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Density of States for Warped 
Energy Bands
Nicholas A. Mecholsky1, Lorenzo Resca1, Ian L. Pegg1 & Marco Fornari2

Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. 
Despite their potential for significant practical impacts on materials properties, these effects have 
not been rigorously demonstrated previously. Here we rectify this using an angular effective mass 
formalism that we have developed. To clarify the often confusing terminology in this field, “band 
warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit 
a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band 
non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that 
increasingly deviates from being twice differentiable at an isolated critical point. These features affect 
the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate 
these effects, providing explicit calculations of DOS and their effective masses for warped energy 
dispersions originally derived by Kittel and others. Other physical and mathematical examples are 
provided to demonstrate fundamental distinctions that must be drawn between DOS contributions 
that originate from band warping and contributions that derive from band non-parabolicity. For some 
non-degenerate bands in thermoelectric materials, this may have profound consequences of practical 
interest.

The density of states (DOS) in electronic energy space, usually denoted as g E( ), is a fundamental quantity in solid 
state physics, which critically determines transport, optical, and many other properties of materials1–5. In fact, 
g E( ) is most immediately responsible for those properties, and more directly related to their corresponding meas-
urements than the underlying band structure that generates g E( ). Materials that have quite similar densities of 
states typically display quite similar properties, even though their underlying band structures may differ.

Effective mass approximations of energy dispersions are central in analyzing and understanding band struc-
tures of materials near critical points in the Brillouin zone (BZ) and their major physical consequences on DOS6. 
However, basic formulae of that formalism have been misused for energy band dispersions that are not 
twice-differentiable at isolated critical points in the BZ. That is what is generally, and should be exclusively, called 
“band warping.” Unfortunately, at times band warping has been further confused with band non-parabolicity for 
energy functions E k( ) that do admit Taylor series expansions at critical points in k-space. In a previous paper, a 
mathematically and physically rigorous theory for treating a broad class of energy band dispersions in crystals has 
been introduced to correct these matters7. That formalism, which is based on angular effective mass expansions7, 
can be used to provide rigorous expressions and reliable calculations of densities of states originating from any 
underlying band structure. Surprisingly, that has not been done for warped energy bands heretofore. Thus, the 
main purpose of this paper is to remedy this major deficiency in energy band structure theory.

Let us begin by recalling the radial expansion of an energy band around a point k0 in a crystal BZ, expressed 
parametrically in angular form as7

θ φ θ φ θ φ θ φ= + + + + ….E k E k a k a k a( , , ) ( , ) ( , ) ( , ) (1)r r r r0 1
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In Eq. (1), = −k k kr 0  is the radial distance between a generic point at k in the BZ and k0. This k0 may be 
any point of special interest in the BZ, or a “critical point,” meaning that the energy expansion has a zero 
first-order differential at k0

1,2. The polar angles θ and φ refer to the spherical polar coordinates of −k k0.
It is essential to appreciate that Eq. (1) applies to far more general dispersion relations than commonly consid-

ered multi-dimensional Taylor series expansions in Cartesian coordinates. That is so because Eq. (1) requires only 
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the existence of a one-dimensional Taylor series expansion in each radial direction through k0. This is a much 
more limited requirement and is reasonably expected of any physical band structure that allows one-dimensional 
transport of quasi-particles in any direction7. Besides ordinary quadratic bands, Eq. (1) thus includes “warped 
bands,” which are not twice-differentiable at isolated points, based on a rigorous mathematical definition. Typical 
examples of warped bands derive from original models of Dresselhaus et al. and Kane8,9.

Both physically and mathematically, band warping must be unambiguously distinguished from band 
non-parabolicity. The latter derives from higher-order terms θ φa ( , )m  with >m 2 in Eq. (1). Conversely, band 
warping depends exclusively on the shape of the θ φa ( , )2  term, which provides a dimensionless angular effective 
mass surface in Rydberg atomic units7.

For an analytically quadratic band, associated with a proper second-order differential, its curvature, θ φa ( , )2 , 
must assume the form
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in a coordinate system of principal axes, with diagonal effective masses m m m, ,x y z. In Eq. (2), me is the ordinary 
electron mass. Any other form of θ φa ( , )2  that cannot be exclusively described in terms of diagonal effective 
masses and orthogonal principal axes must correspond to a “warped band.”

