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Periscope: quantitative prediction 
of soluble protein expression in the 
periplasm of Escherichia coli
Catherine Ching Han Chang1,3, Chen Li3, Geoffrey I. Webb4, BengTi Tey1,2, Jiangning Song3,4,6 
& Ramakrishnan Nagasundara Ramanan1,2,5

Periplasmic expression of soluble proteins in Escherichia coli not only offers a much-simplified 
downstream purification process, but also enhances the probability of obtaining correctly folded and 
biologically active proteins. Different combinations of signal peptides and target proteins lead to 
different soluble protein expression levels, ranging from negligible to several grams per litre. Accurate 
algorithms for rational selection of promising candidates can serve as a powerful tool to complement 
with current trial-and-error approaches. Accordingly, proteomics studies can be conducted with greater 
efficiency and cost-effectiveness. Here, we developed a predictor with a two-stage architecture, to 
predict the real-valued expression level of target protein in the periplasm. The output of the first-stage 
support vector machine (SVM) classifier determines which second-stage support vector regression (SVR) 
classifier to be used. When tested on an independent test dataset, the predictor achieved an overall 
prediction accuracy of 78% and a Pearson’s correlation coefficient (PCC) of 0.77. We further illustrate the 
relative importance of various features with respect to different models. The results indicate that the 
occurrence of dipeptide glutamine and aspartic acid is the most important feature for the classification 
model. Finally, we provide access to the implemented predictor through the Periscope webserver, freely 
accessible at http://lightning.med.monash.edu/periscope/.

There has been a growing interest from researchers in expressing recombinant proteins in the periplasm of E. 
coli1–8, owing to the attractiveness of periplasmic expression. For example, periplasmic expression significantly 
facilitates downstream purification and produces target proteins with authentic N-terminal sequences upon 
proper cleavage of signal peptides9, which is otherwise not achievable through cytoplasmic expression. In addi-
tion, periplasm is the only oxidizing compartment in genetically unmodified E. coli cells and also the host to 
various chaperones and foldases10. These proteins and enzymes play crucial roles in facilitating proper protein 
folding and disulfide bond formation to ensure their biological functions.

The solubility of recombinant proteins upon expression in E. coli has been a main focus in protein expression 
studies. Overexpression of proteins generally gives high yield, but mostly in the form of inclusion bodies11,12. 
Despite the advantage of producing higher protein yield in the form of inclusion bodies, a series of onerous and 
expensive tasks are involved in resolubilizing the protein aggregates and refolding them13. Furthermore, there is 
no guarantee of retaining the biological activity of a protein after its refolding. Significant decrease in production 
yield upon refolding and purification is also common9. There are a number of examples of studies that report 
on the formation of inclusion bodies when proteins were heterologously expressed in the periplasm14–17, which 
suggest the possibility of inclusion body formation during periplasmic expression under certain conditions. On 
one hand, it is well-known that amino acid sequence is the major determinant of protein solubility11,18,19. The 
choice of signal peptide, on the other hand, has also been recognized as another important factor that strongly 
influences the protein secretion efficiency20 and also affects the protein expression yield in the periplasm. The rate 
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of protein folding also influences the amount of proteins expressed, and can be estimated from the amino acid 
sequences21–23.

A number of computational algorithms and tools have been developed to predict both protein solubility and 
protein folding rate21,23–26 based on the correlations between amino acid sequence and these two important pro-
tein properties. For protein solubility prediction, classifiers are mainly built using SVM, while for real-valued 
protein folding rate prediction, multiple linear regressions or SVR are employed by most tools. Evaluation using 
cross-validation has revealed that a prediction accuracy of around 60–88% can be achieved for protein solubility 
prediction27, depending on the benchmark datasets. In general, the prediction tools for real-valued protein fold-
ing rate achieved correlation coefficients greater than 0.728. More recently, a novel predictor that estimates the 
expression level and solubility of proteins in both E. coli and wheat germ cell-free expression systems has been 
established29. Among the three machine learning methods explored, SVM was chosen to train the prediction 
model. However, only qualitative prediction output is generated, rather than quantitative real-valued outputs, 
which are desirable and more practical for prioritizing the selection of candidates with better potentials from a 
pool of candidate proteins.

