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Hypersensitive Transport in 
Photonic Crystals with Accidental 
Spatial Degeneracies
Eleana Makri1, Kyle Smith2, Andrey Chabanov2, Ilya Vitebskiy3 & Tsampikos Kottos1

A localized mode in a photonic layered structure can develop nodal points (nodal planes), where the 
oscillating electric field is negligible. Placing a thin metallic layer at such a nodal point results in the 
phenomenon of induced transmission. Here we demonstrate that if the nodal point is not a point of 
symmetry, then even a tiny alteration of the permittivity in the vicinity of the metallic layer drastically 
suppresses the localized mode along with the resonant transmission. This renders the layered structure 
highly reflective within a broad frequency range. Applications of this hypersensitive transport for optical 
and microwave limiting and switching are discussed.

One of the main technological and fundamental challenges of our days is the design of electromagnetic architectures 
that allow for an efficient manipulation of the amplitude, phase, polarization, or direction of electromagnetic signals. 
Management of these features can lead to many diverse applications ranging from optical1 and microwave communi-
cations2, sensors and power limiters3, to energy harvesting, switching, and optical computing4. In this endeavor, the 
enhancement and control of the interaction between electromagnetic radiation and matter is of utmost importance.

An efficient way to achieve this enhancement is via localized modes supported by defect layers embedded in a 
layered photonic structure. Such localized modes develop nodal points where the amplitude of the oscillating 
electric field is very small. Placing a thin metallic nanolayer at such positions will have nearly no effect on the 
localized mode and the resonance transmission associated with this mode. This is the well-known phenomenon 
of induced transmission (see, for example5–8, and references therein). By comparison a stand-alone metallic nan-
olayer of the same thickness is totally opaque at the same frequency range which explains the term “induced 
transmission”5. Here we argue that a small perturbation ε∆  in the permittivity of a layer(s) nearby to the metallic 
nanolayer, can drastically affect the localized mode and resonance transmission associated with it. Depending on 
the nodal point symmetry, there are three possible scenarios: (a) the nodal point (with the metallic nanolayer) 
coincide with the mirror plane of the layered structure before and after the perturbation; (b) the nodal point 
coincide with the mirror plane in the original configuration, but the perturbation destroys this symmetry; and (c) 
the nodal point of the localized mode with the metallic nanolayer is not a symmetry point, neither before nor after 
the perturbation, in which case the coincidence of the metallic nanolayer and the node of the unperturbed localized 
mode can be viewed as accidental spatial degeneracy (ASD). In the case (a), the symmetric alteration of the layered 
structure results simply in a shift of the localized mode frequency. The metallic nanolayer still coincides with the 
nodal point of the localized mode at the shifted frequency and hence does not affect the resonant transmission at that 
frequency. In the cases (b) and (c), the nodal point of the localized mode shifts away from the metallic nanolayer, 
which can result in a dramatic suppression of the localized mode, along with the resonant transmission. In either 
case, the layered structure becomes opaque at any frequency. Due to the presence of the metallic nanolayer, the 
abrupt transition from resonant transmission to broadband opacity can be caused by just a tiny change (few percen-
tile point) of the permittivity ε ε ε= ′ + ″i  of one of the dielectric layers of the defect cavity, which justifies the use of 
the term hypersensitivity. The above feature equally applies to the cases (b) and (c), but with one important exception, 
when the permittivity alteration ε∆  is self-induced by the localized mode. Typically, a self-induced change in the 
permittivity is associated with nonlinear effects, heating, etc. If the permittivity change ε∆  is indeed self-induced, the 
transition from resonant transmission to broadband opacity is very pronounced and abrupt in the case (c) of acci-
dental spatial degeneracy as compared to the case (b), where the unperturbed layered structure is symmetric.
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In most applications of metallo-dielectric layered structures (see for example5,9) the abovementioned hyper-
sensitive transport characteristics of asymmetric configurations to a self-induced alteration of the refractive index 
would be undesirable and counterproductive. In this paper we take an alternative viewpoint. We demonstrate 
how such hypersensitive transport can be used in microwave (and optical) limiters, and we show that it can dra-
matically enhance their performance. As an example, we consider a microwave limiter based on an asymmetric 
metal-dielectric layered structure supporting a localized mode with ASD. We show that even a small self-induced 
alteration of the refractive index at the neighborhood of the maxima of the localized mode produces an abrupt 
transition from resonant transmission for low-level radiation to high broadband reflectivity for high-level radi-
ation. On the other hand, if the asymmetric permittivity alteration is caused by external physical action, such as, 
asymmetric mechanical stress, electric field etc., rather than being self-induced by the localized mode, the above-
mentioned hypersensitivity will not be related to the ASD, and it will be equally strong in the setting (b) and (c). 
This effect can be used in switches, modulators and sensors.

