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Living biointerfaces based on non-
pathogenic bacteria support stem 
cell differentiation
Jake J. Hay1,*, Aleixandre Rodrigo-Navarro1,*, Karoliina Hassi1, Vladimira Moulisova1, 
Matthew J. Dalby2 & Manuel Salmeron-Sanchez1

Lactococcus lactis, a non-pathogenic bacteria, has been genetically engineered to express the III7–10 
fragment of human fibronectin as a membrane protein. The engineered L. lactis is able to develop 
biofilms on different surfaces (such as glass and synthetic polymers) and serves as a long-term 
substrate for mammalian cell culture, specifically human mesenchymal stem cells (hMSC). This system 
constitutes a living interface between biomaterials and stem cells. The engineered biofilms remain 
stable and viable for up to 28 days while the expressed fibronectin fragment induces hMSC adhesion. 
We have optimised conditions to allow long-term mammalian cell culture, and found that the biofilm 
is functionally equivalent to a fibronectin-coated surface in terms of osteoblastic differentiation using 
bone morphogenetic protein 2 (BMP-2) added to the medium. This living bacteria interface holds 
promise as a dynamic substrate for stem cell differentiation that can be further engineered to express 
other biochemical cues to control hMSC differentiation.

The extracellular matrix (ECM) is a complex array of polysaccharides, proteins (such as fibronectin, laminins, col-
lagen, vitronectin) and growth factors (GF) that provide mechanical and biochemical support to cells, and plays 
a critical role in cell fate determination1–3. Cell-ECM interaction takes place through membrane-bound proteins 
such as integrins and growth factor receptors4. Fibronectin and GF receptors are involved in cell dynamics and 
sensing the environment, translating extracellular events into cytoplasmic activation of different signalling path-
ways5. Such interactions modulate a variety of cell responses that include adhesion, proliferation, migration and 
ultimately survival and differentiation4,5.

Our aim is to exploit the extracellular matrix/cell receptors interaction in the design of materials of biomedical 
interest. This interaction takes place through an intermediate layer of proteins such as fibronectin6,7, vitronec-
tin8,9, laminin10,11 collagens12,13 or synthetic peptides adsorbed on synthetic surfaces used for in vitro cell culture. 
However, due to the inherent static properties of surface functionalization through either protein adsorption or 
covalent protein binding on surfaces, attempting to recreate the dynamic nature of the ECM has become a major 
research driver. Some authors propose the use of materials with the ability to modify its physical14–16 or chemi-
cal17–22 properties under external stimuli to mimic, to a certain degree, the dynamic properties of the ECM.

Actual applications of this strategy display the adhesive peptide RGD through several approaches, such as 
protease-cleavable moieties that expose the peptide17, surfaces where the RGD is selectively exposed via reversible 
attachment of leucine zippers23 or where RGD is exposed when light with the appropriate wavelength cleaves a 
blocking moiety and renders it accessible to integrins24,25.

None of the current strategies can be considered a true, interactive biointerface where cell fate is controlled 
by signals released in a spatiotemporal manner. Ideally, these interfaces should also be able to enable crosstalk 
with mammalian cells establishing a series of feedback loops aimed at directing cell behaviour. In this report, our 
hypothesis is that non-pathogenic bacteria can be engineered to play such a role. In previous work26, we showed 
a system where Lactococcus lactis subsp. cremoris, a gram-positive, non-pathogenic bacteria was genetically engi-
neered to express the III7–10 fragment of the human fibronectin (FN III7–10 - from here denoted as L. lactis-FN) 
in its cell wall. This III7–10 fragment itself induces cell behaviour such as adhesion, survival and proliferation and 
differentiation in several cell types, including mesenchymal stem cells.
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This work investigates the potential of this living biointerface to support and control stem cell adhesion, sur-
vival and differentiation in long-term cultures. The novelty of this system is that it is able to support mammalian 
cell cultures for up to 4 weeks, and that it can be modified to express any desired biochemical cue as growth fac-
tors or small molecules which can be utilised to induce cell differentiation.