In the present work, we introduce a computational approach called Periscope (an acronym for Periplasmic 
expression classifier for soluble protein expression) with a two-stage architecture, for quantitative prediction of 
soluble heterologous proteins in the periplasm of E. coli. More specifically, given the amino acid sequence of a 
signal peptide–target protein combination, Periscope is able to classify the soluble expression of the target protein 
into one of the three classes (high, medium, or low expression level) and further predict the quantity of soluble 
protein in the periplasm of E. coli, in the unit of mg/l.

Results
Architecture of the two-stage Periscope predictor. A flowchart that details the development of 
Periscope predictor is presented in Fig. 1. We designed a predictor with a two-stage architecture that first classi-
fies an input sequence into high, medium or low expression level and subsequently estimates the soluble protein 
yield in the periplasm of E. coli. Researchers often report successful protein expression studies as high expression 
when hundreds mg/l of protein yield was achieved30,31. In addition, some published works also claimed protein 
yield between 10–50 mg/l as high level expression32–35. On the other hand, protein yield recorded in the range of 
0.1–0.5 mg/l would be conventionally regarded as low expression level32. As such, in this study, the expression 
level of soluble proteins was categorized into three classes, namely, low (≤ 0.5 mg/l), medium (between 0.5 and 
100 mg/l), and high (≥ 100 mg/l), in order to segregate the truly high expression level data from those moderately 

Figure 1. Overview of the Periscope development flowchart. 
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high expression level data. The first-stage predictor is based on a support vector classification (SVC) classifier that 
executes multi-class classification tasks, using the one-against-one approach. Previous work has identified the 
one-against-one approach as most practical36 compared with other approaches available for multi-class classifi-
cation. Based on the output from the first-stage predictor, the second-stage predictor employs the SVR model of 
the assigned class to predict and output the real-valued expression yield. This two-stage predictor was specifically 
designed to address the issue of having expression yield data that varies up to 5-orders of magnitude. By building 
specific models for low, medium and high yield sequences, Periscope achieved real-valued expression yield pre-
diction with greater accuracy.

Performance of classification task. For the classification task, we benchmarked and compared the per-
formance of SVM (implemented using LIBSVM package37) with two baseline algorithms-radial basis function 
network (RBFNetwork) and random forests (RF). The results are shown in Table 1. When assessed using repeated 
10-times 10-fold cross validation (CV), the classification model built using LIBSVM achieved higher accuracy 
than the models built using RBFNetwork or RF. We used repeated k-fold CV to assess the accuracy of the classifier 
because it has been shown to reduce the bias, mean squared error and variance of k-fold CV38. The average accu-
racy, precision, F1-score and Matthew’s correlation coefficient (MCC) of the LIBSVM classification model topped 
both RBFNetwork and RF classification models by 6% and 14% on average, respectively. As a result, the LIBSVM 
classification model was employed as the primary classifier in the two-stage Periscope predictor.

Performance of regression task. Three different regression models (low, medium and high regression 
models) were developed and employed in the second-layer predictor. Each model was trained using the training 
dataset that contained instances of respective class only. Owing to the relatively small sizes of the training datasets 
that were used to train these regression models, leave-one-out cross validation (LOOCV) was favored38,39 and 
used as the performance evaluation approach for various regression models. Table 2 summarizes the performance 
of respective models evaluated using LOOCV. The PCCs of these models ranged from 0.5–0.9. The mean absolute 
error (MAE) and root mean squared error (RMSE), on the other hand, ranged over 5-orders of magnitude. This 
was mainly attributed to the nature of the data where the real-valued soluble protein expression yield data ranged 
up to 5-orders of magnitude as well. In the second-stage predictor, the low regression model was developed to 
quantitatively predict the soluble protein expression yield of 0.5 mg/l and below. Conversely, the high regression 
model was trained to output real-valued soluble protein expression yield of 100 mg/l and above. Accordingly, both 
MAEs and RMSEs evaluated for low, medium and high regression models significantly differed from each other.

