an aqueous solution prepared from 0.6 M copper (II) sulfate pentahydrate (Aldrich) and 3 M lactic acid 
(Aldrich). After adding a certain amount of 5 M NaOH, the solution was left overnight with magnetic stirring. The 
stable solution was then adjusted to desired pH 931–33. CuOx was deposited by ECD on the Ni layer of the AAO 
under constant current of 4 mA for 30 min at 60 °C. The sample was rinsed with DI water, then Ni was electrodep-
osited on the CuOx layer in the AAO under the constant current of 4 mA for 2 h at 20 °C. Finally, the AAO layer was 
dissolved by immersing the samples in 1 M NaOH aqueous solution for 4 h at RT; Ni/CuOx/Ni NWs were remained 
thereafter. The samples were rinsed in DI water, then centrifuged for five times to spread the NWs.

To measure electrical resistive switching properties Ni/CuOx/Ni NWs were drop-cast on a 100-nm-thick SiO2/
Si substrate. For the tip contact in the probe station, first Pt electrodes (15 ×  15 μm2) were deposited at the end of 
the NW and again larger Pt (30 ×  30 μm2) pad was deposited at end of the electrode. Focused ion beam was used 
for Pt electrode deposition.
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