Human mesenchymal stem cells (hMSCs) from the bone marrow are multipotent cells that can, under ade-
quate conditions, differentiate into osteogenic, chondrogenic, adipose and reticular lineages27. hMSC differenti-
ation can be triggered by many factors, including material properties such as stiffness28,29, nanotopography30 and 
biochemical cues31,27. We use BMP-2, a member of the bone morphogenetic protein family, to help regulate the 
hMSC phenotype. It is a potent cytokine that mediates cell proliferation and differentiation of hMSCs, and has 
been shown to play an essential role in bone morphogenesis32, activating either runt-related transcription factor 
2 (RunX2) and/or Osterix activation, mediated by Smad proteins33–35. The cell-wall displayed FNIII7–10 in L. lactis 
and the use of exogenous BMP-2 allows long-term maintenance and functionality of both cell populations (bac-
teria and MSCs) and osteogenesis when required. The challenge is to control the simultaneous and stable culture 
of bacterial and stem cells. Moreover, Lactococcus lactis lacks lipopolysaccharide production36 that could interfere 
with the mammalian cell signalling routes and enables the direct interaction of the membrane bound proteins 
and the mammalian integrins. This lack of LPS production has been exploited in the production of recombinant 
proteins in L. lactis with a greater purity and lack of endotoxins when compared to E. coli.

Results
Figure 1 shows the conceptual scheme of this work. A L. lactis biofilm expressing the III7–10 fragment of the 
human fibronectin on its cell wall, fused to green fluorescent protein (GFP) as a reporter protein is used as a sub-
strate for cell culture. Recombinant human BMP-2 (rhBMP-2) is added to the cell culture medium at 100 ng/mL 
to induce osteogenic differentiation. FNIII7–10 contains the arginine-glycine-aspartic acid (RGD) motif in the III10 
repeat and the PHSRN or synergy sequence in the III9 repeat. These two motifs have been shown37 to interact with 
the α 5β 1 integrin in a specific fashion, favouring osteogenic differentiation in human MSCs38. It has been shown 
by Moursi et al. that the binding of α 5β 1 to FN is essential for osteoblast-specific gene expression in osteoblast 
cell cultures39. In contrast, the α vβ 3 integrin has been shown to down-regulate osteoblastic differentiation and 
matrix mineralisation40. This highlights that the α 5β 1 integrin is a likely candidate to transduce at least some of the 
regulatory signals required for osteogenesis. Additional signals are nonetheless required to induce osteogenesis, 
such as the addition of growth factors in the culture medium, such as BMP-2. Martino et al. have shown that dif-
ferentiation of MSCs is greatly enhanced when BMP-2 and the α 5β 1 integrin are stimulated synergistically when 
compared with only growth factor41. The addition of FNIII7 and FNIII8 was chosen as there are several literature 
references that indicate that the whole III7–10 fragment is biologically active42,43. From our point of view it gives 
a higher degree of flexibility to the active III9 and III10 sequences of FN and it moves these active sites away from 
the bacterial membrane.

Bacterial viability was assessed using different antibiotics over four weeks, the maximum time period we used 
to differentiate hMSCs.Then, the interaction of hMSCs with the biofilm was explored through scanning electron 
microscopy (SEM) and vinculin immunostaining followed by observation of terminal differentiation to osteo-
blasts. To study osteogenic differentiation, osteocalcin expression and ECM mineralisation through phosphate 
deposition were studied.

Bacterial viability.  It was important to deduce the viability of L. lactis-FN after 4 weeks of growth as the 
stability of the living interface on the material surface modulates cell adhesion. Figure 2 shows bacterial viability 
after 1, 2, 3 and 4 weeks. Due to the nature of the bacteria-surface interaction, governed by non-specific Van der 
Waals and Lewis acid-base forces, the choice of an appropriate surface is of critical importance44. In our previous 
work, L. lactis biofilms were developed on glass, a hydrophilic surface where, although biofilms develop well while 
keeping bacterial viability values over 60%, its finite life cycle and relatively weak adhesion forces were not enough 
to support long-term cell cultures. After 4 days, a significant part of the adhered cells started to detach45.

