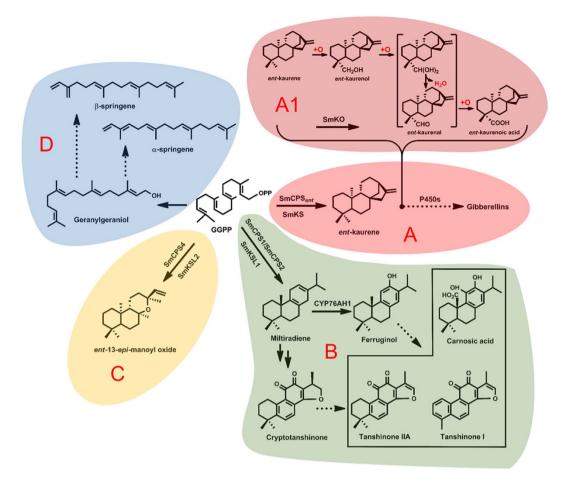
SCIENTIFIC REPORTS

Received: 29 October 2015 Accepted: 24 February 2016 Published: 14 March 2016

OPEN Functional characterization of *ent*copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway


Ping Su^{1,2,*}, Yuru Tong^{1,2,*}, Qiqing Cheng^{1,2,3}, Yating Hu⁴, Meng Zhang¹, Jian Yang², Zhongqiu Tenq², Wei Gao¹ & Luqi Huanq²

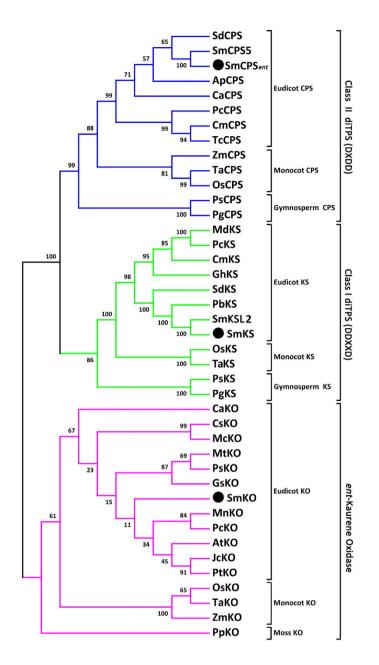
Salvia miltiorrhiza Bunge is highly valued in traditional Chinese medicine for its roots and rhizomes. Its bioactive diterpenoid tanshinones have been reported to have many pharmaceutical activities, including antibacterial, anti-inflammatory, and anticancer properties. Previous studies found four different diterpenoid biosynthetic pathways from the universal diterpenoid precursor (E,E,E)geranylgeranyl diphosphate (GGPP) in S. miltiorrhiza. Here, we describe the functional characterization of ent-copalyl diphosphate synthase (SmCPSent), kaurene synthase (SmKS) and kaurene oxidase (SmKO) in the gibberellin (GA) biosynthetic pathway. SmCPS_{ent} catalyzes the cyclization of GGPP to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by SmKS. Then, SmKO catalyzes the three-step oxidation of ent-kaurene to ent-kaurenoic acid. Our results show that the fused enzyme SmKS-SmCPS_{ent} increases ent-kaurene production by several fold compared with separate expression of SmCPS_{ent} and SmKS in yeast strains. In this study, we clarify the GA biosynthetic pathway from GGPP to ent-kaurenoic acid and provide a foundation for further characterization of the subsequent enzymes involved in this pathway. These insights may allow for better growth and the improved accumulation of bioactive tanshinones in S. miltiorrhiza through the regulation of the expression of these genes during developmental processes.

Salvia miltiorrhiza Bunge has been widely used in China (and to a lesser extent in Japan, the United States, and European countries) for the treatment of cardiovascular and cerebrovascular diseases. This medicinal herb exhibits anti-inflammatory, antioxidant and radical scavenging effects^{1,2}. Tanshinone I, tanshinone IIA, cryptotanshinone and dihydrotanshinone I are the major diterpene quinones of the lipophilic constituents in Danshen and are responsible for much of its anti-inflammatory, antioxidant, antitumor and a variety of other activities³⁻⁵. Because these monomeric compounds have significant pharmacological activities, Danshen preparations are more frequently used in the clinic.

To accommodate the increasing need for clinical applications, researchers have deeply investigated the diterpenoid biosynthetic pathway to obtain the bioactive tanshinones directly using synthetic biology strategies in microbial cell factories. Previous works have indicated that at least four different diterpenoid biosynthetic pathways exist in S. miltiorrhiza (Fig. 1)⁶. Among them, the tanshinone biosynthetic pathway is uniquely initiated by a sequential pair of cyclization reactions catalyzed by SmCPS1 and SmKSL1 to produce abietane miltiradiene,

¹School of Traditional Chinese Medicine, Capital Medical University, Beijing, China. ²State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China. ³State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. ⁴Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to W.G. (email: weigao@ccmu.edu.cn) or L.H. (email: huangluqi01@126.com)

Figure 1. Four different diterpenoid biosynthetic pathways in *S. miltiorrhiza*. (A) Gibberellin biosynthetic pathway. (A1) Proposed mechanism for SmKO conversion of *ent*-kaurene into *ent*-kaurenoic acid³⁵. (B) Tanshinone biosynthetic pathway. (C,D) Unknown diterpenoid biosynthetic pathways.


.....

which is a precursor of at least cryptotanshinone^{7,8}. Then, SmCYP76AH1 catalyzes the turnover of miltiradiene to form ferruginol, thereby providing a solid foundation to elucidate the tanshinone biosynthetic pathway.

However, only two diterpene synthases (diTPSs) in the *S. miltiorrhiza* GA biosynthetic pathway have been reported to date, and the roles of GAs in *S. miltiorrhiza* root and rhizome development and the total yield of tanshinones per plant are less clear. GAs are formed from GGPP via a set of reactions catalyzed by different enzymes, including two consecutive diTPSs, cytochrome P450 (CYP) and 2-oxoglutarate-dependent dioxygenases (20DDs) in plants⁹. As a group of plant-growth regulators, these GAs control different aspects of plant development, such as seed germination, stem elongation, flowering, fruit set and fruit development. Understanding GA biosynthesis will allow us to improve the tanshinone contents by regulating the expression of the genes involved in the *S. miltiorrhiza* GA biosynthetic pathway. Here, we cloned three genes ($SmCPS_{ent}$, SmKS and SmKO) from *S. miltiorrhiza* hairy roots and then identified their functions by co-expressing them in *Saccharomyces cerevisiae*. Biochemical studies suggested that CPS and KS might interact with one another¹⁰; therefore, we constructed a fused SmCPS_{ent} and SmKS protein and showed that the production of *ent*-kaurene was significantly improved.