Overall performance. In addition to the performance evaluation for individual first-stage classifiers and 
second-stage regression models, we also assessed the overall performance of Periscope. When tested on an inde-
pendent test dataset with 15 unseen instances, the overall predictor recorded a prediction accuracy of 77.8% on 
average. Close correspondence was observed between the average accuracies of the overall predictor and the pri-
mary classifier built using LIBSVM. In general, the performance evaluated using independent tests offers greater 
trustworthiness as compared with various CV tests, by allowing strict assessment of the generalization capability 
of predictors on unseen data. This observation demonstrates the strong generalization capability of the developed 
overall predictor. Based on the correctly classified instances in the first-stage classifier, the second-stage regression 
model yielded PCC of 0.7726, MAE of 12.20, and RMSE of 20.38, respectively.

Feature importance. From a total of 7,903 initial features, different feature subsets (Table 3) were selected 
for respective models, using correlation-based feature selection (CFS) approach, coupled with subset size for-
ward selection as the search method0. CFS uses subsets of features and evaluates the corresponding significance 

Algorithm LIBSVM RBFNetwork RF

Average accuracy 0.7904 0.7647 0.7727

Error rate 0.2096 0.2353 0.2273

Precision 0.7272 0.6098 0.6085

Recall 0.6218 0.6509 0.5390

F1 score 0.6704 0.6297 0.5717

MCC 0.4760 0.4371 0.3623

Table 1.  Performance comparison of primary classifiers developed using different machine learning 
algorithms. Performance was evaluated based on repeated 10-times 10-fold CV. The highest score within the 
same performance measure category is indicated in bold font with the exception of error rate where the lowest 
score is indicated in bold font.

Regression model PCC MAE RMSE

Low 0.6934 0.0728 0.0845

Medium 0.5386 9.81 16.91

High 0.9381 425.81 593.54

Table 2.  Performance of second-stage regression models.
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by examining the predictive ability of individual feature and the redundancy between different features. Only 
subsets of features that are highly correlated with the class and at the same time poorly inter-correlated with one 
another were chosen. CFS, which is a filter-based approach, was used instead of the wrapper-based approach due 
to its suitability in handling small datasets compared with the wrapper method40. To further rank the relative 
importance of each feature in respective feature subsets, we evaluated the corresponding increase or decrease 
of each performance measure by removing a feature from the selected feature subset, one at a time, until each 
feature in the subset had been removed once (Tables 4 and 5). The occurrence of the dipeptide QD was shown 
to be the most important feature among the features selected for the primary classification task. When QD was 
removed from the feature subset, the MCC of the resultant classifier declined drastically (− 81%) compared with 
the primary classifier trained using all seven features in the selected feature subset. Apart from MCC, other per-
formance measures, such as precision, recall and F1-score of the resultant classifier also decreased by ~9–53%. 
Out of the seven features in the selected feature subset, the occurrence of the dipeptide CL least contributed to the 
improvement of the primary classifier’s performance. An insignificant performance improvement was observed 
in terms of accuracy, precision and F1-score, upon removing this feature from the selected feature subset. For the 
regression models in the second-stage predictor, the interaction between the T residue and maximum consecutive 
F residue, the dipeptide WQ, the interaction between the Y residue and the predicted protein folding rate were 
revealed as the most significant features for the high, medium and low regression models, respectively.

Implementation of Periscope webserver. To provide access to the two-stage architecture predictor, 
an online webserver was developed and designed with a user-friendly interface (http://lightning.med.monash.
edu/periscope/index.jsp). Tomcat7 handles the data preprocess and prediction for Periscope, deploying several 
JavaServer Pages (JSP) and Servlets. After a user submits amino acid sequence(s), Periscope performs the predic-
tion using the constructed models and subsequently returns the predicted soluble protein expression level and 
yield in the periplasm of E. coli. It allows submission of up to five query sequences in FASTA format each submis-
sion. There is no limitation on the length of the query sequence. The usability of Periscope has been addressed in 
three important dimensions, namely, learnability, helpfulness and memorability. Examples of query sequences, 
particularly the format of single and multiple sequences, were illustrated in Periscope, to provide extended guid-
ance to the users. Periscope is also equipped with detailed feedback when any error is detected during the sub-
mission of a query sequence. This is an important and useful function since error messages are a key part of 
communication between the web server and users. The source code of the predictor is downloadable from the 
web server (http://lightning.med.monash.edu/periscope/dataset.html), facilitating stand-alone application of 

