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Absence of Exceptional Points in 
Square Waveguide Arrays with 
Apparently Balanced Gain and Loss
Zhenzhen Liu1, Qiang Zhang1, Xiangli Liu2, Y. Yao1 & Jun-Jun Xiao1

The concept of parity-time (PT) symmetry in the field of optics has been intensively explored. This 
study shows the absence of exceptional points in a three-dimensional system composed of a square 
waveguide array with diagonally-balanced gain/loss distribution. More specifically, we show that an 
array of four coupled waveguides supports eight fundamental propagation supermodes, four of which 
are singlet, and the other two pairs are double degenerated. It is found that the singlet states follow 
the routine PT phase transition; however, the double-degenerated modes never coalesce as the gain/
loss-to-coupling strength level varies, showing no actual PT symmetry-derived behavior. This is evident 
in the phase rigidity which does not approach zero. The absence of exceptional points is ascribed to the 
coupling of non-symmetric supermodes formed in the diagonal waveguide pairs. Our results suggest 
comprehensive interplay between the mode pattern symmetry, the lattice symmetry, and the PT-
symmetry, which should be carefully considered in PT-phenomena design in waveguide arrays.

In the realm of quantum mechanics, the spectrum of a Hermitian Hamiltonian is ensured to be completely real 
and positive1. However, it is only a sufficient condition, not a necessary one. For a non-Hermitian Hamiltonian, 
the spectrum can also be real in the cases in which the Hamiltonian is parity-time (PT) symmetric (i.e., 
PTH =  HPT)2–5, belonging to a more general class of pseudo-Hermitian systems. The intriguing properties are 
mainly related to the exceptional points (EPs)6,7 which are the crossing points of eigenvalues trajectories. At these 
points, two corresponding eigenfunctions are linearly dependent and their eigenvalues coincide. In approaching 
the EPs, a dynamical phase transition takes place. Systems with PT-symmetry have recently been a topic of inter-
est in several frontiers in physics, including quantum field theories8, non-Hermitian Anderson models9, and open 
quantum systems5,10, to name a few.

Furthermore, the equivalence of the Schrödinger equation in quantum mechanics with the paraxial wave 
equation of the approximated Maxwell’s equations11, leads to the application of the concept of PT symmetry 
toward many optical systems. To date, there have been numerous fascinating phenomena reported in optical 
structures bearing PT symmetry: single-mode lasers12, unidirectional light propagation13, coherent absorption14, 
micro-ring and micro-disk resonators15, whispering-gallery cavities16 and others17–20, to mention a few. In optics, 
the complex refractive index profile plays the role of complex potential, so intuitively the system should be PT 
symmetric if it satisfies n(x) =  n*(− x) (* stands for complex conjugate), i.e., the real part and imaginary part of the 
index are of even and odd function, respectively. However, more significantly important is that the realization of 
PT is generally associated to the coupling and hybridized modes, abbreviated as “H-mode” in nanophotonic sys-
tems. It is these H-modes whose modal index should meet the requirement = −⁎n x n x( ) ( )H1 H2 , where H1 and H2 
represent the elementary modes that couple to each other and form a supermode over the whole system, that 
really matters in terms of PT-symmetry breaking. Apparently one way to realize the requirement of modal index 
is to introduce balanced gain/loss γ′ ′ in appropriately selected positions. Generally, gain or loss can be achieved 
through quantum well, erbium doping16 or photorefractive structures17 at the conduction band. Interestingly, 
when the factor γ increases (i.e., by imposing more gain/loss), there an EP appears at which the system switches 
from PT-unbroken phase (both modes with real propagation constant) to broken PT-symmetric phase (with 
complex conjugate eigenvalues) where one mode is amplified while the other is attenuated. It is noticed that even 
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for asymmetric directional couplers, the system also exhibits behavior resembling that of PT symmetric 
systems21.