To overcome this obstacle, poly (ethyl acrylate) (PEA), a polymer previously used as mammalian cell culture 
substrate46 was found to be particularly well suited for bacterial adhesion44,47 allowing the development of biofilms 
which have been shown to last the 28 days required for osteogenic hMSC differentiation (Fig. 2). Nevertheless, L. 
lactis proliferate continuously if nutrients are available to metabolise and convert any carbon source present into 
lactic acid48. The build-up of this organic acid unavoidably leads to a decrease in the pH of the culture medium, 
which is detrimental for mammalian cell viability.

We have previously outlined that tetracycline (TC) used at 10 μ g/mL is sufficient to slow down bacterial 
metabolism without impacting mammalian cell behaviour up to 4 days45. TC inhibits bacterial protein synthesis 
by binding to the 30S subunit of bacterial ribosomes blocking the attachment of the charged aminoacyl tRNA to 
the A-site49. Due to the differentiation characteristics of hMSCs it was necessary to elongate this time course up to 
4 weeks. To increase efficiency, a mixture of penicillin/streptomycin (P/S) at 100 U/mL was also tested. P/S acts by 
interfering with the synthesis of the peptidoglycan cell wall and leads to cell lysis50 which is detrimental to biofilm 
viability. We only tested L. lactis-FN and not L. lactis not expressing any FN (here on denoted L. lactis-empty) 
as previously published work45 showed that the two strains showed markedly similar results. Further to this, L. 
lactis-empty induces no cell adhesion (as shown in Fig. 3) and therefore, no further cellular processes can occur 
on this strain.

These approaches were tested to prevent initial bacterial cell death with the aim to improve the preservation of 
the biofilm in a bacteriostatic manner. L. lactis could be seen to have formed stable biofilms at all-time points on 
the material surface (Fig. 2). Bacterial viability was constant at approximately 50% after 1 week with the highest 
viability found in the antibiotic free samples. After 2 weeks, viability was again seen to be similar between the 
samples, and increased to approximately 55%. After 3 weeks the viability for DMEM +  P/S (44%) was found to 
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be significantly different from DMEM (63%) and the DMEM +  TC (63%). This difference was further confirmed 
by the 4 week results, again, the viability for DMEM +  P/S (47%) was significantly lower than both the DMEM 
(81%) and DMEM +  TC (85%) samples (Fig. 2B).

The data suggests that viability increases as a function of time. However, upon quantifying the surface cover-
age of the biofilm in colony forming units (Fig. 2C), it became apparent that a portion of the biofilm had detached 
from the substrate. Non-viable cells would detach from the surface and the presence of antibiotic would prevent 
bacterial proliferation, thus increasing the ratio of viable to non-viable bacteria. The bacterial biofilm was found 
to be present after 4 weeks of culture (Fig. 2), with a similar bacterial morphology to shorter time points. It can be 
inferred from this that FN is still present on the bacterial membrane allowing MSC adhesion.

hMSC adhesion and morphology.  Cell adhesion and morphology was assessed through SEM and focal 
adhesion immunostaining against vinculin. hMSC ability to interact with L. lactis-FN compared to FN coated 
surface and L. lactis-empty were first assessed. hMSC spreading after 3 hours was found to be directly related to 
the availability of FN to the hMSCs. Figure 3 shows SEM images after 3 hours and 1 week of hMSC culture. From 
these images, it became apparent that the FN fragment in the bacterial membrane is essential to develop adhesion 

Figure 1.  Conceptual overview of the system. (A) L. lactis biofilm expressing the III7–10 fragment of the 
human fibronectin on its cell wall, fused to green fluorescent protein (GFP) as a reporter, acting as a biointerface 
for bone marrow-derived human mesenchymal stem cells. (B) Recombinant human BMP-2 (rhBMP-2) was 
added in the cell culture medium at 100 ng/mL to induce osteogenic differentiation. BMPR1/2 signalling 
through the Smad pathway leads to activation of the transcription factors Osterix, RunX2 and Dlx5 which 
induces expression of proteins involved in osteogenic differentiation. (C) L. lactis biofilm is able to support 
hMSCs growth and differentiation for up to 28 days, while keeping good viability values and stable morphology.
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structures after 3 hours, since hMSCs cultured on top of L. lactis-empty biofilms kept a rounded shape, with no 
sign of adhesion. The morphology of the hMSCs on the FN coated surface and L. lactis-FN appear similar. It is 
clear that the initial cell interaction determines cell morphology and it is distinctly affected by the availability of 
the FN fragment on the bacterial membrane. After 1 week, cell morphology on all surfaces becomes more simi-
lar. This is likely due to the addition of 1% foetal bovine serum (FBS) to the culture media, which is necessary to 
ensure the viability of the hMSCs in the long-term.