It is important that the induced transmission and its hypersensitivity to the incident electromagnetic wave 
intensity in asymmetric metal-dielectric photonic structures are significant only in cases where the imaginary 
permittivity of the metallic nano-layer is large. This critical condition is satisfied at frequencies starting from 
microwave and up to the mid infrared.

Consider a 1D photonic crystal (PC) consisting of two lossless Bragg gratings (BG), with constitutive compo-
nents different for each grating, as shown in Fig. 1. The refraction indices and thicknesses of the bilayers of the left 
BG (LBG) layers are = . = .n l cm( 3 16; 0 3162 )1 1  and = =n l cm( 1; 1 )2 2  and those of the right BG (RBG) are 
= . = .n l cm( 1 5; 0 6667 )3 3 ; and = . = .n l cm( 4 74; 0 2108 )4 4  respectively. The interface between the two gratings 

constitutes an asymmetric cavity. The periodic modulation of the index of refraction of each grating is engineered 
in a way that both of them have the same band-gap structure, which is just a matter of convenience. The cavity 
consists of two different quarter-wave layers with n l( , )1 1  and n l( , )4 4  and a thin metallic nanolayer between them 
with thickness µ λ= . l m0 18C  and permittivity ε ω = . ×π

ω
i Hz( ) 4 31 10C

4 16 . Under typical circumstances the 
permittivity of each of the two layers of the cavity is affected differently by an external perturbation. For example 
the left layer n l( , )1 1  can be more sensitive to high-level radiation than the right layer. The defect cavity supports a 
localized mode with a frequency fr located in the middle of the photonic band-gap and whose nodal point coin-
cide with the metallic nanolayer. Evidently, this cavity is asymmetric, which corresponds to the case (c) described 
above.

Figure 1.  Metal-dielectric PC consisting of two BG with different constitutive bi-layers (white and orange 
for the LBG and grey and yellow for the RBG). The blue and the red curves in the upper facet of the structure 
show the resonant field profile for the unperturbed and perturbed structures, respectively. In the perturbed 
structure, a small 2% increase of the permittivity of the white layer completely suppressed the resonant mode 
(red curve in the upper facet of the PC—main figure). The dashed box indicates the position of the asymmetric 
defect cavity at the interface of the two mirrors. (a) A magnified view of the asymmetric cavity. The cavity 
consists of two dielectric layers (white and gray) separated by a metallic nanolayer (green) in the middle. A 
magnification of the field distribution around it (blue and red curves corresponding to the unperturbed and 
perturbed structures) is also reported. Notice the shift of the nodal point in the red curve, which results in 
engaging the metallic nanolayer and lead to a suppression of the resonant transmission, as shown in (b). 
(b) Transmission dispersion of the unperturbed structure (blue curve) and perturbed structure (red curve). 
The field profile at the frequency of resonant transmission for either case is shown in (a). Note that in the case 
of symmetric metal-dielectric cavity, the perturbation would lead to a simple shift of the resonant transmission, 
not to its suppression.
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The transmission  , reflection , and absorption  are calculated via the transfer matrix approach. The latter 
connects the amplitudes of forward and backward propagating waves on the left and the right domains outside of 
the PC. At the −j th layer inside the structure, and also outside of the PC, a time-harmonic field of frequency ω 
satisfies the Helmholtz equation:

ω ε+





 =

d E z
dz c

E z( ) ( ) 0
(1)