There are many studies about 2D and quasi-2D waveguide PT-symmetric systems22,23. In these structures, the 
modal effective index is determined by the material index where the guiding mode is concentrated and highly 
localized. In a previous work, the absence of EP has been observed in a finite 1D waveguide array24. However, 
the mechanism is different to ours reported here. Three central waveguides are depleted off the gain/loss so that 
particular supermodes maintain exactly real eigenvalues. While for the 3D system of four closely coupled wave-
guides we study here, the system loses the EP for particular supermodes that have accidentally non-equal real 
part of the eigenvalue. The evolution of the eigen-index trajectories in such a non-Hermitian Hamiltonian system 
is controlled by the external parameter (e.g. gain/loss amount γ) and more importantly depends on the modal 
symmetry and the lattice symmetry. The system show different coupling interactions and distinct properties 
as compared to the 1D system24. Combining the spatial coupled mode theory (SCMT)21,25,26 and finite element 
method (FEM)27, we analytically and numerically depict the process and the underlying mechanism, particularly 
for the absence of the EP that emerges for four particular bands.

Results
PT-symmetry induced mode splitting in two coupled waveguides with and without gain/loss.  
To describe the PT behaviors of the four-waveguide system, it is instrumental to fully understand the PT sym-
metry associated properties of the elementary cell, i.e., the double coupling waveguides. Figure 1a schematically 
shows the coupled double-waveguide system with two identical cylinder waveguides. We note that the unper-
turbed propagation constant is β =  nek0 (i.e., the case for no coupling and without gain/loss), where ne is the effec-
tive fundamental modal index, k0 =  2π/λ0, and λ0 is the vacuum wavelength28. For the configuration that gain is 
set in cylinder A and equal amount of loss is assumed in cylinder B, the system can be mathematically represented 
by the SCMT (see Methods):
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where = −i 1  and ap and bp (p =  T,L) are the amplitudes of the unperturbed propagation modes inside the 
individual waveguide A and B, respectively. In Eq. (1), γ is the effective gain/loss quantity based on the imaginary 
part of the refractive index, and κL (κT) denotes the coupling strength for the longitudinal (transverse) case. It is 
noted that the terminologies ‘transverse’ and ‘longitudinal’ here refer to the modal coupling type at the cross 

Figure 1.  Schematics of the proposed 3D coupled waveguides and cross section profile. Schematic figures of 
the coupled waveguides system composed of double waveguides (a) and four waveguides (d), respectively. (c) and 
(d) represent the cross sectional view corresponding to (a) and (b) with the following dimensions: R =  0.2 μm and 
= = = .d d d 0 51 2  μm. In this configuration, the structure has a high geometrical symmetry.
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section. This is different to the commonly used ‘longitudinal mode’ for bulk plasmon29 or acoustic system30. The 
eigenvalues of the Hamiltonian H are:

κ γ= ± −n n (2)eff e p
2 2

with + (− ) corresponding to bonding (anti-bonding) hybrid mode. When γ  increases, κ γ−p
2 2 becomes negative 

at a particular point, inevitably leading to a broken PT-symmetric phase with complex conjugate eigenvalues. The 
real and imaginary parts of Eq. (2) are shown in Fig. 2a,b, respectively, in which ne =  2.477, κT =  0.043 and 
κL =  0.061. Figure 2 represents a good example by which to clarify the EP behavior; it clearly shows a transition 
from the PT-symmetric phase to the broken PT-symmetric phase at γ =  0.043 (for longitudinal case) and 
γ =  0.061 (for transverse case), respectively.

In addition to the above theoretical analysis, it is possible to numerically demonstrate this PT-symmetry 
induced phase transition in a real system (see Methods). In this study, we set the wavelength at λ0 =  1.55 μm. The 
two cylinders (A,B in Fig. 1c) have radii R =  0.2 μm with a gain/loss factor g, i.e. the imaginary part of the wave-
guide refractive index. The two waveguides are at center-to-center separation d =  0.5 μm. The various refractive 
indices associated with the structure are shown in Table 1. In this case, approximately γ (the imaginary part of the 
effective index) is lineally related to the factor g as γ ≈  1.129 g. This relationship is obtained by numerical simula-
tion for the isolated waveguide (Fig. S2 in Supplementary Information). Figures 3a,b show the numerical results 
of the coupling effects, by plotting the dependence of the supermode refractive index on gain/loss amount g. It is 
seen in Fig. 3a that there are a total of four bands (labeled consecutively by k =  1, 2, 3, 4), and there is a small shift 
of Re(neff) [refer to nRe( )eff