After initial SEM morphology studies (Fig. 3), hMSCs were stained for vinculin, a protein present in focal 
adhesion complexes, to explore any changes in focal adhesion morphology across the surfaces. Figure 4 shows 
vinculin staining on the surfaces after 3 hours and 1 day. After 3 hours, hMSCs cultured on L. lactis-empty dis-
play a rounded morphology, with no signs of adhesion whereas hMSCs cultured on the FN coated surface and 
L. lactis-FN display evidence of spreading and adhesion; the nascent focal adhesions could be seen at the edges 

Figure 2.  L. lactis biofilm viability. Biofilms of L. lactis-FN were produced on a poly (ethyl acrylate) (PEA) 
surface and cultured for 1 to 4 weeks with DMEM, DMEM supplemented with 100 U/mL of penicillin-
streptomycin (DMEM+ P/S) and DMEM supplemented with 10 μ g/mL tetracycline (DMEM+ TC). (A) After 
the selected time points, biofilms were washed and their viability assessed using the commercial BacLight 
viability kit (Life Technologies). This kit stains viable cells in green and non-viable cells in red. Viability was 
calculated by analysing the total amount of cells stained in green versus the amount of cells stained in red 
and green. (B) After 3 weeks, viability values were found to be higher in biofilms cultured with DMEM or 
DMEM+ TC than in biofilms cultured with DMEM+ P/S. This result might be attributed to the fact that P/S is 
bacteriolytic in comparison to TC, which is bacteriostatic. There is an increase in viability values of the 4 week 
biofilms that can be attributed to the detachment of non-viable cells. (C) Biofilm coverage was calculated as the 
percentage of the surface covered by bacteria, expressed as cfu (colony forming units) per square milimeter. 
We found that a large proportion of the biofilm had detached as the culture time increased, explaining the rise 
in viability found in B. This results suggests that biofilms produced on PEA, a hydrophobic polymer, can serve 
as a substrate for long-term stem cell culture. Scale bar size is 50 μ m. Data is presented as mean ±  SD, and was 
analysed with a one-way ANOVA test with a Tukey post-hoc test. Statistical significance levels are *p <  0.05 and 
***p <  0.001.
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Figure 3.  Morphological study of the hMSCs by SEM. hMSC behaviour on the L. lactis-FN and L. lactis-
empty biofilms, and FN-coated surface was assessed by scanning electron microscopy. Cells were cultured for 
3h in absence of FBS and for one week with 1% FBS, in this case to ensure cell viability. hMSCs cultured for 3h 
on the L. lactis-empty biofilm kept a round shape, while in the L. lactis-FN and in the FN-coated surface showed 
adherence and spreading. On the other hand, in the 1 week cultures, due to the need to use FBS to ensure 
viability, cells showed an elongated shape with evidences of adhesion behaviour. Nevertheless, hMSCs showed 
different features in the L. lactis-FN compared to the L. lactis-empty biofilm, this behaviour can be attributed 
to the presence of the III7–10 fragment exposed on the L. lactis cell wall. Cells cultured on the FN-coated surface 
displayed higher proliferation ratios. Scale bar size is 20 μm.