2

2

2

where ε ε= = nj j
2 is the permittivity of the j-th layer (ε =  1 for the vacuum). At the j-th layer, Eq. (1) admits 

solutions of the form = + −E z E e E e( )j
f
j in kz

b
j in kz( ) ( ) ( )j j , where = ωk

c
 is the wavevector at the vacuum. Outside the 

PC, Eq. (1) admits the solution = + −E z E e E e( )L R
f
L R ikz

b
L R ikz( / ) ( / ) ( / ) . The continuity of the field and its derivative 

at the interface between two layers (or a layer and the vacuum) can be expressed in terms of the total transfer 
matrix  which connects the forward and backward amplitudes on the left (L) and right (R) of the PC:
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where N is the total number of layers. The single-layer transfer matrix  j connects the field amplitudes of the j-th 
and the + −(j 1) th layers i.e. =+ +( ) ( )E E E E, ,f
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j T( 1) ( 1) ( ) ( ) . Thus the transfer matrix approach allows us 
also to construct the field E z( )j( )  at each layer, provided that appropriate scattering boundary conditions are 
imposed. The latter, for a left incident wave, take the form =( )E E, (1, 0)f
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, and A T R= − −1 10,11.

We start our analysis with the investigation of the transmission spectra of each of the two mirrors. Their dis-
persion relation ω q( ) is calculated using the transfer matrix of one bilayer   =ab
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where the indices a and b indicate the layers 1 and 2 (3 and 4) associated with the LBG (RBG).
Propagating waves in each grating correspond to frequencies ω = kc for which11
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where the total width of the bilayer = +l l la b defines the periodicity of the LBG (for = =a b1, 2) or the RBG 
(for = =a b3, 4). Direct inspection of Eq. (4) indicates that the dispersion relations ω q( )LBG  and ω q( )RBG  are 
identical as long as =n
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. Once turned to finite photonic structures, both LBG and RBG will share 

the same band-gap structure of the transmission spectrum, as long as these conditions are satisfied. Below we 
consider that each BG consists of five (quarter-wavelength) bilayers.

In Fig. 1b we show the transmission spectrum f( )  of our PC for ε∆ = 0. The position of the band-edges is 
nicely described by Eq. (4). Moreover a resonant mode with ≈f( ) 1r  at resonance frequency ≈ .f GHz7 5r , in 
the middle of the band-gap, has been created. The resonant mode is localized at the vicinity of the defect cavity 
and decays exponentially inside the two mirrors due to destructive interferences from the layers (blue profile at 
Fig. 1). The electric field E z( ) has a nodal point at the position of the metallic layer (blue profile at Fig. 1a). Thus 
the resonant localized mode is unaffected by the presence of the lossy layer and the entire PC is completely trans-
parent at =f fr (see Fig. 1b). Furthermore, the lack of mirror symmetry ensures that the ASD occurs only for the 
resonance mode fr. For all other (Fabry-Perot) resonances with frequencies ≠f f r the electric field distribution 
has finite amplitude at the position of the metallic layer leading to large reflection  ≈f( ) 1 (see discussion 
below) and vanishing transmission ≈f( ) 0 .

Moreover, any small perturbation (say, due to heating), which will change the permittivity of any of the two 
layers of the defect cavity (say the left one) by ε∆ , will engage immediately the metallic nanolayer and lift the ASD 
of the resonance localized mode. In other words, the electric field will no longer have a nodal point at the position 
of the metallic layer (see red profile at Fig. 1a). This will trigger various competing mechanisms. On the one hand, 
it will increase the impendence mismatch and thus it will enhance the reflection. This mechanism is present 
whenever the electric field interacts with the metallic layer, even for ≠f f r. On the other hand, it will lead to an 
increase of absorption. One can estimate the effect of these two competing mechanisms by analyzing the trans-
port from a single lossy δ-like defect with permittivity ε γδ=z i z( ) ( ). In this case, we have that:
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which indicates that a lossy defect is a source of increased absorption but at the same time a way to enhance reflec-
tion. Also note that the absorption is not a monotonic function of the tangent loss parameter γ. Rather it takes its 
maximum value  = .0 5max  at γ = .

k
2

The second mechanism applies only for resonant transport. In this case, the bulk losses due to the strong inter-
action of the electric field with the metallic layer compete with the losses due to the leakage from the boundaries 
of the structure. The former are proportional to the field intensity at the position of the lossy defect, while the 
latter depend on the coupling of the resonant mode to the free space via the boundary of the PC. As ε∆  increases, 
the bulk losses overrun the losses due to the boundary leakage and eventually spoil the resonance (see red electric 
field in Fig. 1). Thus, photons do not dwell in the resonant mode and therefore cannot be absorbed by the metallic 
layer i.e. the absorption  f( )r  diminishes while ≈f( ) 1r , and ≈f( ) 0r .