o  in Table 1] for the longitudinal (black and red) and the transverse case (blue and 
green) in the broken PT-symmetric phase, as expected. We note that to illustrate this mode coupling symmetry 
induced effect, a general coupled mode theory has been developed for a similar non-Hermitian system31. The real 
part of z-component of the electric field at the waveguide cross section and at a slice along the propagation direc-
tion (+ z) are shown in the right panels of Fig. 3, for points correspondingly labeled in Fig. 3a,b. More specifically, 
Fig. 3c–f show the cases of the unperturbed modes when g =  0 (Hermitian system), corresponding to the cases of 
transverse anti-bonding (TA), transverse bonding (TB), longitudinal anti-bonding (LA), and longitudinal bond-
ing (LB), respectively. We stress that all of the four modes will be treated as the fundamental mode elements for 
further discussion in the four coupled waveguides. The effective index of these coupled modes is κ= +n neff e p 

Figure 2.  Evolution of eigen-indices with increasing unperturbed gain/loss factor γ. (a) Real and (b) imaginary 
parts of four supermodes neff for a Hamiltonian H as a function of γ. The parameters used in the theoretical analysis 
are ne =  2.477, κT =  0.043, and κL =  0.061.

n0 nA,B ne nRe( )eff
o

Background medium Waveguide medium Fundamental mode 
of isolated waveguide Transverse coupling case Longitudinal coupling case

1.5 3.5 2.477 2.4763 2.4864

Table 1.   The refractive index of the structure and the effective index for each waveguide.
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(for bonding modes) and κ= −n neff e p (for anti-bonding modes) according to Eq. (2), where p =  L,T for the 
longitudinal and transverse cases, respectively. As the gain/loss factor g increases, the modes for bands k =  1, 4 
and k =  2, 3 cease to be orthogonal; they become mixed. More specifically, for bands k =  2, 3, the coupling effect 
is large enough to compensate the loss before the EP, as shown in Fig. 3g,h where g =  0.02. For systems close to the 
EP, the balanced coupling strength and gain/loss yield two propagation modes that are indistinguishable (fully 
mixing), as shown in Fig. 3i,j. Once the gain/loss exceeds the EP, one of the double bands (k =  2) changes its state 
to ‘loss’, and the other (k =  3) changes its state to ‘gain’, accompanied by the energy concentration inside the loss 
waveguide B and gain waveguide A, respectively. It is easy to recognize this by the variation in field amplitude 
(Fig. 3k,l) in both the waveguide cross section and the propagation direction. Similar behaviors for the transverse 
modes are shown in Fig. 3m–r.

PT-symmetry induced properties of waveguide array in a square lattice.  From the viewpoint that 
both longitudinal and transverse cases in the double waveguides situation exist, it is interesting to explore the 
situation of four coupled waveguides (Fig. 1b) which can be regarded as a system consisting of two coupled 
double-waveguides. Figure 1d depicts the geometry in a square lattice (d1 =  d2 =  0.5 μm) and has balanced gain/
loss in the diagonal waveguides. For the sake of a simplified discussion, let us divide the system into two subunits: 
one containing waveguides A and C (labeled as AC) and the other containing B and D (labeled as BD). Figure 4 
shows the numerically calculated effective index of the eight propagation supermodes labeled as = k 1, 2, , 8 
respectively, for various gain/loss amounts g. It is seen that four of the bands, i.e. k =  3, 4 and k =  5, 6 in Fig. 4a,b, 
have clear PT symmetry associated characteristics similar to the double-waveguides system. However, there are 
two groups of double-degenerated modes, i.e., k =  1, 7 and k =  2, 8 in Fig. 4a,b, that show unexpectedly dissimilar 
properties. Specifically, as the gain/loss amount increases, apparently no EP shows up and the upper and lower 
bands do not really coalesce. The corresponding Ez pattern of the eigenstates in absence of gain/loss (g =  0) are 
shown in Fig. 4c–j, respectively. We note that any of the supermodes can be considered as the coupling results of 
the sub-modes formed in the diagonal double-waveguides (e.g., AC and BD). With regard to the high lattice 
symmetry and mode orthogonality, there are four coupling situations emerging in the system, respectively, in 
bonding or anti-bonding fashion. The counterintuitive phenomenon occurs in the LB and TB coupling case 
which does not possess absolute EP (for bands k =  1, 7 and k =  2, 8), even though apparently the structure meets 
the condition n(x) =  n*(− x). The modes in bands k =  1, 7 for g =  0.04 and g =  0.11 are shown in Fig. 4k,l and 
Fig. 4m,n, respectively. Although one of the modes is a ‘gain’ state (Fig. 4m) and the other is a ‘loss’ state (Fig. 4n) 