One may formally derive expressions for the DOS corresponding to the general energy expansion in Eq. (1). 
In this paper, we focus on explicit DOS expressions for band warping, although we generalize our considerations 
at least to one type of band non-parabolicity, namely that of an overall energy dispersion of the form 

θ φ θ φ=E k R k f( , , ) ( ) ( , )r r , where R k( )r  is a monotonically increasing function, implying that all 
θ φ θ φ=a f( , ) ( , )i  coincide. We do not further consider in this paper any linear term in the energy expansion,  

Eq. (1), thus assuming a zero first-order differential at a “critical point.”1,2,7

We begin our technical presentation by deriving a general expression for the DOS and the DOS effective mass 
for any physical energy dispersion in two- and three-dimensional reciprocal spaces. We verify that our expres-
sion correctly reproduces standard results for the DOS of non-warped, i.e., at least twice differentiable, energy 
dispersions. We then proceed to demonstrate the effect of band warping on the DOS by applying our expression 
to a fundamentally warped energy dispersion originally derived by Dresselhaus, Kip and Kittel8. We show that 
there are considerable differences between our correct evaluations of DOS effective masses and those erroneously 
produced in original papers10–12 and reproduced ever since. In the Supplemental Material to this paper, we further 
discuss two-dimensional mathematical models, where the distinction between effects of band warping – and a 
particular form of it that may be associated with the idea of “corrugation” – and effects of band non-parabolicity 
can be analytically demonstrated. Some features of those examples can be critical to clarify the interplay between 
the possibilities of band warping and band non-parabolicity in non-degenerate bands of materials that exhibit 
remarkable thermoelectric properties in that connection13–19.

Results
The DOS for a warped energy dispersion must be obtained using our angular formalism. We thus proceed to 
derive its appropriate expression, first in three dimensions and then in two dimensions.

Density of States Formulae. In a crystal, the single-band DOS at energy E, within dE, is defined as

∫π δ= −g E g V E E dk k( )
(2 )

( ( ) ) ,
(3)s 3

3

where gs is a possible spin degeneracy, V is the volume of the direct-lattice primitive cell, and E k( ) represents a 
single energy band in the BZ over which the d k3  integration is performed. A general strategy is to evaluate the 
integral by performing a transformation to (E, θ, φ) coordinates. The delta function can further be handled by 
reducing the integral to the surface having given energy E inside the BZ1–3.

Using this Eq. (3), we use a general dispersion given in angular form to derive an expression for the DOS.

The DOS of Warped and Non-Warped Bands. Approaching a critical point k0 in the BZ, let us ignore 
band non-parabolicity effects for the moment and consider an energy dispersion (without any linear term) in the 
form7

θ φ θ φ= + .E k E k f( , , )
2m

( , )
(4)r
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2 2

e



In Eq. (4) we imply a partition of the unit θ φ( , ) sphere S2 in a region + where θ φ >f ( , ) 0 and a region −  
where θ φ <f ( , ) 0, so that  ∪ =+ − S2. This definition of θ φf ( , ) must refer to a single band, which may or 
may not be degenerate with other bands at k0. Typically, though not necessarily13–15, non-degenerate bands at k0 
are not warped, corresponding to analytic maxima, minima, or saddle points. Conversely, degenerate bands are 
commonly warped7–9.

With the change of variables to θ φ′E( , , ), the DOS integral becomes
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where E′  is an integration variable comprising the energy difference −E E0 from the extremum of energy E0. The 
delta function then reduces integration to a surface integral over a surface of constant =E E0.

In order to confirm the correctness of this expression, we may first reproduce standard results for the DOS of 
non-warped energy dispersions, and then proceed to evaluate the DOS for warped energy dispersions.