Figure 4.  Adhesion assessment of hMSCs cultured on L. lactis-empty, L. lactis-FN and FN-coated surface. 
Cells were cultured for 3 hours in absence of FBS and 1 day with 1% FBS with an initial density of 5,000 cells/
cm2. After selected times, cells were fixed and immunostained against vinculin (red) and DAPI (blue). hMSCs 
cultured for 3 hours in the L. lactis-empty biofilm showed no sign of adhesion, keeping a round shape, while 
in the L. lactis-FN and FN surfaces there is evidence of spreading and adhesion, although focal adhesion 
complexes are not fully developed. After 1 day, there are focal adhesion (FA) complexes in the three different 
conditions; the presence of FA in cells cultured on L. lactis-empty biofilm is most probably due to the presence 
of FBS in the medium. Cells cultured on the L. lactis-FN biofilm and FN-coated surface displayed more 
developed FA complexes compared to L. lactis-empty biofilm, suggesting that the already present fibronectin 
in the surface (either on the L. lactis cell wall or grafted on the surface) enhances the development of this FA 
complexes. Scale bar size is 50 μ m.
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of the cell lamellae (see arrows in Fig. 4). After 1 day, cells on all surfaces have spread and adhered to the surface, 
as shown by positive vinculin staining in the cell lamellae. The presence of vinculin in the L. lactis-empty sample 
is likely due to the addition of FBS to the media. FBS contains many proteins essential for long term cell culture 
and also comprises many cell adhesive proteins which become adsorbed to the surface, allowing cell adhesion.

However, critically, hMSCs cultured on L. lactis-FN and the FN coated surface displayed far more developed 
focal adhesions, showed by the dashed morphology compared to L. lactis-empty where adhesions were predomi-
nantly punctate, dot shaped focal complexes51. These differences in the organisation of focal adhesions cancel out 
after 3 days of culture (Supplementary Fig. S2).

A time lapse experiment was set up to record hMSC behaviour over the different surfaces shown in videos 1 
and 2 (supplementary material). hMSCs on the L. lactis-FN biofilm were able to spread, migrate and proliferate 
30 minutes after seeding. However, cells on the L. lactis-empty were seen to stay in a rounded morphology and 
drift randomly across the surface for the first two hours of culture before adhering. The presence of the FN frag-
ment allows a faster MSC adhesion and spreading, resulting in higher mobility of cells on top of the L. lactis-FN 
biofilm when compared against cells cultured on top of L. lactis-empty biofilm supplemented with 1% FBS.

Osteogenic differentiation.  BMP-2 was next used to ascertain the ability of hMSCs to be differentiated 
towards an osteogenic phenotype on the L. lactis-FN living interface. The bone specific ECM protein osteocalcin 
(OCN) as well as phosphate deposition (von Kossa) as part of calcium phosphate bone mineralisation were used 
to determine hMSC reaction to BMP-2. After 21 days, hMSCs were immunostained for OCN. Cultures exhibited 
similar cell density on all samples but showed negligible OCN production in samples not treated with BMP-2. 
Conversely, samples treated with BMP-2 displayed much higher OCN staining intensity by a factor of 7.6 and 3 
on the FN coated surface and L. lactis-FN surfaces respectively (Fig. 5A,B).

In Fig. 5A, bottom row, the biofilm is still visible and marked as purple dots together with the cell nuclei, in 
blue. It is obvious that the bacterial density is lower than at the beginning, where the coverage of the biofilm can 
be as high as 27%, but in this case in particular, where L. lactis is providing only the adhesion cue, the importance 
of the biofilm is less essential than the differentiation cues provided by BMP-2 supplemented in the medium. 
Moreover, sample processing associated to the immunofluorescence protocol wash out a majority of the attached 
biofilm.

A second population of hMSCs were grown for 28 days before analysing phosphate deposition. Osteoblasts 
deposit phosphate as a primary step of bone development and therefore this process is suggestive of terminal 
osteogenic differentiation. As can be seen from Fig. 5C, phosphate deposition is distinctly higher (black deposits) 
in the samples treated with BMP-2 when compared to the control samples.

Together, the results confirm the ability of the living interface to support long-term MSC viability and trigger 
functionality, including mature differentiation with deposition of mineralised matrix.

