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Semimetallization of dielectrics in 
strong optical fields
Ojoon Kwon1,2, Tim Paasch-Colberg3,†, Vadym Apalkov4, Bum-Kyu Kim5,‡, Ju-Jin Kim5, 
Mark I. Stockman4 & D. Kim1,2

At the heart of ever growing demands for faster signal processing is ultrafast charge transport and 
control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating 
avenues for new phenomena and applications in solids. Because the period of optical fields is on the 
order of a femtosecond, the current switching and its control by an optical field may pave a way to 
petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond 
time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization 
and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of 
this technology demands better understanding of whether the strong field behavior is universally 
similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong 
optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this 
phenomenon and show its remarkable similarity between them. The similarity in response of these 
materials, despite the distinguishable differences in their physical properties, suggests the universality 
of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a 
trail to PHz-rate optoelectronics.

The interest in electron dynamics in solids in strong fields has been long standing. Bloch1 and Zener2 predicted 
that if the electric field is large enough, the momentum of a crystal electron reaches the edge of Brillouin zone 
before scattering takes place, Bragg reflection occurs, and the electron is reflected toward the opposite boundary 
of the Brillouin zone, leading to a charge oscillation called the Bloch oscillation3–7. Wannier8,9 showed quantum 
mechanically that the states of a periodic crystal in an electric field originating from a single band form an equi-
distant spectrum called the Wannier-Stark (WS) ladder, with the spacing equal to the Bloch oscillation frequency 
and the wave functions localized at a single lattice site. When the electric field is sufficiently strong, competing 
with atomic potential gradients (on the order of ~1V/Å), the strong WS localization8, strong mixing of electronic 
bands and Zener-Keldysh type interband tunneling is expected10,11 and recently described12.

Due to the recent advance of laser technology, there has been a revived interest in optoelectronic phenomena 
in solids in strong fields13,14. In particular, a red shift of optical absorption in ZnO has been observed, which was 
attributed to non-parabolic band effects due to strong field15. High order harmonics generation in solids has been 
demonstrated in THz to visible16, UV3, VUV17 and EUV18,19 spectral region. It was successfully shown that SiO2 
under a strong field of ~1 V/Å underwent semimetallization20,21, which manifests itself as a substantial increase of 
conductivity of an insulating solid above its dark value, by more than 18 orders of magnitude. It was attributed to 
the Zener-type tunneling transition from the valence band to the conduction band in the strong WS localization. 
This semimetallization turns out to be reversible on the femtosecond or faster time scale20,21. The induction of 
the semimetallization and its control by optical fields is of far reaching importance since it may provide a way 
to the development of new signal processing devices at PHz speeds12. An important and fundamental question 
is naturally whether the semimetallization occurs in different dielectrics. The fact that certain phenomena have 
been observed in one material does not, by any means, guarantees that it will be observed in other materials. “Is 
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this phenomenon universal?” This is intriguing since the universality of the semimetallization phenomenon has 
not been previously tested and established.

Here we show the semimetallization to be a general phenomenon for wide-bandgap insulators subjected to 
intense optical fields. We have investigated the semimetallization in wide-bandgap dielectric crystals such as 
quartz, sapphire, and calcium fluoride. They exhibit a remarkable resemblance in their responses to intense opti-
cal fields despite notable dissimilarities in their composition, structure, and electronic and optical properties.