Results

Cloning and sequence analysis of $SmCPS_{ent}$, SmKS and SmKO from *S. miltiorrhiza* hairy **roots.** The full-length $SmCPS_{ent}$ and SmKS cDNAs were determined by 5' RACE and 3' RACE, and the corresponding cDNA sequences were submitted to the National Center for Biotechnology Information (Supplementary Fig. S1). The full-length $SmCPS_{ent}$ cDNA (GenBank accession number KT934789) is 2413 nt and encodes a polypeptide of 793 amino acids. $SmCPS_{ent}$ clusters most closely to SmCPS5 of *S. miltiorrhiza* f. alba and to SdCPS from *Scoparia dulcis* (Fig. 2). The first 21 N-terminal amino acids are rich in serine and threonine (19%), which is a common characteristic of transit peptides that target the diTPS to plastids^{11,12}. This information was supported by our analysis using ChloroP 1.1 ¹³. The amino acid sequence also contains a conserved DIDD motif (Fig. 3), which strongly suggests that $SmCPS_{ent}$ can catalyze GGPP to CPP as a class II diTPS. The SmKS cDNA (GenBank accession number KT934790) is 2636 nt in length and encodes a predicted protein of 806 amino acid residues. At the protein level, the KS sequence from the hairy roots of *S. miltiorrhiza* exhibits 99% identity with the SmKSL2 from *S. miltiorrhiza* f. alba (Fig. 2). The first 27 N-terminal amino acids are rich in serine and threonine (22%), suggesting that SmKS is also localized in plastids. Its amino acid sequence contains a DDFFD motif but lacks the

Figure 2. Phylogenetic tree of CPS, KS and KO from different species. The neighbor-joining phylogenetic trees were constructed using the bootstrap method in MEGA 5.1. The number of bootstrap replications was 1000. Descriptions of the three different types of synthases used in the phylogeny are listed in Supplementary Table 2.

DxDD motif (Fig. 3), indicating that SmKS is a plant KS protein with monofunctional class I diTPS activity. The *SmKO* cDNA (GenBank accession number KJ606394) is 1930 nt in length and has an open reading frame (ORF) encoding 519 amino acid residues, containing a cytochrome P450 conserved site (amino acids 451–460, Fig. 3). The deduced amino acid sequence shows 64% and 66% identity with *AtKO* (*Arabidopsis thaliana*, AAC39507) and *PsKO* (*Pisum sativum*, AAP69988) (Fig. 2). The gene was identified as a multifunctional kaurene oxidase catalyzing three sequential oxidations (*ent*-kaurene to *ent*-kaurenoic acid) in the GA biosynthetic pathway^{14,15}.

Recombinant expression and functional characterization of SmCPS_{ent} and SmKS. Previously reported evidence suggested that $SmCPS_{ent}$ and SmKS might be involved in the *S. miltiorrhiza* GA biosynthetic pathway⁶. To confirm the biochemical functions of $SmCPS_{ent}$ and SmKS *in vivo*, the $SmCPS_{ent}$ ORF and SmKS ORFs were ligated individually or in combination in the yeast expression vector pESC-Trp (Fig. 4A) and expressed in the yeast strain BY-T20 (provided by Prof. Xueli Zhang's lab, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China). As expected, CPP was detected as the $SmCPS_{ent}$ product