Task Selected features Description

CLASSIFICATION

BPC Occurrence frequency of basic and positively charged residue 
(H, K, R)

Sulfur Occurrence frequency of sulfur-containing residue (C, M)

MCBPC Maximum consecutive basic and positively charged residue 
(H, K, R)

logPFR Protein folding rate in log10 base, predicted using SeqRate

CL Occurrence of dipeptide cysteine and leucine

QD Occurrence of dipeptide glutamine and aspartic acid

VE Occurrence of dipeptide valine and glutamic acid

REGRESSION HIGH

TP Occurrence of dipeptide threonine and proline

VT Occurrence of dipeptide valine and threonine

T ×  MCPhe Occurrence frequency of threonine interacting with maximum 
consecutive phenylalanine residue

REGRESSION MEDIUM

ER Occurrence of dipeptide glutamic acid and arginine

WQ Occurrence of dipeptide tryptophan and glutamine

VT Occurrence of dipeptide valine and threonine

R ×  AbsCharge Occurrence frequency of arginine interacting with absolute 
charge per residue

ANC ×  MCAliphatic
Occurrence frequency of acidic and negatively charged residues 
interacting with maximum consecutive aliphatic residue (I, L, 

V, A, G)

MCCys ×  pI Maximum consecutive cysteine residue interacting with 
isoelectric point (pI)

REGRESSION LOW

F ×  logPFR Occurrence frequency of phenylalanine interacting with 
protein folding rate in log10 base, predicted using SeqRate55

S ×  MCNPH Occurrence frequency of serine interacting with maximum 
consecutive non-polar and hydrophilic residue (I, L, V, A, G, P)

y ×  transmembrane Occurrence of tyrosine interacting with occurrence of 
transmembrane, predicted using TMHMM56

Y ×  nlogPFR Occurrence frequency of tyrosine interacting with protein 
folding rate in natural log base, predicted using SeqRate

Table 3.  Feature subsets selected for both classification and regression tasks and the description of 
respective features.

http://lightning.med.monash.edu/periscope/index.jsp
http://lightning.med.monash.edu/periscope/index.jsp
http://lightning.med.monash.edu/periscope/dataset.html
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Periscope and high-throughput prediction of large-scale sequence data. In addition to direct output retrieval 
displayed on the web page. Periscope offers an optional output delivery mode where users can retrieve the pre-
diction output in a text file via email. This additional function allows the user to save the prediction output for 
interpretation or follow-up analysis.

Discussion
During feature selection, the application of both CFS and subset size forward selection as the features selec-
tion approach resulted in a subset of seven features for the primary classification task (Table 3). Using simi-
lar approaches, different subsets of features were obtained for low, medium and high regression models in the 
second-stage predictor. Notably, features involving basic and positively charged residues (H, K, R) were repeatedly 
selected for the primary classification task. These include the occurrence frequency and maximum consecutive 
basic and positively charged residues. Despite the relatively high inter-correlation (r =  0.387) between these two 
features, the removal of either feature from the selected feature subset resulted in significant decrease in the clas-
sifier’s performance (Table 4). Previous research29 has also revealed similar significant effects of the basic property 
group residues on the solubility of the entire protein sequence and the C-terminal region of the protein sequence, 
which is in good agreement with the outcome of feature selection in this study. In addition, another group of 
researchers discovered a close correspondence between positively charged residues and protein solubility, in 
which they have highlighted the more prevalent influence of R residue as compared with K residue41. Importantly, 
the predicted protein folding rate was regarded as an important feature and selected in the feature subsets for the 
primary classifier and low regression model in the second-stage predictor, despite the possible noise introduced 
by inaccurate prediction. The important role of folding kinetics in determining the fate of the expressed protein 
as described in earlier studies11,12,42 is supported by the feature selection results in this study. A novel feature, 
dipeptide VT, has not been previously reported to show significant effect on either protein solubility or protein 
expression. The closest correspondence that has been reported was the negative influence of the repeating T and 
V residues on E. coli expression and solubility, respectively29. Based on the feature selection results in the current 
study, the dipeptide VT is the only feature that showed its relevance in both high and medium regression models 
in the second-stage predictor.