DOS for Spherical, Ellipsoidal, Saddle, or Warped Dispersions. If angular integrations over the unit 
sphere converge, we may split those integrals over regions of positive and negative θ φf ( , ), so that the energy 
integration immediately yields
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where we have defined
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However, integration over the angular variables may not formally converge, as in the classic case of a saddle 
point dispersion extending to infinity1. That is a theoretical extrapolation, however, because the BZ is actually 
finite, and so must be any band structure within it. Introduction of an energy-dependent cutoff parameter may 
thus be required, which should further take into account the onset of any significant band non-parabolicity. In 
any such case, the energy integration must be taken last, since ±C  also become functions of energy. However, the 
presence of the delta function can still make this last integration over energy relatively straightforward. We pro-
vide an example of that in the Supplemental Material.

Generalization to Monotonically Non-Parabolic Bands. We can readily extend the preceding formal-
ism to energy dispersions of the form θ φ′ = ′E R k f( ) ( , )r  where ′R k( )r  is any monotonically increasing function 
of ′kr , yielding the inverse function −R 1.

The DOS thus becomes
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Equation (5) may now be regarded as a special case of Eq. (8), where =−R x x( )1 . The energy integral may still 
be relatively straightforward to perform in Eq. (8) on account of the delta function.

For the sake of clarity and completeness, let us also derive corresponding expressions for the DOS in two 
dimensions.

Two-dimensional DOS. Let us consider the two-dimensional evaluation of the DOS, according to the 
expression

∫π
δ= −g E g A E E dk k( )

(2 )
( ( ) ) ,

(9)s 2
2

where gs is the spin degeneracy and A is the area of the direct-lattice primitive cell. Close to a critical point k0 in 
the BZ, and ignoring band non-parabolicity, the two-dimensional energy dispersion becomes

θ θ= +E k E k f( , )
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where θf ( ) is now a function of a single angular variable. The Jacobian of the transformation from rectangular to 
polar coordinates is simply

θ
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and the DOS thus becomes
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Again, we must integrate over regions of positive and negative θf ( ) separately. Namely, the interval π(0, 2 ) must 
be split into + and −  regions, where θf ( ) is either positive or negative, respectively. Assuming that corre-
sponding θ-integrals converge, this yields
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Using this formula, Eq. (14), and its three dimensional counterpart, Eq. (7), we may now precisely define the 
DOS effective mass from comparison with the spherical dispersion case.

The DOS Effective Mass. Since the form of Eq. (4) is devised to further capture band warping at a critical 
point in the BZ, we may use the standard expression for the DOS effective mass in the spherical case
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to define the DOS effective mass for a warped energy band minimum, or its straightforward modification for an 
energy band maximum. Comparing Eq. (6) with Eq. (15), and recalling the definitions of the numerical factors 
given in Eq. (7), we may generally define the DOS effective mass as

π
≡ ±
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⁎m C
2

m
(16)

2/3

e

In the two-dimensional case, we can similarly introduce

π
≡ ± ±

⁎m C m (17)e

in Eq. (13) .

The DOS Effective Masses for the Kittel Form. Three-dimensional Kittel form. As a basic illustration 
of our results, let us calculate the DOS effective masses for the hole bands described by what we may dub the 
“Kittel form,” originally derived in a ground-breaking paper8, as


= ± + + + .E Ak B k C k k k k k kk( )

2m
( [ ( )] )

(18)x y y z z x

2

e

2 2 4 2 2 2 2 2 2 2 1/2

Expressing that according to our Eq. (4), we obtain exactly7

θ φ θ θ φ θ φ= ± + + .f A B C( , ) sin ( )[cos ( ) cos ( )sin ( )sin ( )] (19)2 2 2 2 2 2 2

In both expressions, the upper positive (lower negative) sign refers to the heavy (light) hole band dispersion, and 
<A 0.

Although we may not be able to express it in a closed analytic form, each DOS effective mass for the Kittel 
form can be evaluated numerically using Eq. (7) and Eq. (16). Let us further factorize the absolute value of the B 
parameter in front of the energy dispersion of the Kittel form or its angular effective mass surface.

In Fig. 1 we have numerically calculated the heavy-hole DOS effective mass for a large region of the parameter 
space of possible A, B, and C values in the Kittel form. Furthermore, contours of the corresponding DOS 
heavy-hole effective mass, mhh, are shown in blue in Fig. 1 as functions of = | |a A B/  and = | |c C B/ . Numerical 
values of mhh are given in units of | |Bme .