A AtCPS SmCPSS SmCPSent PpCPS/KS AgAS GbLPS AtKS SmKSL2 SmKS	MSLQYHVLNSIPSTIFLSSTKTIISSSFLIIGSPLNVARCKSRSGIFCSKLRTQEYINSQEVQHDLPLIHEWQQLQG.EDAPQISVGSN MFLASNFVAFLPSSTARGDLPAAAFSRSSAGCIQLCPLIPTSSLQCNAISRPRTEEYID.VIQNGLPVIKNHEIVE.DDAEKDSFKCK MELASNFVAFLPSSTARGDLPAAAFSRSSAGCIQLCPLIPTSSLQCNAISRPRTEEYID.VIQNGLPVIKNHEIVE.DDAEKDSFKCK MASSILQNRSCGVTSSMSSFQIFGQPLRFPGTRIPAAVQLKKRRCLRFTESULSSSGSYRIVTGPSGINFSSNGHLGGSLTHRLPIPMEKSIDNFCSILVTSDIWSETLQRTECLLQVTENVQ MASSILQNRSCGVTSAMSSGIFTAAHVGLKARGISHFT.TINAGSSAFKRESIIRKGKGSNKILCVCUGGGATSVFYQSAEKNDSLSSSTIVKREFPFORKKOLIDSITSSHKVAASD. MAGVIFANLFCSLQLSFKVFFRQSTNILIFHKRSSFGFNGHCVSSHLERNNCVGIHASAAETRPDQLPQEERVSRINACYHPAVKDDFIDSITSPNSHATSKSSVDE MAGVIFANLFCSLQLSFKVFFRQSTNILIFHKRSSFGFNGHCVSSHLERNNCSBFISATLERGLDSFVTRANVSFQTRE MAGVIFANLFCSLQLSFKVFFRQSTNILIFHKRSSFGFNGFSFASASLKSGLHSATSAKIASMFTCFEQTRG. MALFLSTCLLFHFKESRSFFFFSFASASLKSGLHSATSAKIASMFTCFEQTRG.	90 87 130 112 112 40 55 54
AtCPS SmCPS5 SmCPSent PpCPS/KS AgAS GbLPS AtKS SmKSL2 SmKS	. SNAFKEAVKSVKTILENETGE ITTE AVED NVRLIAGEKTE AF SAVETIAENCISGEN GEAYLESYH RAINTAEVVA RSENIF PHOCNEGITE FREMIGKLEDENDEHN I GEVAT SLL .VGELRDAVRSMLRSMEDGE ISTE FYTT NVRLNAEDGE.DREGESSIENISTNCIADES GEHATS IFH ATTNE VVA FSDLHPEKTHRETE ITKKINRLEENVEMMIGE VAT SLL .VGELRDAVRSMLRSMEDGE ISTE FYTT NVRLNAEDGE.DREGESSIENISTNCIADES GEHATS IFH ATTNE VVA FSDLHPEKTHRETE ITKKINRLEENVEMMIGE VAT SLL .VGELRDAVRSMLRSMEDGE ISTE FYTT NVRLNAEDGE.DREGESSIENISTNCIADES GEHATS IFH ATTNE VVA FSDLHPEKTHRETE ITKKINRLEENVEMMIGE VAT SLL .VGELRDAVRSMLRSMEDGE ISTE FYTT NVRLNAEDGE.DREGESSIENISTNCIADES GEHATS IFH ATTNE VVA FSDLHPEKTHRETE ITKKINRLEENVEMMIGE VALGST .NNEWLEETMYRRMING ISK EVIT DAVEN PREADDOSHGE AMESLOKTING LIDEGEGEATS IFH ATTNE VVA FSDLHPEKTHRETE ITKKINRLEENVEMMIGE VALGST .EKRIETLISEINMFROMSGE ISTE SYNT NVRLVAEDDOSHGE AMESLOKTING LIDEGEGEATS IFH ATTNE VVA FSDLHPEKTHRETE ISTNCIADES GEVEN AME .EKRIETLISEINMFROMSGE ISTE SYNT NVRLVAENDES HE GEVELINGE GEGESTELEGYBROCHTAEVINTAEVIN FSGLEVSGEVING LIDEGE VIE FAML TINKRIGTUVKSICOMPORTINE AVENDARTESIDES GEGEVEN AME INKRIGTUVKSICOMPORTINE AVENDARTESIDES GEGEVEN GEGESTIGE ISTNCIADES GEGESTIGESTIGT ISTNCIADES OF AND	218 213 257 242 244 160 174 173
AtCPS SmCPS5 SmCPSent PpCP5/K5 AgAS GbLPS AtK3 SmKSL2 SmKS	EIRGINIDVEVD SPULKDIVAKKELKI TRIPKEIMHKIPTTILHSINGOR. DILM EKLIKU SQUGSELSS SSTEFA FOOTRDSNOLEN RNAVKE NGOVENVE VI LEEHINIVDELQHG IS NY EEEK DIRQLQIDI FSDTRGLREIYARREIKLEKIPSDILHQMPTTILHSI 200P. GIM (KLIKU SEDGSELSS SSTEFALQOTKHHOLKMITNHI IF KGOVENVE VI LEEHINAVDRLQHCVSNGQFED DIRQLQIDI FSDTRGLREIYARREIKLEKIPSDILHQMPTTILHSI 200P. GIM (KLIKU SEDGSELSS SSTEFALQOTKHHOLKMITNHI IF KGOVENVE VI LEEHINAVDRLQHCVSNGQFED DIRKLGIDI FSDTRGLREIYARREIKLEKIPSDILHQMPTTILHSI 200P. GIM (KLIKU SEDGSELSS SSTEFALQOTKHHOLKMITNHI IF KGOVENVE VI LEEHINAVDRLQH (RIGVSNGQFED DIRKLGIDI FYDI IFGUREIYARREIKLEKIPSDILHQMPTTILHSI 200P. GIM (KLIKU SEDGSELSSI SSTEFALQOTKHHOLKMITNI IFSKGOVENVE VI LEEHINAVDRLQH (RIGVSNGQFED BURKLGIDI FYDI IFGUREIYARREIKLEKIPSDILHQMPTTILHSI 200P. GIM (KLIKU SEDGSELSSI SSTEFALQOTKHHOLKNG TINNU IFGURAVUTU VI LEEHINAVDRLQH (RIGVSNGQFED BURKLGIDI FYDI IFGUREVAKKEIPSDULYALTII YSI 200 GUUTU (KLIKU SEDGSELSSI STAFALQOTKHHOLKNG TINNU SEDGVECMI LUFERINAVDI VERU I DIR KAVETVERI DIRKSIGUDI FYDI IFGURU KUKU (KLIKU SINGSENI YN YN THAN TINNU SEDGVECMI LUFERINAVDI VERU I DIR KAVETVERI I DIR KKELK KYR RDINLTIF GSEVURUMIRKEDI KERSKERY I AVVI SEGLQOVUN QEITING SENGGEFI SSISTI AVVIMITU KKE OLDHIN KLIKU SEDGVECMI LUFERINAVDE VERU I DIR KKELK DIRKSIGUDI FYDI IFGURU KRKEDI KERSKERYKERY I AVVI SEGLGOVVI VERU KUKU SENGSENI SEITA AVTIN KER UND TAKA SAVYSU SEITU SISTI AV I SEGUVVICAMI UND SEGUVVICAMI UND SEGUVVICAMI SI VIEKI SISTI AVVIN KERKEN DYRGFSLNIRLD FITINDIMKKEDI KRISSIETI YNAVIA KANGELON SAVYSU SERIESISTI AV I SEGUVVICAMI UND SEGUVVICAMI SAVYSU SI YN SEGUVVICAMI SAVYSU SETI YN SEGUVVICAMI SAVYSU SETI YN SEGUVVICAMI SAVYSU SETI YN SEGUVVICAMI SAVYSU SEGUVVICAMI SAVYSU SEGUVVICAMI SAVYSU SEGUVVICAMI SAVYSU SETI YN SEGUVVICAMI SAVYSU SETI YN SEGUVVICAMI SAVYSU SEGUVVICAMI SAVY	352 347 392 377 379 295 309 308
AtCPS SmCPS5 SmCPSent PpCPS/KS AgAS GbLPS AtKS SmKSL2 SmKS	DADD ECIDYURYUT I DUGICHARCSHU GUCYUGAD YEKHEKE.GEFFCFGGSUQAYTGHFNIYRAQLIFGGNILEDATFSARFGCRANNELLDKWIINKULFGIGGALEIGWYAS ECUAYVYNYT I KUCHARNSEIG IDDIMAFSUFILGUCYUSAD YEKHESG.GEFFCFGGSTQAYTGMYNIYRAAQLIFGGNILEDATFSARFGCRANNELLDKWIINKULFGIGAU ECUAYVYNYT I KUCHARNSEIG IDDIMAFSUFILGUCYUSAD YEKHESG.GEFFCFGGSTQAYTGMYNIYRAAQLIFGGNILEDATFSARFGCRANNELLDKWIINKULFGUCYULFWAS ECUAYVYNYT I KUCGARNSEIG IDDIMAFSUFILGUCYUSAD YEKHESG.GEFFCFGGSTQAYTGMYNIYRAAQLIFGGNILEDATFSARFGCRANNELLDKWIINKULFGUCYULFWAS ECUAYVYNYT I KUCGARNSEIG IDDIMAFSUFILGUCYUSAD YEKHESG.GEFFCFGGSTQAYTGMYNIYRAAQLIFGGNILEDATFSARFGCRANNELLDKWIINKULFGUCYULFWAS ECUAYVYNYL LEGGICHARNSEIG IDDIMAFSUFILGUCYUSAD YEKHESG.GEFFCFGGSSQAYTGMYNIYRAAQLIFGGNILEDATFSARFGCRANNELLDKWIINKULFGUCYUN ECUAYVYSM D ERGICHARENFUF IDDIMAFSUFILGUCYUSAD YEKHESG ESIDYYNYD DERGCARARCNETUF UDUMAFSUFILGUNSGULFUFGEGFCFGGCGUCYULWNRCSHVSHGGTINEEANTFTNH SIIDETYNGUNQGNEEIFM ASTOCIAFSUFUFU SUFILGUNSGULFFFGAGGCGUCYUNNIYRASULYD BADIFSARFGNATOINTILELYRASELVIYD BADIFSANFU CANLENVARDEVEYNYN WNCAIFYFFTAI NYLDETYNGUNQGNEEIFM ASTOCIAFSTHALGYDYSS FYTHIGUCYC.SSSTRONYDINTILELYRASELVIYD BADIFSANFUCALLFUFWASSING WUNN WNCAIFYFFYAI NYLDETYNGUNQGNEEIFM ASTOCIAFSTHALGYDYSS FYTHIGUCYC.SSSTRONYDINTILELYRASELVIYD BADIFSCULFUCHLUFWCGUCHGUNN WNCAIFYFFYII NYLDETYNGUNQGNEEIFM ASTOCIAFSTHALGYDYSS FYTHIAUCYC.SSSTRONYDINTILELYRASELVIYD BADIFSCULFUCHLUFUCGUCHAUN WNCAIFYFFYII	485 480 480 525 511 514 420 436 435