The physical properties of a solid are determined by its constituents and structure. In particular, the response 
of a medium to a weak external electric field is characterized by its dielectric permittivity. In this respect, quartz, 
sapphire and calcium fluoride are very different from each other. In fact, quartz belongs to rhombohedral lattice 
system with unit cell sizes of = = .a b 4 9 Å, = . ,c 5 4 Å  a static dielectric constant of ε = .4 51r , and a bandgap of 
9.0 eV. Distinctively, sapphire belongs to hexagonal lattice system with unit cell sizes of = = .a b 4 8 Å, 
= . ,c 13 0 Å  a static dielectric constant of ε = .8 91r , and a bandgap of 8.8 eV. Furthermore, calcium fluoride has 

characteristic properties different from quartz and sapphire: it belongs to cubic lattice system with a unit cell size 
of = .a 5 46 Å, a static dielectric constant of ε = .6 76r , and a bandgap of 12.2 eV. In a sharp contrast to what one 
might have assumed from the pronounced dissimilarity of these crystals, each of them exhibits qualitatively the 
same response to strong ultrafast laser fields. In this work, responses of quartz, sapphire and calcium fluoride to 
such fields are acquired and compared under carefully-controlled conditions.

Experiments
Figure 1 shows the experimental schematic. Carrier-envelope phase (CEP) stable, ~4 fs optical pulses at 3 kHz rep-
etition rate are used. The spectrum spans from 450 nm to 1000 nm, wider than an octave, and is centered at 780 nm. 
With an off-axis parabolic mirror, the pulse is focused onto a sample substrate, on which two 100-micron-wide 
metal electrodes are fabricated to face each other with a gap of 10 microns. The electrodes were made via photo 
lithography technique using the same chrome mask and the same recipe in order to keep them geometrically con-
sistent. The maximum peak field strength at the focus can reach as high as ~2V/Å. Compelled by this laser field, 
electrons are transferred to the conduction band of the dielectric and transferred between the electrodes, resulting 
in a net current due to the charge transfer asymmetry. The current collected by the electrodes was amplified 108 
times via a current amplifier, converted into a voltage signal, and fed to a lock-in amplifier for frequency filter-
ing. Even though attention has been paid to make the shapes of the electrodes as identical as possible, there are 
still slight differences microscopically between the electrodes and unequal numbers of electrons are photoemitted 
from the electrodes so that there is a CEP-independent charge flow. In order to remove the CEP-independent 
components from the transferred charge, we introduced a modulation to CEP at half repetition rate and used a 
lock-in amplifier referenced at the CEP modulation frequency. In this way, the CEP-independent components 
were eliminated and only CEP-dependent components survived. A pair of motorized wedges was included in 
the setup so that arbitrary CEP could be introduced. Since the comparison between materials is an important 
aspect in the current study, we have paid attention to deal with the purist sample. The purity is greater than 
99.999% in case of quartz. As this study deals with the light intensity close to the breakdown, we were careful of 

Figure 1. Schematic of experimental setup. CEP-stabilized few-cycle optical pulses, polarized perpendicular 
to the channel between the two gold electrodes, are focused onto the sample by an off-axis parabola. A wedge 
pair is inserted so that the optical field waveform can be adjusted by introducing an additional CEP.
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laser-induced damage22. If a breakdown occurs during the measurement, it is manifested as a reduction in charge 
transfer and a scar left on the sample surface. During the measurement when the laser intensity approaches to the 
breakdown threshold, we have carefully checked whether breakdown arises. Whenever this irreversible damage 
was noticed, we abandoned the data points, in order to keep all presented data free from defects. In addition,  
for the better statistics, repetitive measurements were done to suppress the chance of abnormality.

Experimental Results and Discussion. For the sake of comparison and data representation, we introduce 
the criticality parameter, δ = /E Ei crit, which is the ratio of internal field Ei to the critical field. The response of a 
material to an optical field is different from material to material because the relation between the external laser 
field, EL, and the field inside a solid, Ei, is determined by the reflection of an incident wave at the surfaces, which 
is self-consistently defined by the polarization inside. Hence, the field strength inside a medium, which drives 
electronic processes, differs from material to material at a given EL by a factor of 

ε+
2

1
. The critical field is defined 

as the field strength at which the potential energy change felt by an electron over a distance of the lattice spacing 
is equal to the band gap, = ∆ /E e agcrit , where ∆g  is the bandgap, e the unit charge, and a the lattice constant.