Notice that θ φf ( , ) becomes imaginary for values of θ and φ if c exceeds a cmax given by

=
−
.c a a( ) 4 1

5 (20)max

2

Contours of constant mhh thus appear to accumulate along a corresponding curve. It is not apparent whether any 
mhh may be attained for values of a and c approaching Eq. (20) from below. For example, the parameters for the 
valence bands of Si are given in Ref. 7 as = − . = − .A B4 204, 0 378, and = .C 5 309. This corresponds to a (hh) 
DOS effective mass of .0 592me and a (lh) DOS effective mass of .0 155me.
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We may also compute the band warping parameter, w, previously defined in Ref. 7, for the heavy-hole band of 
the Kittel form. This warping parameter gives some measure of how distorted from a quadratic Taylor expansion 
the energy band structure is around a critical point. Contour plots of constant w are shown in red in Fig. 1. Notice 
that, moving along curves of constant w, the DOS heavy-hole effective mass mhh increases with increasing a. 
Alternatively, moving along curves of constant mhh, the band warping parameter w increases with increasing c. 
Thus, perhaps surprisingly, a larger value of w does not necessarily imply either a larger or a smaller value of mhh, 
since that depends on the values of a and c parameters; and conversely.

Two-dimensional Kittel form. We may reduce the previous results to a two-dimensional version of the Kittel 
form determined by setting =k 0z  in Eq. (18), namely,

 
= ± + = | | ± + .( ) ( )E k k Ak B k C k k B ak k c k k( , )
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Equivalently, by setting θ π= /2 in Eq. (19), and then relabeling the azimuthal angle φ with the two-dimensional 
polar angle θ, we obtain exactly

θ θ θ θ= = | | ± + .E k k f B k a c( , )
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Angular effective mass planar contours of θf ( ) are shown in Fig. 2 for a given value of a and four increasing values 
of the c parameter. In this two-dimensional case, the band warping parameter, w, and the DOS effective mass, ⁎m , 
can be expressed analytically, for any <c cmax, as
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Figure 1. Contour plots of constant DOS heavy-hole effective mass mhh, in units of | |Bme , are shown as blue 
curves. For comparison, contour plots of constant absolute value of warping parameter w are shown as red 
curves.
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In Eq. (23), E m( ), K m( ), and Π n m( , ) denote the complete elliptic integral, the complete elliptic integral of the 
first kind, and the complete elliptic integral of the third kind, respectively, and α=m sin2  and n are their standard 
arguments.

Contours of constant DOS heavy-hole effective mass mhh and contours of constant absolute value of warping 
parameter, w, for this two-dimensional Kittel form are qualitatively similar to those of the full three-dimensional 
Kittel form (c.f. Fig. 1). However, in the two-dimensional case, the DOS effective mass decreases away from a 
maximum limiting value at =c 0 and = −a 1. In two dimensions w  attains a maximum magnitude 

π π= − − − ≈ − .w 1/2( 8) ( 2) 0 8447max
2  whenever a and c approach the limit of cmax . Additionally, the 

expression for the effective mass in Eq. (23) has a limiting value at =c 0 and → −a 1 from the left. This limiting 
value for the two-dimensional case is =⁎m (1/2)mmax e. We did not investigate a corresponding effect for the full 
three dimensional Kittel form. We expect a similar result for the warping parameter, but it is uncertain whether 
or not there may be a theoretical maximum value for the DOS effective mass.

Discussion
Our formulae reproduce expected results for ellipsoidal and hyperboloidal quadratic energy expansions. For the 
latter, we arrive at a result similar to that of saddle points in Ref. 1.

To further extend our results to optical transitions, the joint density of states (JDOS) can be similarly consid-
ered1,2. Both conduction and valence bands can be expressed as individual terms having the form of Eq. (4). For 
the JDOS we may then define a joint θ φF ( , ) as the sum of the corresponding two (absorbing and emitting) f
-contributions. The same formalism that we develop in this paper for the DOS thus essentially applies to the JDOS 
as well.