AtCPS SmCPS5 SmCPSent PpCPS/KS AgAS GbLPS AtKS SmKSL2 SmKS	LE VETE FY LEQYGEEDUWIG FLE RMFYYNNWYLD AR CAN NG A GEUD HOLFOR YEENRLSENGVRASELLEG YLA AT LESERSHED WYRAESSVUKAISSS GESS. DSRRSESD CHEY IA LE VETE FYLEGYGEEDUWIG GTLERMFYYNNWYLD AR LOYN G ALOCOWRDIGH YRNSSLEFGLSESIUCAYVRASI EFGKSCELAARTAI MGTITSHEHRS. E CRWFLHEFGRATG LE VETE FYLEGYGEEDUWIG GTLERMFYYNNWYLD AR LOYN G ALOCOWRDIGH YRNSSLEFFGLSESIUCAYVRASI EFGKSCE LAARTAI MGTITSHEHRS. E CRWFLHEFGRATG LE VETE FYLEGYGEEDUWIG GTLERMFYYNNWYLD AR DE NG ALOCOWRDIGH YRNSSLEFFGLSESIUCAYVRASI EFGKSCE LAARTAI MGTITSHEHRS. E CRWFLHEFGRATG LE VETE FYLEGYGEEDUWIG GTLERMFYNNNWYLD AR DE NG ALOCOWRDIGH YRNSSLEFFGLSESIUCAYVRASI EFGKSCE LAARTAI MGTITSHEHRS. E CRWFLHEFGRATG MRILEA SYLENYG. PDDVNLGTVWMYYLD AR DE NY GAL GEGYGUU AN ACCERDERFR GRYCESING AN DE FERWOCAL WAR COUTTUIDDE DE FFERWORD MRILEA SYLENYG. PDDVNLGTVWMYYLD AR DI NY GALGA THOL WRYCH ALOC WAR COUTUUDDE TUNGGYN AR AT FERWALD A MRILEA SYLENYG. SNOWLGTVWMYYLD AR DI NY GALGA THOL WWY WRYNN AL FERWYND AL FEFSAC LAYLAND YN DHOL YN HASDDL HFFERWYD A MRILEA SYLENYG. SNOWLGTVWMYU DI NY GALGA THOL WWY WRYCH WRYN WRYN AR DEFFAC LAYLNG ALWYN AC UNWD CUTUUDD YN DHOSDDL RU FEFSAC RWYN MRULEA SYLENYG. SNOWLGTWWN RHWY YNN AL HAR TYN AL HEFF WYNN AL HEFF ANG ALWYN AC LL GARWAC UNAR CUTUUDD YN DHOSDDL RU FEFSAC RWYN MRULAASYLENGA SWWYN GYN RHWY YN DHYN AL HEFF ANG AL HEFF WYN RHEFFANG LAYLNG ALWYN AC CLAUTHOD YN DHOSDDL RU FEFSAC RWYN MRULAASYLEDYN AG TYN RWLLY SBERYLDLAR UN AF THOL WYN AL HEFF ANG ALWYN A THEFF ANG ALWYN AWN WYN DYN AC CLAUTH AN THEFF ANG ALWYN AN THEFYN ALWYN AN THEFF ANG ALWYN AN THEFF AN THEFF ANG ALWYN AN THEFF ANG ALWYN AN THEFF AN THEFF ANG ALWYN AN THEFF ANG ALWYN AN THEFF ANG ALWYN AN THEF	618 613 659 645 648 555 570 569
AtCPS SmCPS5 SmCPSent PpCPS/KS AgAS GbLPS AtKS SmKSL2 SmKS	NARRSDHHENDRNMRLDRFGSVQASRLAGVIGEINGKSFDIFMSHGEDVNNLIVISKOGENMEXWELYGDEGEGELM KMIIIMENNDINFFIHHFVRLAEIIN GRYKTTRILVGTILBEINQLSIDIILAHGCHHQFLKNAMKWIKTWEGGGGGAELM KMIIIMENNDINFFIHHFVRLAEIIN GRYKTTRILVGTILBEINQLSIDIILAHGCHHQFLKNAMKWIKTWEGGGGGAELM CTUNCGGG.RRNRMESEEL.ISSHFKYEQLIKATVG GRYKTELM CTUNCSUDIILAHGCHHQFLKNAMKWIKTWEGGGGGAELM CTUNCGG.RRNRMESEEL.ISSHFKYEQLIKATVG ELINGLFPCARLIKMGVIYNWINIAERAFMACK BUHHHLKHDSKLITSALKENEWARSGVWFFDEVMEVAEISVALFT CSILFFAGHLDEVIDSVD.HUVMHUNNGGRILND SIVDQMPQCMKICFVGTINFNDIAKEGRERCGRDVLGYIQNVKVLEAYIKEAEWSAKYVFSDEVMEVAEISVALFT CSILFFAGHLDEVIDSVD.HUVMHUNNGGRILND SIVDSVRDDLINVCIIGIYNWINGGRADGIKEGGRDVLGYIQNVKVLEAYIKEAEWSAKYVFSDEVMEVAEISVAILGTVIISALFT GELPEVILQVULESKILDESSFLQIMGITGRIVND SIVDSVRDDLINVCIIGIYNWINGGRADGIKEGGRDVLGYIQNVKVLEAYIKEAEWSAKYVFSDEVMEVAENSVSIALGTVIISALFT GELPEVILQVULESKILDESSFLQIMGITGRIVND SIVDGYRDDLINVCIISALTGGENATIGGBVULGYIDINHUKVAILDIKSNIFSTELEMESAKYVFSTNEVVENKKVSIALATVUINSIFT GELPEVILQVULESKILDESSFLQIMGITGRIVND DICTECYS	725 706 779 766 770 676 691 690
AtCPS SmCPS5 SmCPSent PpCPS/KS AgAS GbLPS AtKS SmKSL2 SmKS	ICLPRQYLKARRNDEKEKTIKSMEKEMGKNVELALSESDTFREVSITELEVAKARYFALCGDHLQTHISKVLFQKV VCDKLRFFQHRRDCNGCMGSDGGIRILDIEAGMGELVKLVVTKSPGELDSEIKQNFFMLARSYMYAAYCNPGTINFHIAKVLFERVQ VCDKLRFFQHRRDCNGCMGSDGGIRNLDIEAGMGELVKLVVTKSPGELDSEIKQNFFMLARSYMYAAYCNPGTINFHIAKVLFERVQ IQCMRERSGGHISSVIJWEENSVPGEAMAIAHLGELUVUNSMOGLIYEVIEFIAVFRSCRFHILMMRKIMHEKTODEGIS.ITANTGYKKVLFEPVPE IKIYQAERGGEVASAIQCYMKENPKISEEALQHVYSVMENALEEINREFVNNKIPDIYKRLVFETARIMQIF MYGDGGILSHDMEIKEHVKNLFQCPA TRIYQAERNGGELVSSVQCYMEENPECTEFALSHVYGIIDNALKELNWELANP.ASNAFLCVRALLTHINTRVMQIF MYGDGGIS.DEKHKEMVSRILFDFVA IQCFRRESAGKUNAVSIHKKEPDINGEVIIESKOLIERKREFUKULIEEKSVVPRECKEAFLMSKVJUHNINGKWKDEFGISOLDIQUKVSVTEPVSLQKESII IHGYERELKDGKLNALSLYIINHGGEVSKEAAIWEMKSWIETQRRELIRUVLEGKKSVIFKPCRELFWHMCSVVHLMSKGDGFISQELIQUTIIHQPILLNDQTGAGLSKIH	802 793 793 881 868 873 785 806 805
B AtKO OsKO SmKO ME	MAFFSMISILL <mark>GEV</mark> ISSFIFI <mark>D</mark> FFKKLLSFSRKMMSEVSTLPSV <mark>EVVEGFE</mark> VIGNULQLKEKKPHETDTR <mark>GSD</mark> IVGPINS <mark>I</mark> XMGSSSLIVLNSTETGREAMVTRFSSISTRKLGNALTVITGUKSMVA MEAFVHGGAGMAAANGGVAAAALAFRAGVIAFRKRENABHAVEGLEVIGNULGLKEKKPHETBTRGSDIVGPINSIKMGSSVIVINGTEGREAMVAKFSISTRKLGNALTM TILLSLQAVPAAAAI <mark>G</mark> GPUNAIGGITI <mark>F</mark> FIREVVKDCRKKSSSFPPHE <mark>VVEGLEVIGNUL</mark> QLKEKKPHETBTRGSBYQEINGIRMMIVINTNDVAKEAMVIKFSISTRKLGVALTI <mark>HI</mark> SGKSVVA	128 125 132
AtKO TS OsKO TS SmKO MS	SEN DIE HEI UMERCLING LEGNERGENERDALE EN VSSKLEAAARDE GOEFVAREATE LEGTE GVALKGAFEN UVERLOVTISKLE TEKVIGHEN SCATE VERREFFEVEN DET NSEDAARDE GOEFVARE SDYCTHENN NEVYMSSMIGTSACH CFRONGER MANNSTERKUVKDE HAFI DER DVSKDZIERISNICSLEDVSSVYVDE GRODSRDDINAAV TEMM OM DVERREFFEVEN DET NSEDAARDE GOEF SDYNEY GAARSHLITSTE FERGERE VEGNING NE NIGTERKUVKDE SLAVAFENE GOEFFELGLEM GATE GUEFFEVEN DE GOMERTE VEGNING DE S	263 260 267
AtKO KE Osko TE SmKO FH	RIAVENALIQURLEQNGSESDDUYINFUNSDAK.TUTKEDIAITVMETIIFFNDTUVTTENAIYEDAGESVODRUCKEDQUVGGEKFFEDUSSVEVPINGVEFETIRENSFELVETERSUSFALUGUSV RIAVERALINGQERFIVRGEAKICYDDFULAENTUTDDGLMAIMERALIDAADTULVITENAYYEDAKEDKERENYGEREVGEDEVVEFHFRLEVINAVEHTURRESVEL REAVERALINGQEKRIASGKAINCYDHULSBAADTISEQUILMUMERIDASDTULVITENAYYEDSGURRENYULSBIONAGEDDUNBERUCREFYBAHEGETIRENSVE Conserved site	397 393 402
Atko HV Osko DV SmKO TI	LONGY YOUR CONTRACTOR OF THE CONTRACT OF THE C	509 505 518
	Figure 3. Alignment of plant CPS, KS and KO. The boxes represent the conserved regions. (A) AtCPS (Q38802), SmCPS5 (AHJ59324), SmCPS _{ent} (ALX18648), PpCPS/KS (BAF61135), AgAS (Q38710), GbLPS (Q947C4), AtKS (AAC39443), SmKSL2 (AHJ59325), SmKS (ALX18649). (B) AtKO (AAC39507), OsKO (AAT81230), SmKO (AJF93403).	