Discussion
Engineering the cellular microenvironment to direct stem cell behaviour is of fundamental importance for bio-
medical applications aimed at mimicking cell behaviour in its natural niche. It is known that cells interact with 
their environment, the ECM, through integrins4 and growth factor receptors resulting in biochemical signaling 
cascades through various signal transduction molecules including focal adhesion kinase (FAK)38. Collectively, 
these different signals dictate a plethora of responses already hardwired into the cells genes related to adhesion, 
migration, survival, proliferation and differentiation, in a dynamic and highly regulated fashion.

In this report, we propose a system in which mammalian cells can grow on engineered non-pathogenic bac-
teria, and that this population of modified bacteria can sustain and direct hMSC differentiation (e.g. towards an 
osteoblastic fate). This genetically engineered strain of L. lactis expresses the III7–10 fragment of human fibronectin 
tethered to its peptidoglycan layer by the Staphylococcus aureus protein A, making it available for mammalian 
cells integrin binding.

This fragment contains the RGD adhesion and the PHSRN synergy motifs. RGD interacts with a wide variety 
of integrins but, when combined with the synergy motif, a specific interaction with α 5β 1 takes place. Signalling 
initiated by this specific integrin has been linked to enhanced osteogenic differentiation in hMSCs52. Besides 
FNIII7–10 induced signalling, we have used BMP-2, a cytokine member of the bone morphogenetic protein family 
that is known to be a potent osteogenic inducer. The combination of FNIII7–10 expressed in the bacterial cell wall 
and BMP-2 added to the culture medium has proven effective in inducing osteoblastic differentiation in hMSCs, 
assessed by immunostaining against the bone specific protein osteocalcin and phosphate deposits, measured with 
von Kossa staining. Since hMSC differentiation needs 21 to 28 days, it is imperative to develop the L. lactis biofilm 
to support this extended culture time. L. lactis biofilms were first developed on glass, a hydrophilic surface, and 
were found to last at least 4 days in co-culture with mammalian cells27. For a successful co-culture we needed a 
stronger interaction between the biofilm and the underlying surface. In this case, surface hydrophobicity plays a 
role, as shown by the extended Derjaguin-Landau-Verwey-Overbeek model (XDLVO)53. We switched to a more 
hydrophobic surface, poly (ethyl acrylate) thin films coated on glass substrates.

Poly (ethyl acrylate) is a hydrophobic, non-biodegradable synthetic polymer that showed excellent adhe-
sive properties for L. lactis. Surfaces coated with this polymer supported good bacterial viability, in the range of 
50–60%, similar to biofilms developed on glass. Biofilms developed on PEA46 are able to remain stable for at least 
28 days, facilitated by the use of the bacteriostatic antibiotic tetracycline (TC). TC is used to impede bacterial 
metabolism and prevent medium acidification via lactic acid production, which results in increased longevity of 
the biofilm.

The rationale of using poly (ethyl acrylate) instead of glass is due to the nature of the interaction between the 
bacterial cell wall and the underlying surface. Our L. lactis strain MG1363 is a derivative of L. lactis subsp. cremo-
ris TIL672, which features a hydrophobic surface54. It is known that fibronectin strongly adheres to hydrophobic 
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surfaces; the presence of a fibronectin fragment in the cell wall surface might be increasing its hydrophobicity. We 
also observed that this strain, when grown in M17, tends to co-aggregate, which is an indicative of its hydrophobic 
nature. The XDLVO model53 explains the interaction in terms of surface free energy of the interacting surfaces, 
and considers the solid-bacteria, solid-liquid and bacteria-liquid interfaces when calculating the free energy. In 
this model, the interaction is not distance-dependent and an obvious conclusion is that interaction of hydropho-
bic surfaces are favoured over hydrophobic-hydrophilic surfaces. A feasible explanation at a molecular level is that 
interaction between two apolar moieties immersed in water is the consequence of the hydrogen-bonding energy 
of cohesion of the water molecules surrounding them, so at the end, the use of a hydrophobic surface is better for 
biofilm development, at least with this strain. In the future, for other strains, an evaluation of their hydrophobicity 
should be made to improve the biofilm development.