Figure 3.  Numerical results of the evolution of eigen-indices with increasing unperturbed gain/loss factor 
g for double coupled waveguides. (a) Real and (b) imaginary parts of four supermodes neff (Fig. 1(a)) as a 
function of g, obtained by FEM numerical simulation. For each mode without gain/loss injection, i.e., g =  0, the 
field distribution Ez in the transverse section and longitude surface are shown in (c–f). For the group of (e,f), as g 
is increasing from the unbroken to the broken phase, the field distributions are in accordance with (g,h), (i,j) and 
(k,l), respectively. (m–r) transverse modes corresponding to (c,d).



www.nature.com/scientificreports/

5Scientific Reports | 6:22711 | DOI: 10.1038/srep22711

for g =  0.11, the real part of the refractive index are not equal, which is not as expected. This forbids the transition 
from the PT symmetric phase to the broken PT symmetric phase. Despite of the similar mode profiles of Re(Ez) 
[top panels in Fig. 4m,n] at a cross section, the evolutions of the energy distributions [bottom panels in Fig. 4m,n] 
are quite distinguishing between the gain and loss states as the waves propagate along the waveguides. To illustrate 
the differences more clearly, we specifically select the two groups composed of bands k =  1, 7 and bands k =  3, 4 
in the following discussion.

For the bands k =  3, 4 which comply with a PT symmetric case, the double hybrid modes (cf., Fig. 4e,f) are the 
results of modes coupling between TA (formed in waveguides BD) and TA (formed in waveguides AC) with 
respectively modal indices κ γ− ±n ie T . Their coupling strength is denoted by K1 and the total system can be 
described by a determined Hamiltonian:

κ γ Κ
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with eigenvalues κ Κ γ= − ± −n neff e T 1
2 2 . Figure 5a shows an anti-crossing line-shape with a crossing point 

in the complex plane of effective index. For the Hamiltonian H1, the phase rigidity5  φ φ| | = | 〈 | 〉|˜ ˜r g g1/ ( ) ( )k k
R

k
R

 (see 
Methods) for each state in bands k =  3, 4 as a function of g is shown in Fig. 5b. It is evident that the phase rigidity 
=r 1k  when g =  0, indicating absolute purity of the two states. Meanwhile the phase rigidity rk  approaches zero 

at EP, which implies a complete coalescence of the two states. Note that φ| 〉˜ g( )k
R

 is the normalized right eigenvec-
tor under the parameter (g) variation. Once φ φ= 〈 | 〉˜ ˜a g(0) ( )kl l

L
k
R

 is obtained, as shown in Fig. 5c,d, we can evalu-
ate the mixing degree of the double states. Although they are equal after the EP, this does not mean that the double 
states become completely identical. To illustrate that, we introduce another measurement ϕ φ′ = 〈 | 〉˜a g( )kl l k

R
. Here, 

φl  (l =  3, 4) is the unit basis vector, corresponding to the gain (GW) and loss (LW) waveguides representation, 
respectively. The results are shown in Fig. 5e,f for bands k =  3, 4. It is seen that beyond the EP, the state with the 
negative imaginary part is more concentrated in the loss waveguides AC, while the other state, which is of positive 
imaginary refractive index, is more concentrated in the gain waveguides BD. The properties of the PT symmetric 
phase transition are demonstrated clearly by such analysis.