in the products of the yeast strain SGH1 (BY-T20/pESC-Trp::SmCPS_{ent}) compared with the product of the *A*. *thaliana* AtCPS using GGPP as the substrate. No CPP was found in the yeast strain carrying the empty pESC-Trp

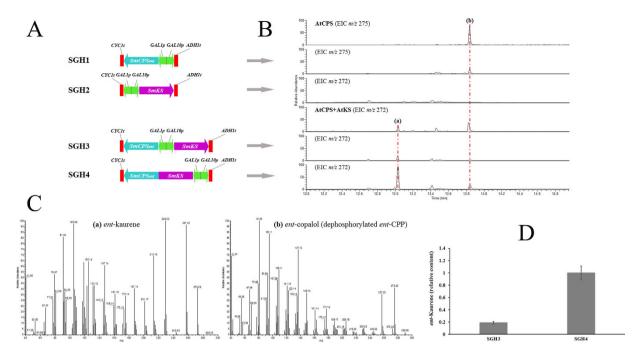
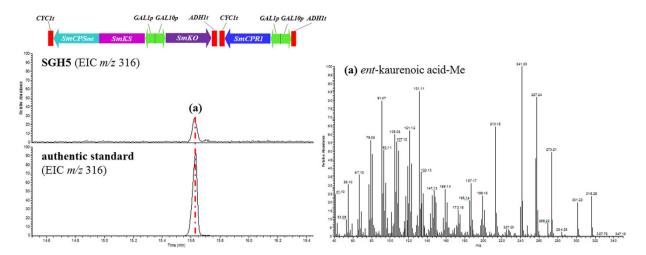