The combination of these factors, that is to say, improved biofilm stability, bacterial cell-wall exposed FNIII7–

10 and its integrin-related signalling and the related BMP-2 induced signalling lead to improved osteogenic 

Figure 5.  Osteogenic differentiation assessment through osteocalcin and von Kossa stainings. (A) hMSCs 
were immunostained for osteocalcin (green) and actin (red) (top row). In the bottom row, reconstructed DAPI 
images for cell nuclei (blue) and bacterial DNA (purple). From left to right, cells were cultured on a FN-coated 
surface with and without BMP-2 at 100 ng/mL and on L. lactis-FN biofilm, again with and without BMP-2 at 
100 ng/mL. Total integrated density corresponding to the green channel (osteocalcin) was quantified using 
ImageJ. Scale bar is 50 μ m. (B) Graph shows OCN area per cell with standard deviation of the sample sets, 
N ≥  250 cells were analysed for each condition. Integrated density corresponding to osteocalcin was found to be 
significantly higher in the samples treated with BMP-2 than in the samples without BMP-2. Data is presented 
as mean ±  SD and analysed with ANOVA with a Tukey post-hoc test. Significance levels are *p <  0.05 and 
**p <  0.01. (C) Mineralisation (phosphate deposition) was assessed with a von Kossa staining. hMSCs were 
cultured for 28 days on a surface coated with FN (top row) and on L. lactis-FN biofilms (bottom row). After 
staining, cells were imaged in a Zeiss AxioObserver Z1 microscope using phase contrast. Cultures treated with 
BMP-2 showed black areas corresponding to phosphate deposits produced by the hMSCs, while in the untreated 
cultures there is no evidence of mineralization. Scale bar size is 300 μ m.
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differentiation in hMSCs when compared to FNIII7–10 signalling alone. Differentiation was assessed in 21 and 
28-day cultures through osteocalcin immunostaining and phosphate deposition (mineralization). The influence 
of the FNIII7–10 on hMSCs was also assessed by studying hMSC adhesion at various time points (between 3 hours 
and one week) by vinculin immunostaining and cell morphology studies with SEM.

This work has shown that engineered bacteria can sustain the long term growth and differentiation of stem 
cells as a fundamental step before developing the full potential of the system as a dynamic interface. We have 
shown that there is very little difference between a fibronectin coated surface and our modified bacterial surface 
in terms of cell adhesion and differentiation. This bacterial surface holds an advantage over a simple fibronectin 
coat, in that it can be further modified to produce a superfluity of proteins or growth factors that can be used to 
direct cell fate. Further genetic engineering on this strain is currently being undertaken to express, on demand, 
growth factors and achieve a controlled release of these growth factors in combination with other biochemical 
signals to control stem cell fate. This is advantageous over current static strategies in that the bacteria can be 
controlled to express proteins in a spatiotemporal manner; something that is currently unavailable in the liter-
ature. We propose a dynamic system that can not only direct cell adhesion, but will also be able to control cell 
differentiation.

Methods
Bacterial viability.  To study viability of the bacteria, the BacLight LIVE/DEAD kit (Life Technologies) was 
used. Biofilms were produced using a previously described protocol45 and transferred to DMEM, DMEM with 
100 U/mL P/S and DMEM with 10μ g/mL TC. Biofilm viability was tested after 1, 2, 3 and 4 weeks. The biofilm 
was washed once with sterile NaCl 0.85% w/v solution and incubated for 30 minutes using SYTO9 (5 μ M) and 
propidium iodide (30 μ M) in NaCl 0.85% w/v. After this, the samples were washed with PBS and mounted using 
Vectashield without DAPI (Vector Laboratories, UK) and imaged immediately. The viability was determined as 
the ratio between the viable and total number of bacteria. Images were analysed with Fiji – ImageJ software.

Human MSC Cell culture.  Human bone-marrow derived MSCs (Promocell) were maintained in DMEM 
supplemented with 4.5 g/L glucose, 100 μ M sodium pyruvate, 1 mM L-glutamine, 10% foetal bovine serum (FBS) 
and 100 U/mL P/S. After seeding, media was changed to DMEM supplemented with 1% or no FBS and 10 μ g /mL 
tetracycline to inhibit bacterial metabolism and prevent culture medium acidification. Cultures were kept at 37 °C 
and 5% CO2 in a humidified atmosphere. Media was changed every 2/3 days. To induce differentiation, 100 ng/
mL BMP-2 (R&D Systems, UK) was supplemented to the media along with every media change.