Next, we proceed to discuss the bands k =  1, 7 which represent non-PT-symmetric cases. Here, the modes LB 
(formed in the waveguides BD) and TB (formed in the waveguides AC) are coupled to form a pair of supermodes 
(cf., Fig. 4c,d). However, their modal indices are no longer complex conjugated. The system can now be described 
by a Hamiltonian:

Figure 4.  Numerical results of the evolution of eigen-indices with increasing unperturbed gain/loss factor 
g for the four coupled waveguides. (a) Real and (b) imaginary parts of total eight supermodes neff (Fig. 1b) as a 
function of g, obtained by FEM numerical simulation. For each mode without gain/loss injection, i.e. g =  0, the 
field distribution Ez in the transverse section and longitude surface are shown in (c–j) corresponding to eight 
line shapes respectively. For the group of (c,d), as g is increasing, the field distributions are shown in (k,l) and 
(m,n), respectively.
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Note that κ κ≠L T  and the LB and TB modes have the coupling strength K2. The eigenvalues of H2 are 
Σ Κ γ= − ± − + ∆n n i/2 ( )eff e 2

2 2 , here Δ =  κL −  κT and ∑  =  κL +  κT. In this regard, no real singularity 
exists for the square root Κ γ− + ∆i( )2

2 2 . Similar to the bands k =  3, 4, we also calculate the phase rigidity rk 
and the evolution of eigenstates as a function of g in different types (akl and ′akl with k =  1, 7 and l =  LW,GW). The 
results are shown in Fig. 6 which is in sharp contrast to Fig. 5. Figure 6a clearly shows that the real part and imag-
inary part of the eigenstates become anti-crossing, without a converging point. In addition, their phase rigidity no 
longer descends to zero, but instead it turns back at | | ≈ .r 0 2k  for both bands k =  1, 7 (Fig. 6b). This strongly 
suggests that the double states never become identical. Furthermore, | |akl  (Fig. 6c,d) are approximately equal for 
the double states after a certain point, but a small difference between them always exists. Also, for the spectrum of 
′akl  (Fig. 6e,f), the main difference with respect to the PT symmetric case (Fig. 5e,f) is that they are never com-

pletely equal. All of these observations are ascribed to the mode pattern with different symmetry. As a matter of 
fact, the state of k =  1 is more concentrated in the waveguides AC (with TB mode) where loss is set, while the state 
of k =  7 is more concentrated in the waveguides BD (with LB mode) where gain is in presence. It is therefore 
conclusive that the bands k =  1, 7 lose their absolute EP; these states can no longer be identical. The exemplifica-
tive field distribution of bands k =  1, 7 as shown in Fig. 4k–n are consistent with the results shown in Fig. 6.

In view of the supermodes features (see Fig. 4), we study the propagation behavior by selectively exciting the 
gain or loss waveguides (see Fig. S3 in Supplementary Information). For relatively small parameter g =  0.05 there 
is a clear energy transfer between the gain and loss waveguides over certain propagation length. However, the 
energy is more confined in the gain waveguides after a sufficient long propagation distance, due to the absence 
of EP (in which case the supermodes always have complex conjugated propagation constant and the imaginary 
parts are opposite to each other). While for relatively larger g =  0.11, the energy basically concentrates on the gain 
waveguides, quite similar to the typical PT-symmetric behavior11. However, the phase difference of the field in 
the waveguides is no longer π/2 which is one of the characteristic of the PT-symmetry broken phase for states 
beyond the EP11.

To this end, the absence of EP in square waveguide arrays has been verified both in numerical simulation and 
by theoretical analysis. We stress that the PT-associated phase transition always exists in the waveguide array if 
the balanced gain/loss is in the orthogonal direction (Fig. S4 in Supplementary Information), or if the waveguide 

Figure 5.  The description of eigenstates k = 3, 4 as a function of g through variant patterns to characterize 
different properties. (a) Trajectory of eigen-indices neff in the complex frequency plane. (b) Norm of phase 
rigidity rk  for each of the chosen states. (c,d) Evolution of eigenstate-k =  3, 4 as a function of gain/loss g in the 
mode representation, i.e., projecting each eigenstate onto the double original state simultaneously, in which 

φ φ= 〈 | 〉˜ ˜a g(0) ( )kl l
L

k
R

, and φ (0)l
L

 (l =  3, 4) are eigenstates at g =  0. (e,f) Similar to (c,d), they are the evolution in 
the gain/loss waveguides representation, ϕ φ γ′ = 〈 | 〉˜a ( )kl l k

R
, where ϕl (l =  LW,GW) are unit basis vectors. Fitted 

parameters used here are ne =  2.477, κT =  0.008, K1 =  0.018.
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array is tuned from square lattice to rectangular lattice where ≠d d1 2 (Fig. S5 in Supplementary Information). In 
these cases, the lattice symmetry does not match with the modal symmetry.