Figure 4. Extracts from yeast strain BY-T20 cultures expressing the S. miltiorrhiza SmCPS_{ent} or/and SmKS using GC-MS. (A) Construction of the recombinant plasmid in yeast strains. BY-T20: BY4742, $\Delta Trp1$, $Trp1::HIS3-P_{PGK1}$ -BTS1/ERG20- T_{ADH1} - P_{TDH3} -SaGGPS- T_{TP11} - P_{TEF1} -tHMG1- T_{CYC1} , SGH1: BY-T20/PESC-Trp::SmCPS_{ent}, SGH2: BY-T20/PESC-Trp::SmKS, SGH3: BY-T20/PESC-Trp::SmCPS_{ent}, SGH4: BY-T20/ PESC-Trp::SmCS-SmCPS_{ent}. (B) Extracted ion chromatograms showing the SmCPS_{ent} and SmKS products. AtCPS (ent-copalol, the dephosphorylated product of ent-CPP), AtCPS + AtKS (ent-kaurene). (C) The mass spectra of the SmCPS_{ent} and SmKS products. (D) Relative ent-kaurene contents in the yeast strains SGH3 and SGH4 based on their peak area ratio. The data represent the mean \pm SD from three independent experiments.


vector. Using the product of the *A. thaliana* AtKS as the authentic standard, *ent*-kaurene was detected as the SmKS product in the products of the yeast strain SGH3 (BY-T20/pESC-Trp::SmCPS_{ent}/SmKS) but not SGH2 (BY-T20/pESC-Trp::SmKS), confirming that SmKS possessed monofunctional class I diTPS activity and catalyzed the formation of *ent*-kaurene using the SmCPS_{ent} product CPP as the substrate. Therefore, the absolute configuration of the SmCPS_{ent} product CPP was identified as an enantiomer (i.e., *ent*-CPP) (Fig. 4B).

Protein complexes have been reported to improve the efficiency of specific pathways by protecting substrates and intermediates from diffusion and degradation¹⁶. Zhou *et al.* reported that a recombinant strain containing the fused enzyme SmKSL1-SmCPS1 produced 2.8-fold more miltiradiene compared with another recombinant strain in which SmCPS1 and SmKSL1 were expressed separately¹⁷. Hence, we constructed the fused enzyme SmKS-SmCPS_{ent} in the yeast strain SGH4 (BY-T20/pESC-Trp::SmKS-SmCPS_{ent}) using the RF cloning method, and the results showed that SGH4 produced approximately 4.25-fold more *ent*-kaurene than SGH3 (Fig. 4D).

Recombinant expression and functional characterization of SmKO *in vivo*. As a strategy to characterize the biochemical function of SmKO *in vivo*, first we constructed the fused enzyme SmKS-SmCPS_{ent} which improved the *ent*-kaurene precursor supply as expected. Then, SmKO was coexpressed with the fused enzyme SmKS-SmCPS_{ent} and a NADPH-cytochrome P450 reductase (SmCPR1) in the yeast strain SGH5 (BY-T20/ pESC-Trp::SmKS-SmCPS_{ent}/SmKO + pESC-Leu::SmCPR1). After extraction and methylation, the *ent*-kaurenoic acid methyl ester was detected by a comparison with the methylated authentic standard (Sigma, USA) (Fig. 5). This result confirmed that *SmKO* encoded a functional *ent*-kaurene oxidase that was involved in the three-stage oxidation of *ent*-kaurene to *ent*-kaurenoic acid in the *S. miltiorrhiza* GA biosynthetic pathway.

Discussion

We identified three consecutive enzymes (SmCPS_{ent}, SmKS and SmKO) involved in the *S. miltiorrhiza* GA biosynthetic pathway. SmCPS_{ent} catalyzes the formation of *ent*-CPP from GGPP; then, SmKS converts *ent*-CPP to *ent*-kaurene. Subsequently, SmKO converts *ent*-kaurene to *ent*-kaurenoic acid via a three-stage oxidation reaction. *ent*-Kaurene biosynthesis was reported to be catalyzed by a one-to-one CPS/KS complex in which CPP could be channeled from CPS to the KS catalytic site¹⁰. Therefore, we fused SmCPS_{ent} and SmKS to obtain a close proximity between the active sites of the two consecutive enzymes. As expected, the fused enzyme SmKS-SmCPS_{ent} produced 4.25-fold more *ent*-kaurene than the separate expression of SmCPS_{ent} and SmKS in the yeast strain, suggesting that the protein fusion treatment was an efficient approach to improve the catalytic activity and enlarge the heterologous production of *ent*-kaurene. With an increased supply of the *ent*-kaurene precursor, SmKO catalyzed the formation of *ent*-kaurenoic acid. However, the intermediates *ent*-kaurenol and *ent*-kaurenal were not detected. One possible explanation is that the intermediates were unstable and were changed into other

Figure 5. The product from BY-T20 yeast strains expressing the *S. miltiorrhiza SmKO*. SGH5: BY-T20/ pESC-Trp::SmKS-SmCPS_{ent}/SmKO + pESC-Leu::SmCPR1. Extracted ion chromatograms showing methyl ester derivatives of the SmKO product with its corresponding mass spectra.

intermediates during the extraction process. The enzymes involved in the early steps of the GA biosynthetic pathway (i.e., CPS, KS, KO, and KAO) are primarily encoded by single genes, whereas those involved in the later steps (i.e., GA200x, GA30x, and GA20x) are encoded by gene families¹⁸. The *SmCPS_{ent}*, *SmKS* and *SmKO* genes are likely single copy genes responsible for GA biosynthesis in *S. miltiorrhiza*.