Given our somewhat unexpected results concerning independence of DOS from band warping and structure 
in the Kittel form, it is natural to question what effects or relations may generally exist between band warping and 
DOS effective masses. In any case, if we consider energy dispersions with angular contributions giving rise to 
finite ±C  in Eq. (7), then the only effect that band warping can have on the DOS is to modify the numerical factor 
in Eq. (6) .

In the Supplemental Material, we investigate several models that clearly show that band warping may or may 
not increase the DOS effective mass. Additionally, an intuitive notion of greater band “corrugation,” referring to 
energy dispersions that deviate “more severely” from being twice-differentiable at an isolated critical point, may 
also vary independently of the corresponding DOS effective mass and the band warping parameter. For example, 
in addition to constructed example dispersions where warping is independent of the DOS effective mass, we pro-
vide examples where the warping parameter steadily increases with what we dub band “corrugation,” whereas the 
DOS effective mass at first decreases, but then increases with that “corrugation.”

For the Kittel form, we find that the warping parameter, w, may be used to indicate how far from spherical is 
the angular effective mass surface θ φf ( , ). For example, in the plane a c( , ) of Fig. 1, if we climb vertically along the 
positive c axis from some point, e.g. −( 312501 , 0), w increases. The particular = −a 312501  value has been 
chosen simply to let c range from 0 to 1000. Let us then compute the error between an approximate DOS effective 
mass, derived from the least-squares fit of the θ φf ( , ) surface to a sphere and then using the effective mass for-
mula Eq. (15), and the correct DOS effective mass, calculated from Eq. (7). That error is plotted in Fig. 3. As 
expected, when =c 0, the relative error −( )value exact

exact
 is zero, because the angular effective mass surface is actually 

spherical. However, as c (and correspondingly w) increase, the relative error −( )value exact
exact

 increases up to almost 
100%! This highlights the need for the correct DOS effective mass formula, rather than approximating a warped 
surface with an ellipsoid, as is typically done incorrectly.

Lax and Mavroides10 originally proposed the correct idea of an angular effective mass, but they immediately 
deviated from it to fit the Kittel form specifically. Their Eq. (8) and those at the beginning of their Sec. IIIA 

Figure 2. Angular effective mass contours of θf ( ) for the two-dimensional Kittel form that has =k 0z , for 
parameter values of = − .a 1 1 and = . . .c 0 0, 0 4, 0 6, and .0 8. The k dependence is exactly parabolic in every 
radial direction.
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correspond to our Eqns. (7) and (16), in defining the DOS effective mass. However, not only is our treatment 
much more general than theirs, but it also applies more appropriately to the Kittel form, based on Eq. (19). 
Additionally, the DOS effective mass formula that we derive is similar to the CC mass developed in Ref. 20 for Si 
and Ge, although those authors refer to ‘nonspherical-nonparabolic’ band structures, whereas we more precisely 
consider parabolic, although possibly warped, band structures.

Our treatment of the DOS effective masses can also be contrasted with that of Lawaetz12. Using our correct 
expressions and integrating them numerically for the same values of parameters reported by Lawaetz for various 
materials, there are significant differences between our appropriate DOS effective masses and those artificially 
produced by Lawaetz’s formulae. We show that in Table 1, where we have used the following relations between the 
A, B, and C parameters of the Kittel form and the γ γ, ,1 2  and γ3 parameters introduced by Luttinger21,

Figure 3. Relative error versus band warping parameter, w, for the Kittel form. For specificity, we start at a 
point − ≈ −( 312501 559,0) in Fig. 1, and then we increase c vertically. Evidently, the relative error of the 
DOS effective mass, derived from the least-squares fit of the angular effective mass surface to a spherical surface, 
increases monotonically with w.