Discussion
In summary, a few comments are in order. Firstly, the mode-coupling properties in 3D waveguide arrays with 
balanced gain/loss distribution have been theoretically and numerically studied. We mainly investigated the 
phase transition from the unbroken to the broken region across the so-called EP. In a square waveguide array with 
diagonally balanced gain and loss, as a counterintuitive phenomenon, EP is absent in a particular configuration 
which has a high lattice symmetry. The effect originates from the mode coupling with different distribution sym-
metry, which yields an unequal real part of the effective modal index. Secondly, this example strongly demon-
strates that an optical system with complex potential meeting the condition = −⁎n r n r( ) ( ) cannot guarantee the 
PT symmetric transition. It is the modal index of the supermode that actually matters. In this sense, the geomet-
rically symmetric structure with balanced gain/loss is only one of the prerequisites for the emergence of PT sym-
metric to broken PT symmetric phase transition. Lastly, for experimental demonstration, the waveguides system 
may be fabricated by direct laser writing technology32,33, while control over gain and loss of individual waveguides 
could be achieved through spatial modulation of the optical pump intensity11. To observe the consequences of EP 
and the absence of EP, the input signal should be selectively launched via the gain (or loss) waveguides, then the 
information of field intensity and the phase difference between the waveguides can be mapped, similar to ref. [11].

Methods
Phase rigidity.  The phase rigidity is defined as5,34:
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where φ γ ( )k
R

 φ γ( ( ))k
L

 is the normalized right (left) eigenvector of the Hamiltonian matrix for band k based on the 
bilinear product of the non-Hermitian Hamiltonian. Phase rigidity is a measure of the mixing degree of different 
eigenstates. The phase rigidity varies between 1 in the regime of well isolated resonance and 0 in the regime of 
overlapping resonances (i.e., crossing point). For zero γ (i.e., a Hermitian system), the eigenstates are distinct and 
orthogonal, their phase rigidity is close to unity. As γ increases, the states become highly mixed. At the EP, the 
phase rigidity vanishes because of the completely coalesced states. Another way to characterize an EP is to trace 
the evolution of the eigenstates (i.e., φ γ| 〉 ( )

R
) under a parameter variation. By projecting each eigenvector of band 

k onto their original states, i.e., when γ =  0, represented by φ〈 | (0)l
L

), φ φ γ= 〈 | 〉˜ ˜a (0) ( )kl l
L

k
R

 it is proposed to quan-
titatively denote the k proportion of each band of the respective original states. By substituting the unit basis 
vector ϕl  for the original state φ〈 | (0)l

L
, the operator akl becomes ϕ φ γ′ = 〈 | 〉˜a ( )kl l k

R
, which is used to determine 

where modes of band k is most concentrated in the waveguide array.

Figure 6.  Similar to Fig. 5 with the eigenstates k = 1, 7. Fitted parameters used here are ne =  2.477, 
κ = .0 011L , κ = .0 008T , Κ = .0 1032 .
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Hamiltonian of both longitudinal and transverse couplings.  For a cylinder waveguide, it supports 
double-degenerated fundamental modes which are orthogonal. When it is coupled to another waveguide, there 
are two independent coupling cases: one for transverse coupling with coupling strength κT and the other for 
longitudinal coupling with corresponding coupling strength κL, which can be obtained by spatial coupled mode 
theory:
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γ κ
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It is seen that this 4 ×  4 matrix can be decoupled to two 2 ×  2 Hamiltonian matrices as shown in Eq. (1).

Full-wave eigenmode analysis.  The full-wave electrodynamics calculations were done with a FEM solver 
COMSOL Multiphysics 4.3a27. The eigenmode solver was employed to analyze the coupled propagation modes 
in the waveguide array. The medium used in this study are silica with a refractive index of 1.5 and silicon with a 
refractive index of 3.5.
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