Scanning Electron Microscopy.  MSCs were seeded at 5,000 cells/cm2. After designated culture times, 
samples were fixed in 2% glutaraldehyde/2% paraformaldehyde/0.15M sodium cacodylate buffer/0.15% Alcian 
blue for 2 hours at 4 °C. After fixation, samples were washed with 0.15 M sodium cacodylate buffer 5 times and 
incubated for 1 hour in 1% osmium tetroxide/0.1 M sodium cacodylate buffer. Samples were then washed 3×  in 
distilled water and stained with 0.5% uranyl acetate in distilled water for 1 hour, protected from light. Samples 
were washed with distilled water before dehydration through an ethanol gradient (30%, 50%, 70% and 90% for 
10 minutes each) with four 5 minute washes in 100% ethanol to fully dry the sample. Samples were then loaded 
onto a POLARON E3000 Critical Point Dryer (supercritical CO2) for 80 minutes and sputter-coated with Au/Pd 
using a POLARON SC515 SEM COATER. Samples were imaged in a JEOL 6400 SEM with a gun voltage accel-
eration of 10 kV.

Immunofluorescence.  After desired time points cells were fixed using 4% formaldehyde in 
phosphate-buffered saline (PBS) at 37 oC for 15 minutes. Fixative was removed and washed with PBS before the 
addition of permeabilising buffer (10.3 g of sucrose, 0.292 g of NaCl, 0.06 g of MgCl2, 0.476 g of HEPES buffer in 
100 ml of water, pH 7.2, with 0.5 mL Triton X-100) for 5 minutes at 4 °C. Samples were then washed and blocked 
with 1% BSA (bovine serum albumin) in PBS for 1 hour at room temperature. This was followed by the addition 
of the primary anti-osteocalcin antibody (Santa Cruz Biotechnology, UK) diluted 1:50 in BSA 1% in PBS or mon-
oclonal anti-vinculin antibody diluted 1:400 in PBS/BSA (Sigma, UK) at 37 °C for 1.5 hours. The samples were 
next washed with 0.5% Tween 20 in 100ml PBS (3 ×  5 minute washes).

For osteocalcin, a secondary IgG monoclonal, horse-produced, biotinylated antibody (Vector Laboratories, 
UK) diluted 1:50 in PBS/BSA 1% was added for 1 hour (37 °C). Rhodamine-conjugated phalloidin (Life 
Technologies, UK) was added for the duration of this incubation diluted 1:50 in BSA 1% in PBS. Samples were 
then incubated with FITC-conjugated streptavidin diluted 1:50 in PBS/BSA 1% at 4 °C for 30 min, and given a 
final wash. For vinculin, a Cy3-conjugated rabbit anti-mouse secondary antibody (Jackson Immunoresearch) 
diluted 1:100 in PBS/BSA 1% was added for 1 hour, simultaneously with BODIPY FL phallacidin (1:100, PBS/
BSA, Invitrogen, UK). Samples were mounted with Vectashield with DAPI (Vector Laboratories, UK) and imaged 
in a fluorescence microscope (Zeiss Axio Observer Z1).

Von Kossa staining.  hMSCS were seeded at 5,000 cells/cm2 and cultured on freshly prepared L. lactis-FN 
biofilms for 28 days. Cells were fixed with 4% formaldehyde in ultrapure water for 5 minutes and then a 5% silver 
nitrate solution in H2O was added to ensure the coverslips were fully submerged and exposed to UV light for 
30 minutes. After washing in deionised water, 5% sodium thiosulphate was added to the samples for 10 mins 
and then samples were washed with warm tap water for 10 minutes. After another wash with deionised water, 
the samples were counterstained with nuclear fast red for 10 minutes and washed again with deionised water. 
Finally the samples were rinsed with 70% ethanol and observed in a phase-contrast optical microscope (Zeiss 
Axio Observer Z1).
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