To further illustrate the competency of the developed predictor, we applied all 15 unseen instances in the 
independent test dataset to the Periscope predictor. Table 6 summarizes the prediction outcome of the independ-
ent test dataset. Out of 15 instances, 10 instances were correctly classified as medium expression level. The pre-
dicted yields for seven of these closely corresponded to the reported expression yield whereas the remaining 
predictions were observed to deviate in the range of 10–50 mg/l in expression yield. Due to misclassification of the 
stII–vtPA combination, Periscope predicted this combination to yield 9.254 mg/l of soluble vtPA. This combina-
tion was reported to produce 0.159 mg/l of soluble vtPA in the periplasm of E. coli43. Similar deviations in expres-
sion yield could be observed in other misclassified instances. Conversely, when instances were correctly classified, 
more accurate prediction of expression yield could be observed. When the exotoxin A from Pseudomonas aerug-
inosa was combined with ompA signal peptide, Periscope predicted this combination to yield 45 mg/l, realistically 
closer to the reported yield of 60 mg/l36. Another example is the elicitin β-cinnamomin from Phytophathora cin-
namomi that was merged with pelB signal peptide. This combination was reported to be expressed as soluble 
elicitin β-cinnamomin in the periplasm of E. coli at 13.3 mg/l23. Using pelB–elicitin β-cinnamomin combination, 
Periscope predicted an expression yield of 7.3 mg/l. Apart from producing a few mediocre predictions, there were 
also some remarkably good predictions from Periscope. Firstly, the recombinant single-domain antibody frag-
ment (VH Hs) that specifically targets the cell receptor binding domain of the virulence factor produced by 
Clostridium difficile, named toxin B (TcdB), particularly B5.2, was reported to be expressed in soluble form at 
6.7 mg/l, when fused to ompA signal peptide44. Periscope predicted the ompA-VH Hs B5.2 combination to yield 
6.8 mg/l of soluble protein in the periplasm of E. coli. The second example in this case study is the maltose-binding 
protein (MBP). When the native signal peptide of MBP was used along with the mature peptide, 9.8 mg/l of solu-
ble MBP was obtained in the periplasm of E. coli45. Periscope predicted that 11.5 mg/l of soluble MBP will be 
produced in the periplasm of E. coli using the combined protein sequence of native MBP signal peptide and 
mature MBP. Evidently, Periscope correctly classified the expression levels of these two instances. Furthermore, 
the predicted soluble expression yield matched closely to the experimentally determined yield, with an average 

Feature 
removed

Percentage change

Accuracy Precision Recall F1score MCC

QD − 9.25 − 49.94 − 52.85 − 43.20 − 81.10

BPC − 5.28 − 25.94 − 37.22 − 20.52 − 47.77

Sulfur − 3.66 − 10.74 − 30.53 − 8.62 − 31.09

VE − 3.35 − 6.15 − 29.40 − 5.76 − 26.70

MCBPC − 2.13 − 12.07 − 30.18 − 8.97 − 26.28

logPFR − 1.12 − 2.26 − 24.46 − 0.33 − 14.81

CL 1.02 5.38 − 19.80 6.52 − 2.85

Table 4.  Relative significance of features selected (descending order) for primary classification task. 
Percentage changes were evaluated using repeated 10 times 10-fold CV, with reference to the classification 
model trained using all seven features selected.
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deviation of 0.9 mg/l. More examples from the independent test dataset were modified ompA–hPDI46 and 
ompA-VHHs A19.227 combinations, which also received outstandingly accurate predictions from Periscope. 
These results suggest that Periscope can be applied as a useful tool for prediction of soluble protein expression 
level and yield.

It has been more than a decade since researchers have started to venture into periplasmic expression for pro-
tein production. However, relatively fewer efforts have sought to improve the efficiency of periplasmic expression 
through rational selection of features. In the current work, we presented a computational approach to predict 
the expression level and yield of soluble protein in the periplasm of E. coli. With the aid of this predictor, rational 
selection of signal peptide–target protein combinations can be conducted with ease. Benchmarking experiments 
using repeated 10-times 10-fold CV and LOOCV indicate that Periscope is able to accurately classify the target 
sequence into one of the three classes (high, medium, or low expression level) and predict the amount of solu-
ble protein in the periplasm of E. coli. However, user should be noted that Periscope is built based on a dataset 
that was curated through past literature. These literature data were reported based on various growth conditions 
and extraction protocols. In consideration of the average literature which were conducted based on shake flask 
fermentation and E. coli of type B strain, particularly BL21 (DE3) using strong promoter, these conditions were 
adopted as the reference conditions for all expression data in the dataset, as well as the predicted expression level 
and yield. Assumption was also made such that the three most commonly optimized parameters in a protein 
expression work, namely growth temperature, time of induction and concentration of inducer, had been opti-
mized in respective literature data. The expression level and yield predicted by Periscope can be regarded as the 
soluble protein yield from the optimization of these three most common factors mentioned above.