Crystal γ1 γ2 γ3

Lawaetz 
mhd

Correct 
mhd

Lawaetz 
mld Correct mld

 C 4.62 − 0.38 1.00 a a a a

Si 4.22 0.39 1.44 0.53 0.537 0.16 0.156

Ge 13.35 4.25 5.69 0.35 0.351 0.043 0.0423

Sn − 14.97 − 10.61 − 8.52 0.29 0.289 − 0.029 − 0.0297

AlP 3.47 0.06 1.15 0.63 0.615 0.2 0.195

AlAs 4.04 0.78 1.57 0.76 0.752 0.15 0.151

AlSb 4.15 1.01 1.75 0.94 0.953 0.14 0.141

GaP 4.2 0.98 1.66 0.79 0.786 0.14 0.143

GaAs 7.65 2.41 3.28 0.62 0.620 0.074 0.0739

GaSb 11.8 4.03 5.26 0.49 0.498 0.046 0.0468

InP 6.28 2.08 2.76 0.85 0.858 0.089 0.0887

InAs 19.67 8.37 9.29 0.60 0.600 0.027 0.0267

InSb 35.08 15.64 16.91 0.47 0.490 0.015 0.0147

ZnS 2.54 0.75 1.09 1.76 1.796 0.23 0.224

ZnSe 3.77 1.24 1.67 1.44 1.468 0.149 0.148

ZnTe 3.74 1.07 1.64 1.27 1.296 0.154 0.152

CdTe 5.29 1.89 2.46 1.38 1.466 0.103 0.102

HgS − 41.28 − 21 − 20.73 2.78 2.946 − 0.012 − 0.0121

HgSe − 25.96 − 13.69 − 13.2 1.36 1.341 − 0.019 − 0.0190

HgTe − 18.68 − 10.19 − 9.56 1.12 1.220 − 0.026 − 0.0261

Table 1. Comparison of the DOS effective masses for materials reported in Table II of ref. 12. and those 
correctly derived from our Equations (7) and (16). aFormalism invalid because γ2 and γ3 have opposite sign.
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Figure 4 shows the error of the DOS heavy-hole effective mass estimated by Lawaetz and its correlation with 
the warping parameter w for that band in various materials. That error is partly the result of inconsistent series 
expansions and truncations in procedures elaborated by Lax, Mavroides and Lawaetz10–12. Roughly, the larger the 
warping, or w, the greater is the discrepancy between Lawaetz’s estimate and our precise determination of the 
DOS effective mass, consistent with the discussion of the Kittel form above. That error can be quantitatively as 
large as 28% depending on the material. More importantly, the original lack of a precise definition and treatment 
of warped bands has been responsible for a lack of consistency among many subsequent papers and ad hoc esti-
mates of the DOS effective masses.

Methods
Derivation of Density of States formulae. To proceed with the integrations in Eq. (3), we scale the 
Cartesian coordinates by letting ′ =ki

k
2m

i

e
. The energy dispersion thus becomes

θ φ θ φ= + ′ .E k E k f( , , ) ( , ) (25)r r0
2

We may then introduce a new variable ′ = ′ −E E Ek( ) 0, so that

 ∫π
δ=







 ′ − − ′.g E g V E E E d k( )

(2 )
2m ( ( ))

(26)s 3
e

2

3/2

0
3

In polar coordinates we have

θ φ
θ φ

θ φ
θ φ

θ φ
θ
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′

′ =
′

′ =
′

.

k E
f

k E
f

k E
f

( , )
sin cos ,
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sin sin ,

( , )
cos

(27)

x

y

z

Accordingly, we may perform a change of variables to spherical coordinates ( ′kr , θ, φ), where ′kr  is defined implic-
itly through Eq. (25). Notice that regions of positive ′E  ( >E E0) correspond to + and regions of negative ′E  
( <E E0) correspond to − , so that all variables in Eq. (27) are real.

The Jacobian for this transformation is

θ φ
θ φ

θ
θ φ

θ φ′ =
′

> ∀ ∈ .J E E
f f

S( , , )
( , )

sin
2 ( , )

0, ( , )
(28)2

2

The corresponding coordinate transformations for the generalized formulae of monotonically increasing 
non-parabolic bands then become

Figure 4. Relative error of the DOS heavy-hole effective masses mhd estimated by Lawaetz12 and reported in 
column 5 of Table 1, as compared to our correct values, computed from Eq. (7) and Eq. (16) and reported in 
column 6 of Table 1, versus the band warping parameter w.
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The inverse function −R 1 of R introduced in Eq. (29) yields Eq. (8).
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