In addition to the identification and characterization of SmCPS_{ent}, SmKS and SmKO, we provided insights into the genes encoding the enzymes involved in all steps of the GA biosynthetic pathway from GGPP to *ent*-kaurenoic acid. Our results provide a foundation for further characterization of the subsequent enzymes (i.e., SmKAO and the CYP88A subfamily) involved in the GA biosynthetic pathway using this yeast expression system. In plants, GA levels vary at different sites and during different development processes¹⁹. It is possible to control the GA levels by regulating the expression of these genes to acquire better growth of the *S. miltiorrhiza* roots and rhizomes, thereby improving the total yield of tanshinones per plant.

In conclusion, we functionally characterized three consecutive enzymes (SmCPS_{ent}, SmKS and SmKO) involved in the GA biosynthetic pathway from GGPP to *ent*-kaurenoic acid, thereby laying the foundation for further characterization of GA biosynthesis. Based on these results, we could regulate the expression of all genes involved in the GA biosynthetic pathway to acquire better growth and an increased accumulation of the bioactive tanshinones involved in the *S. miltiorrhiza* developmental processes. Protein fusion is an applicable and efficient approach that can be used to direct metabolic flux to the bioactive diterpenoid tanshinones pathway for the heterologous production of isoprenoids in microbial cell factories.

Methods

RNA isolation and cDNA cloning. Hairy roots were induced from the *S. miltiorrhiza* leaf explants under the mediation of *A. rhizogenes* strain ACCC10060 as described previously²⁰ and maintained in 6,7-V liquid medium²¹ at 25 °C on a gyratory shaker (80 rpm) in the dark. Total RNA was extracted using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The 5' and 3' ends of the targeted *SmCPS_{ent}* and *SmKS* genes were cloned by RACE (Invitrogen) according to the manufacturer's directions using the corresponding *S. miltiorrhiza* genome sequences released by the National Center for Biotechnology Information (NCBI)²². The primer sequences are shown in Supplementary Table 1. An aliquot (1 µg) of the total RNA was used to synthesize the first strand cDNA according to the PrimeScript 1st Strand cDNA Synthesis Kit (Takara Bio, Dalian, China) manufacturer's protocol. The full-length cDNA for each ORF was cloned using the PrimeSTAR DNA polymerase (Takara Bio). The PCR products were purified and cloned into the pEASY-T3 cloning vector (TransGen Biotech, Beijing, China), transformed into *Escherichia coli* Trans5 α cells (TransGen Biotech), and then cultured in Luria-Bertani (LB) medium at 37 °C in the dark. Positive clones were sequenced. The full-length cDNA of *SmKO* was cloned previously²³.

Bioinformatics analysis. The $SmCPS_{ent}$, SmKS and SmKO sequences were confirmed at NCBI (http://www.ncbi.nlm.nih.gov/). The open reading frames (ORFs) and deduced amino acid sequences were analyzed using the online tool ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and the ExPASy online tool (http://web. expasy.org/translate/), respectively. The ChloroP 1.1 Server (http://www.cbs.dtu.dk/services/ChloroP/) was used to predict chloroplast transit peptides. The sequences of the $SmCPS_{ent}$, SmKS and SmKO as well as other corresponding sequences downloaded from GenBank were aligned using the DNAMAN program, and the phylogenetic trees for $SmCPS_{ent}$, SmKS and SmKO were constructed using sequences from other plants (Supplementary Table 2) using the neighbor-joining method in MEGA5.1²⁴.

Recombinant expression and functional characterization of SmCPS_{ent} and SmKS. The $SmCPS_{ent}$ and SmKS (alone or in combination) were subcloned into the yeast epitope-tagging vector pESC-Trp under the control of the GAL1 or GAL10 inducible promoter (Agilent Technologies, USA) via digestion by the

corresponding restriction endonucleases. The resulting constructs were verified by complete gene sequencing and then transformed into the yeast strain BY-T20 (BY4742, ΔTrp1, Trp1::HIS3-P_{PGK1}-BTS1/ERG20-T_{ADH} 1-PTDH3-SaGGPS-TTPI1-PTEF1-tHMG1-TCYCI, provided by Prof. Xueli Zhang's lab, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China)²⁵⁻²⁷. Then, the recombinant strains SGH1 (containing the plasmid pESC-Trp::SmCPS_{ent}), SGH2 (containing the plasmid pESC-Trp::SmKS), and SGH3 (containing the plasmid pESC-Trp::SmCPS_{ent}/SmKS) were selected on synthetic dropin medium -Trp-His (SD-Trp-His) containing 20 g/L glucose and grown at 30 °C for 2–3 d. Single transformed yeast colonies were grown in SD-Trp-His liquid medium supplemented with 20 g/L glucose at 30 °C for approximately 2 d. The yeast cells were pelleted and resuspended in 100 mL of SD-Trp-His liquid induction medium supplemented with 20 g/L galactose and grown at 30 °C for 3 d. Finally, the induced yeast cells were extracted three times with an equal volume of hexane. The organic fractions were pooled and dried using a Nitrogen Evaporator (Baojingkeji, Henan, China). The dried samples were dissolved in 100 µL of hexane for GC-MS analysis as described previously²⁸. To confirm the products of these strains, the identified products ent-CPP and ent-kaurene of A. thaliana AtCPS and AtKS were used as the authentic standards^{29,30}. The detailed protocols for the constructions of the recombinant plasmids and strains and the recombinant expression and enzymatic assay for AtCPS and AtKS are described in the Supplementary Methods.

Construction of the module producing the fused protein SmKS-SmCPS_{ent} and the functional characterization of SmKO. To prepare the module producing the fused protein SmKS-SmCPS_{ent}, a restriction-free (RF) cloning method was used³¹. The genes encoding the fusion enzyme were constructed by inserting a widely used GGGS linker encoded by a "GGT GGT GGT TCT" sequence between the two corresponding genes^{32,33}. The recombinant plasmid pESC-Trp::SmKS-SmCPS_{ent} was transformed into the yeast strain BY-T20 to generate SGH4 and induced with D-galactose as described above. Then, the products of SGH4 were analyzed by GC-MS. The detailed protocols for the RF cloning are described in the Supplementary Methods.

The ORF region of SmKO was ligated into the recombinant plasmid pESC-Trp::SmKS-SmCPS_{ent} as described above and then transformed into the yeast strain BY-T20 with another recombinant plasmid pESC-Leu::SmCPR1 (SmCPR1, *S. miltiorrhiza* cytochrome P450 reductase⁸). The recombinant strain SGH5 (containing the plasmids pESC-Trp::SmKS-SmCPS_{ent}/SmKO and pESC-Leu::SmCPR1) was induced with D-galactose and extracted once with an equal volume of hexane and twice with an equal volume of ethyl acetate. The organic fractions were pooled and dried and then dissolved in 50 µL of methanol and methylated with approximately 200 µL of (trimethylsilyl)diazomethane (Aladdin Industrial Inc., Shanghai, China). The methylated samples were redried and then dissolved in 100 µL of ethyl acetate for GC-MS using a Thermo TRACE 1310/TSQ 8000 gas chromatograph (splitless; injector temperature 250 °C) with a DB-5 ms (30 m × 0.25 mm × 0.25 µm) capillary column. The GC conditions were the same as those described previously³⁴.