One of the most challenging steps in building Periscope is the dataset generation process. Since the data 
were collected from various literatures, we faced difficulty in obtaining expression data that were reported under 
standardized conditions. In addition, majority of the literatures available have reported the expression data in the 
form of relative yield instead of absolute yield. These limitations prevented us from building a much larger dataset 
for improved training and testing of Periscope. Apart from the amino acid sequence-dependent factors that were 
considered in the current work, there are other biological and amino acid sequence-independent factors, such as 
optimization strategies in the omics level, that have been shown to affect the protein expression level. These bio-
logical and amino acid sequence-independent factors are highly accountable for the flaws and prediction discrep-
ancies of Periscope. Regrettably, we were unable to incorporate these factors while building Periscope due to the 
absence of relevant information from literatures. As an effort to overcome these obstacles, we planned to extend 
our current work by building our own database with expression data generated under standardized conditions 
and at the same time allow the deposition of heterologous protein expression data in the form of absolute yield by 
other researchers. We are currently in the process of developing a vector database with different constructs to be 
offered to potential users for research purposes. Currently, Periscope is expected to be a powerful tool for quanti-
tative prediction of protein expression level and rational selection of promising combinations of signal peptide–
target proteins for the periplasmic expression of heterologous proteins in E. coli. In the future, with the ongoing 
plans and efforts, we hope to produce further release on our model, which will incorporate various biological and 
amino acid sequence-independent factors to serve for broader applications in proteomics.

Methods
Dataset generation. An exhaustive literature search was conducted via the National Center for 
Biotechnology Information (NCBI). Research papers annotated with descriptors including ‘soluble’, ‘recombinant 
protein’, ‘periplasm’ and ‘Escherichia coli’, were subjected to further scrutiny, aimed at identifying potential candi-
dates that met the following prerequisites: (i) E. coli as the host, (ii) heterologous expression, (iii) containing signal 
peptide, (iv) expression targeted to the periplasm, (v) protein expression level quantitatively reported in terms of 

Regression 
Models Feature removed

Percentage change

PCC MAE RMSE

High

T ×  MCPhe − 3.96 39.83 36.49

TP − 2.32 24.85 14.90

VT − 1.98 22.43 26.52

Medium

WQ − 52.35 55.83 40.49

ANC ×  MCAliphatic − 47.28 35.51 27.50

ER − 35.52 26.77 16.13

R ×  AbsCharge − 15.74 6.28 7.41

VT − 2.04 13.28 3.71

MCCys ×  pI − 4.90 6.88 3.49

Low

Y ×  nlogPFR − 36.06 15.54 17.17

S ×  MCNPH − 2.54 11.31 5.08

y ×  transmembrane 6.02 5.60 0.76

F ×  logPFR 2.90 0.36 − 2.14

Table 5.  Relative significance of features selected (descending order) for second-level regression models. 
Percentage changes were evaluated using LOOCV, with reference to the high, medium and low regression 
models trained using respective feature subsets.
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concentration (weight/volume) or equivalent, wherein the reported quantity can be converted into concentration, 
and (vi) accessible amino acid sequence information. The protein sequences of both signal peptide and target pro-
tein were determined and subjected to sequence redundancy reduction using the CD-HIT suite47 at 90% sequence 
identity. Sequence redundancy reduction is necessary to avoid potential overestimation of the performance and 
unreasonably high bias of the trained model25,48. In this work, high expression level was defined as soluble pro-
tein concentration of 100 mg/l or greater, whereas low expression level was defined as soluble protein concen-
tration of 0.5 mg/l or less. Values amidst (between 0.5 and 100 mg/l) were categorized as medium expression 
level. Out of the 98 protein expression instances that remained after sequence redundancy reduction (Table S1),  
16 were of high expression level (≤ 100 mg/l), 58 were classified as medium (between 0.5 and 100 mg/l) and 24 
were classified as low (≤ 0.5 mg/l) expression levels, respectively. The dataset was randomly split into training and 
test datasets based on a ratio of 85%:15% between the training and test datasets. Both the training and test data-
sets were confirmed to include data from all three classes of the expression level.