In Fig. 2 we report the transmission  , reflection , and absorption  of our PC, versus frequency and versus 
the relative permittivity change ε ε∆ / 1 occurring at a single (left of the metallic nanolayer) layer. For small 
ε ε∆ ≈/ 01 ,  ≈f( ) 1r  (Fig. 2a) while ≈ ≈0, 0R A  respectively (Fig. 2b,c). As ε∆  increases, the absorption is 

initially increasing (see peak at ε ε∆ .~/ 0 05%)1  but for ε ε∆ / 1%1  it starts decreasing reaching values as low 
as − 40 dB. For even larger ε ε∆ / 1, the structure becomes completely reflective (see Fig. 2b).

The hypersensitivity of the transport characteristics of our composite structure to small permittivity changes ε∆  
can find various applications including sensors, switches, power modulators, etc. Here, however, we will discuss the 
advantages to implement our PC as an efficient energy limiter. These are devices that protect electromagnetic sensors 
from high-energy radiation, while at the same time they are transparent to low energy radiation12–24. Typically this 
protection is achieved via the absorption of the incident energy from the limiter, which turns opaque. At the same 
time this excessive energy overheats the limiter and leads to its self-destruction. Recently, however, the concept of 
reflective limiters has been introduced25,26. These structures consist of a BG with one lossy defect layer, which under-
goes a uniform self-induced permittivity change. The proposal for limiting action was based on the phenomenon of 
resonant transmission via a localized (defect) mode. The defect mode is transmissive at low-energy incident pulses, 
while it becomes highly reflective (and not absorbing) at high-energy pulses. Nevertheless, this proposal suffers from 
one drawback; the limiting action requires several orders of magnitude change of the permittivity of the lossy defect. 
Instead, our design requires changes of only a few percentage points in the permittivity of one composite layer in 
order to provide limiting action. Importantly, the high reflectivity for the high intensity input persists within a broad 
frequency range – not just within a photonic band-gap is was the case in refs 25,26.

We consider the PC of Fig. 1. We further assume, for the sake of the discussion, that the left layer of the defect 
cavity has a permittivity which depends on temperature (T) variations as ε ε ε= + ∆T T( ) ( )1 1  where for simplicity 
we consider that ε∆ = +T c c T( ) 1 2 . Since the layer on the right is composed of a different material, in general, we 
expect a different variation of its permittivity with the temperature. For simplicity, we assume that the right layer is 
much more resilient to the changes in temperature and thus we will keep its permittivity constant ε4. There are vari-
ous physical mechanisms that can lead to the heating of the dielectric layer. For example, it can originate from the 
heating of the nearby metallic nanolayer or from the presence of a small ε″ at the permittivity of the dielectric layer 
itself (which is usually the case in practical situations) or from a combination of these two physical mechanisms.

Figure 2.  (a) Transmission versus frequency and change in permittivity in the vicinity of the resonant 
transmission. For ε ε∆ / 1%1 , the resonant transmission  ≈f( ) 1r . As ε ε∆ / 1 grows, the transmission drops 
below − 40 dB. (b) The reflection  versus frequency and ε ε∆ / 1. Low values of the resonant reflectivity 
 ≈ −( 10 dBs) only occur for small ε ε∆ / 1. For ε ε∆ ≈ ./ 0 05%1  the reflection becomes almost zero ≈ −( 45 dB) 
while the absorption gets its maximum value (see subfigure (c)). For larger ε ε∆ ≥/ 1%1 , our structure becomes 
highly reflective. (c) The absorption versus frequency and ε ε∆ / 1. For ε ε∆ ≈/ 01  the absorption ≈f( ) 0r  
≈ −( 30 dBs, see color coding). For small ε ε∆ / 1 it increases and reaches a maximum at ε ε∆ ≈ ./ 0 05%1 . As 
ε ε∆ / 1 increases further, f( )  decays abruptly and takes values smaller than –40 dBs.
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The rate equation that determines the temporal behavior of the temperature T t( ) at the cavity is26:

=
d
dt

T t
C

T W t( ) 1 ( ) ( ) (6)I

where =W t E t( ) ( )I I
2 is the incident pulse intensity, which is a given function of time, C is the heat capacity, and 

 T( ) is the temperature dependent absorption coefficient of the asymmetric cavity. A numerical integration of 
Eq. (6) (for a given pulse profile W t( ))I  allows us to evaluate the temperature T t( ) and from there the permittivity 
variations ε∆ T( ) which are reported in Fig. 3a as a percentage change ε ε∆ T( )/ 1. Then  ω( ),  ω( ) and ω( )  are 
calculated using transfer matrices as a function of pulse duration t (see Fig. 3b–d). We find that ω( )  (Fig. 3b) 
initially increases and reaches some maximum value around ≈ .t 0 1 corresponding to very small permittivity 
changes ε ε∆ ./ 0 1%1 . Further increase of ε∆ T( ) leads to an abrupt decay of  ω( ) for resonance frequencies to 
values smaller than − 30 dB. The off-resonance values already have absorption that is below − 60 dBs. At the same 
time the transmission (Fig. 3c) decays while the reflection (Fig. 3d) reaches unity. Therefore our photonic struc-
ture acts as a hypersensitive reflective microwave limiter- it will turn highly reflective within a broad frequency 
range for very small relative permittivity changes ~0.5%. This behavior has to be contrasted with the proposal of 
ref. 25 where a limiting action is triggered only when the variation (due to heating) of the refraction index 
ε ε ε= ′ + ″iD D D of a defect lossy layer, which is embedded in a Bragg grating, is many orders of magnitude. The 
outcome of these calculations is also reported in the inset of Fig. 3a by referring to f( )r , f( )r  and f( )r  at reso-
nance frequency versus the relative change of the permittivity. For these simulations we have used a BG with the 
same constitutive layers as the LBG of our PC. The lossy defect layer is placed in the middle of the grating and has 
ε ε′ = . ″ = +−( 12 1104, 10 T)D D

10 . We see that the reflective limiting action occurs when the permittivity changes 
of the lossy defect layer are more than seven orders of magnitude.

In conclusion, we have introduced a photonic layered structure design with hypersensitive transport charac-
teristics. This layered structure consists of an asymmetric dielectric cavity incorporating a metallic nanolayer and 
sandwiched between two Bragg mirrors. When the metallic nano-layer coincides with the nodal point of the 
localized mode, the system develops the phenomenon of induced transmission. However, even a small change in 
ε′ and/or ε″ in one of the dielectric layers of the asymmetric cavity abruptly suppresses the localized mode and 
renders the layered structure highly reflective at all frequencies – not just at frequencies of the photonic band gap. 
Furthermore, we have shown that these metal-dielectric structures can be used as hypersensitive microwave (or 

Figure 3.  (a) A density plot of the change of permittivity ε ε∆ / 1 of the left layer of the defect cavity in the 
vicinity of transmission resonance as a function of the pulse duration. Inset: the transmission T, reflection R and 
absorption A at resonance frequency versus ε ε∆ / 1 for a reflective limiter of refs 25,26. (b) The absorption; (c) 
the transmission; and (d) the reflection versus pulse duration, for a frequency window around the resonance 
mode.
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optical) limiters. Specifically, at low incident wave intensity, these structures support a narrow-band transmission. 
If the electromagnetic wave intensity and/or fluence exceed certain level, even a small self-induced change (due 
to non-linearities or heating effects) in the refractive index of the asymmetric layer causes an abrupt transition to 
a broadband reflectivity. The proposed design can be adjusted to different frequency ranges starting from micro-
wave frequencies and up to the mid infrared. The main physical requirement is that the imaginary part ε″ of the 
metallic nanolayer is large. The concept of hypersensitive layered structures can be applied not only to electro-
magnetic waves but also to acoustic waves, matter-waves etc.
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