References

- 1. Jiang, W. Y. et al. PF2401-SF, standardized fraction of Salvia miltiorrhiza shows anti-inflammatory activity in macrophages and acute arthritis in vivo. Int Immunopharmacol 16, 160–164 (2013).
- Kim, S. J., Kwon, D. Y., Kim, Y. S. & Kim, Y. C. Peroxyl radical scavenging capacity of extracts and isolated components from selected medicinal plants. Arch Pharm Res 33, 867–873 (2010).
- 3. Wang, S. et al. Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson's disease. J Ethnopharmacol 164, 247–255 (2015).
- Munagala, R., Aqil, F., Jeyabalan, J. & Gupta, R. C. Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. *Cancer Lett* 356, 536–546 (2015).
- 5. Cong, M. *et al.* Cryptotanshinone and dihydrotanshinone I exhibit strong inhibition towards human liver microsome (HLM)catalyzed propofol glucuronidation. *Fitoterapia* **85**, 109–113 (2013).
- Cui, G. H. et al. Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza Bunge. Plant Physiol 169, 1607–1618 (2015).
- 7. Gao, W. *et al.* A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. *Org Lett* **11**, 5170–5173 (2009).
- Guo, J. et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci USA 110, 12108–12113 (2013).
- 9. Hedden, P. *et al.* Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? *J Plant Growth Regul* **20**, 319–331 (2001).
- Duncan, J. D. & West C. A. Properties of kaurene synthetase from *Marah macrocarpus* endosperm. Evidence for the participation of separate but interacting enzymes. *Plant Physiol* 68, 1128–1134 (1981).
- 11. Cho, E. *et al.* Molecular cloning and characterization of a cDNA encoding *ent*-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. *Plant J* **37**, 1–8 (2004).
- Günnewich. N. *et al.* A diterpene synthase from the clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-copalyl diphosphate. *Phytochemistry* 91, 93–99 (2013).
- Emanuelsson, O., Nielsen, H. & von Heijne, G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8, 978–984 (1999).
- Helliwell, C. A., Poole, A., Peacock, W. J. & Dennis, E. S. Arabidopsis *ent*-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. *Plant Physiol* 119, 507–510 (1999).
- Davidson, S. E., Smith, J. J., Helliwell, C. A., Poole, A. T. & Reid, J. B. The pea gene LH encodes ent-kaurene oxidase. Plant Physiol 134, 1123–1134 (2004).
- 16. Srere, P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem 56, 89-124 (1987).
- 17. Zhou, Y. J. *et al.* Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. *J Am Chem Soc* **134**, 3234–3241 (2012).
 - 8. Sakamoto, T. et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134, 1642–1653 (2004).
- 19. Rebers, M. *et al.* Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. *Plant J* **17**, 241–250 (1999).

- Cheng, Q. Q. et al. RNA interference-mediated repression of SmCPS (copalyl diphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS. Biotechnol Lett 36, 363–369 (2014).
- 21. Veliky, I. A. & Martin, S. M. A fermenter for plant cell suspension cultures. Can J Microbiol 16, 223-226 (1970).
- 22. Ma, Y. et al. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot 63, 2809–2823 (2012).
- Hu, Y. T. et al. Cloning and bioinformatics analysis of ent-kaurene oxidase synthase gene in Salvia miltiorrhiza. Zhongguo Zhong Yao Za Zhi 39, 4174–4179 (2014).
- 24. Tamura, K. *et al.* MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* **28**, 2731–2739 (2011).
- 25. Dai, Z. B. et al. Producing aglycons of ginsenosides in bakers' yeast. Sci Rep 4, 3698 (2014).
- 26. Dai, Z. B. et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20, 146–156 (2013).
- 27. Shi, M. Y. et al. Construction of Saccharomyces cerevisiae cell factories for lycopene production. Zhongguo Zhong Yao Za Zhi 39, 3978–3985 (2014).
- 28. Zhang, M. *et al.* Identification of geranylgeranyl diphosphate synthase genes from *Tripterygium wilfordii*. *Plant Cell Rep* 34, 2179–2188 (2015).
- 29. Sun, T. P. & Kamiya, Y. The Arabidopsis GA1 locus encodes the cyclase *ent*-kaurene synthetase A of gibberellin biosynthesis. *Plant Cell* **6**, 1509–1518 (1994).
- Yamaguchi, S., Sun, T. P., Kawaide, H. & Kamiya, Y. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. *Plant Physiol* 116, 1271–1278 (1998).
- 31. van den Ent, F. & Lowe, J. RF cloning: a restriction-free method for inserting target genes into plasmids. *J Biochem Biophys Methods* 67, 67–74 (2006).
- Ukibe, K., Hashida, K., Yoshida, N. & Takagi, H. Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance. Appl Environ Microbiol 75, 7205–7211 (2009).
- Aslan, F. M., Yu, Y., Mohr, S. C. & Cantor, C. R. Engineered single-chain dimeric streptavidins with an unexpected strong preference for biotin-4-fluo. Proc Natl Acad Sci USA 102, 8507–8512 (2005).
- 34. Green, L. S., Faergestad, E. M., Poole, A. & Chandler, P. M. Grain Development Mutants of Barley ([alpha]-Amylase Production during Grain Maturation and Its Relation to Endogenous Gibberellic Acid Content). *Plant Physiol* 114, 203–214 (1997).
- Morrone, D., Chen, X. M., Coates, R. M. & Peters, R. J. Characterization of the kaurene oxidase CYP701A3, a multifunctional cytochrome P450 from gibberellin biosynthesis. *BiochemJ* 431, 337–344 (2010).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81422053 and 81373906 to W.G and 81325023 to L.H.) and National High Technology Research and Development Program of China (863 Program: 2015AA0200908) to W.G. and the Author of National Excellent Doctoral Dissertation of China (201188) to W.G.

Author Contributions

L.H. and W.G. conceived and designed the study. P.S. and Y.T. performed the experiments and wrote the manuscript. Q.C., Y.H., M.Z., J.Y. and Z.T. participated in the research and analyzed the data. All authors read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Su, P. *et al.* Functional characterization of *ent*-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the *Salvia miltiorrhiza* gibberellin biosynthetic pathway. *Sci. Rep.* **6**, 23057; doi: 10.1038/srep23057 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/