Feature extraction and feature selection. A total of 7,903 initial features were defined and extracted in 
this study. These were individual quantifiable properties that showed potential correlations with protein solubil-
ity, expression and folding rate11,25,29,49, based on existing knowledge or studies. These features could be divided 
into four major groups. Information that could be obtained directly from the amino acid sequence constituted 
the features in the first group. These include peptide length, occurrence frequencies of 20 amino acids, maxi-
mum count of consecutive identical amino acids, and occurrence frequencies of amino acids of the same phys-
icochemical properties. The second group of features include structural and other features that were derived or 
calculated based on the amino acid sequence, including exposed residue fraction, contact number, propensities 
of alpha-helix (α -helix), beta-sheet (β -sheet) and coil. On the other hand, predicted features such as predicted 
protein folding rate, protein solubility, unfoldability and number of disordered residues were also used and belong 
to this feature group. The features included in the first and second groups added up to 122 features. The combina-
tions between these features [(122 ×  121)/2] contributed to 7381 non-redundant interactive features in the third 
group. The final category comprised of dipeptide composition features.

After determining all feature values for the 98 sequences in the dataset, these values were further standardized 
using the Z-score formula as shown below:

µ

σ
=

−

( ), ,x
x

1s i j
i i

i

where xs,i,j is the standardized value of the i-th feature for the j-th sequence, xiis the original value of the i-th fea-
ture for the j-th sequence, μi is the sample mean for the i-th feature and σi is the sample standard deviation for the 
i-th feature, respectively. The dataset was transformed to have zero mean and unit variance. This data processing 
step was employed in this work due to the nature of the dataset. The values of different features differ in a range up 
to 4-orders of magnitude. Additionally, these features had different units and scales. Accordingly, standardizing 

Protein Signal peptide

Experimental results Predicted results from Periscope

Expression 
level

Yield 
(mg/l)

Expression 
level

Expression level 
classification matrix 
[High,Low,Medium]

Yield 
(mg/l)

VHHs B5.2 ompA Medium 6.744 Medium 0.09,0.15,0.75 6.8009

scFv13.R4 TorA Low 0.0657 Medium 0.09,0.27,0.64 4.6039

Human protein disulfide isomerase 
(hPDI) modified from ompA Medium 3046 Medium 0.10,0.18,0.72 29.8987

Granulocyte-macrophage colony-
stimulating factor (GM-CSF) CSP High 80058 Medium 0.06,0.33,0.61 14.7816

VHHs A5.1 ompA Medium 55.544 Medium 0.05,0.20,0.75 5.3871

Maltose-binding protein (MBP) native Medium 9.812 Medium 0.39,0.12,0.49 11.6017

human epidermal growth factor 
(hEGF) phoA Medium 1.02659 Medium 0.25,0.35,0.40 11.2143

enzymatically active version of 
tissue plasminogen activator (vtPA) stII Low 0.15943 Medium 0.08,0.44,0.48 9.2542

Cellulose binding domain (CBD) Cex High 531060 Medium 0.16,0.30,0.54 2.013

Exotoxin A from Pseudomonas 
aeruginosa ompA Medium 6061 Medium 0.39,0.21,0.40 45.1823

VHHs A19.2 ompA Medium 3.844 Medium 0.06,0.13,0.81 4.0973

Single-chain antibody Fv fragment 
(scFv) mBiP High 11562 Medium 0.22,0.38,0.41 12.0768

VHHs B7.3 ompA Medium 1.527 Medium 0.06,0.31,0.63 4.4261

Glutaminase from Bacillus 
licheniformis DSM13 ompA Medium 8063 Medium 0.10,0.25,0.65 44.384

elicitin beta-cinnamomin from 
Phytophathora cinnamomi pelB Medium 13.364 Medium 0.09,0.29,0.62 7.2501

Table 6.  Experimental and predicted expression data of independent test dataset.
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all data to achieve zero mean and unit variance was crucial to allow a fair comparison between them during fea-
ture selection by eliminating the dominating effect of features with greater numeric ranges over those with smaller 
numeric ranges. Features were selected using correlation-based feature selection40, coupled with subset size for-
ward selection as the search method.

Support vector machine for both classification and regression models. Both support vector clas-
sification (SVC) and support vector regression (SVR) algorithms in the LIBSVM package37 were employed to 
train the classification and regression models, respectively. Among the three types of kernels in LIBSVM, namely 
polynomial, radial basis function (RBF) and sigmoid, the RBF kernel was utilized to train the classification mod-
els. Optimization of the cost (C) and gamma (γ) parameters was conducted using an exhaustive grid search 
approach coupled with cross validation. Based on successful application of epsilon-SVR in previous studies50,51, 
epsilon-SVR was chosen to train the second-stage regression models in this work. RF and RBFNetwork were used 
as benchmarking algorithms in classification task. We used Weka software package52 for the implementation of 
the benchmarking algorithms. Same approach as described above was used to tune the hyperparameters of RF 
and RBFNetwork algorithms for generating optimal prediction performances.

Performance Evaluation. The prediction performance of different models was assessed using both 
repeated 10-times 10-fold cross validation and leave-one-out cross validation, for classification models and 
regression models, respectively. In repeated 10-times 10-fold CV, the training data were randomly partitioned 
into 10 approximately equally sized subsets. At each cross-validation step, the model was trained with nine sub-
sets while the remaining subset was used as the test dataset to evaluate the model’s performance. This procedure 
was repeated 10 times until each subset had been used as the test dataset once, to complete one cycle of the 10-fold 
CV. The randomization of training data was performed 10 times to conduct 10 cycles of 10-fold CV, with different 
combinations of data in each subset during each cycle. LOOCV, on the other hand, is an assessment approach 
where one single data was used to evaluate the performance of the model that was trained using the remaining 
data. This procedure was repeated n times until each sample in the dataset had been used as the test data once. 
For additional rigor, Periscope was further assessed in a case study using two examples that were withheld in the 
independent test dataset.

Different performance measures were employed in this work in order to comprehensively assess the perfor-
mance of the developed model. This is because none of the single performance measure alone can well describe 
all aspects of a predictor’s performance53. Different from binary classification, the primary classification model 
developed in this study is a multi-class classifier (e.g. high, medium and low expression level). In cases where 
there are more than two classes, typical mathematical formulas for performance measures such as accuracy, error 
rate, precision, recall, F1-score and MCC are no longer applicable53. To address this, the generalized mathematical 
formulas of respective performance measures were adopted where either macro-averaging or micro-averaging 
was conducted. The former approach determines the average measure by summing up individual measures for 
each class, whereas the latter approach computes the average measure using cumulative true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN) of the overall model. TP is the number of correctly 
predicted positive instances. Similarly, TN, FP and FN are the number of correctly predicted negative instances, 
number of instances that are incorrectly predicted as positive instances, and number of instances that are incor-
rectly predicted as negative instances, respectively. In this work, macro-averaging was employed because this 
approach treats all classes equally compared with micro-averaging that favors larger classes54.

The generalized mathematical formulas of different performance measures were provided below:
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where i is the index representing the low, medium and high expression level classes, while l is the total number of 
classes available. MCC indicates the correlation coefficient between the assigned and actual classes of respective 
instances in the dataset.

For the real-valued regression task, the prediction performance was evaluated using PCC, MAE, and RMSE, 
as shown below:

=
(∑ ) − (∑ )(∑ )

∑ − (∑ ) ∑ − (∑ ) ( )
PCC

n xy x y

n x x n y y[ ][ ] 82 2 2 2

∑= − ( )MAE
n

x y1
9

= ∑( − )
( )

RMSE
y x

n 10

2

where x is the actual soluble protein expression value, y is the predicted soluble protein expression value, while n 
is the number of instances subjected to the prediction. PCC determines the correlation between the predicted and 
actual values. MAE and RMSE, on the other hand, describe the extent of deviation of the predicted values, with 
reference to the actual experimentally reported values in the dataset.
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