Figure 2a shows the comparison of the CEP-dependent transferred charge per pulse, QP, at δ = .0 8 between 
quartz (blue) and sapphire (red). Since the their band gaps are almost the same, if there would be a difference 
observed, it would be due to the difference in other materials properties such as crystal structure and constituents. 
The CEP change, ∆ϕCE, is controlled in experiments by changing the propagation length, ∆l, in the wedge23. Note 
that QP oscillates nearly periodically with ∆l. The period of these oscillations corresponds to the CEP change of 
2π , implying that the measured charge transfer is sensitive to the instantaneous light field of the optical waveform. 
Transferred charge QP decreases as large ∆l is introduced: the pulse is broadened due to the dispersion, leading 
to the lower peak power. As discussed for Fig. 2(b,d), QP is dependent on the peak power of the driving pulse. The 
remarkably similar behavior of the two distinct materials in high fields strongly suggests that they are driven by 
the same physical processes.

Figure 2. (a) Normalized transferred charge per pulse, QP, as a function of change in propagation length, ∆l, in 
fused silica wedge pair for an incident laser field with strength of δ = .0 8 for quartz (blue) and sapphire (red). 
Note that ∆l is converted into the change in CEP, ∆ϕCE, as shown in the upper horizontal axis. For ∆l ~23 
microns, the CEP is shifted by π  radian23. Error bars show standard deviation for three independent 
measurements. (b) Measured maximum transferred charge (∆ϕ = )Q 0P CE  as a function of δ. The sapphire 
data points are scaled by a constant factor to achieve best overlap with quartz data. Repetitive runs of 
measurement for different gaps on the same substrate are distinguished by different shapes of symbols. 
Horizontal and vertical error bars correspond to random fluctuations of laser parameters such as pulse 
duration, focal spot size and pulse energy and standard deviation of repetitive measurements, respectively.  
(c) and (d) are the same as (a) and (b), respectively, but for quartz (blue) and calcium fluoride (green).
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The maximum transferred charge (∆ϕ = )Q 0P CE  for quartz (blue) and sapphire (red) as a function of δ is 
displayed in Fig. 2b where data points for sapphire are multiplied by a constant factor, which emulates the 
unknown collection efficiency, to bring them to the same range as quartz’s. The horizontal and vertical error bars 
correspond to random fluctuations of laser parameters such as pulse duration, focal spot size and pulse energy 
and standard deviation of repetitive measurements for (∆ϕ = )Q 0P CE , respectively. The excellent overlap of two 
sets of data indicates that two substances exhibit the same behavior. The multiplication factor of 3.3 implies that 
more charge transfer is detected in quartz than in sapphire at a given δ. This factor results from the combined 
contributions of the difference in the amount of charge generated inside materials and the junction characteristics 
which include the electrical contact resistance between the dielectric substrate and metal electrodes, and the 
collection efficiency of electrodes, in particular.

Since quartz and sapphire have almost the same band gap but different lattice systems, the good agreement 
between quartz and sapphire indicates that the structural factors may not play a major role in this phenomenon. 
Another question is whether it is the different band gap that really matters. To answer this, the comparison with 
the data from calcium fluoride sample is made: as mentioned earlier, the calcium fluoride has a different lattice 
system (cubic lattice) and a larger band gap (12.2 eV). Figure 2c,d show such a comparison between quartz and 
calcium fluoride. We note that in Fig. 2a,c, there is more discrepancy between quartz and calcium fluoride than 
between quartz and sapphire at large ∆l. It is resulted from dispersive broadening of optical pulses. Figure 2d 
shows the transferred charges with respect to δ for both quartz and calcium fluoride. Similar to what we described 
above in conjunction with Fig. 2b, the data points for calcium fluoride are multiplied by a constant 1.8 to fit them 
to the data for quartz. Again, an excellent overlap of the data points for these two solids is observed implying that 
calcium fluoride and quartz behave essentially in the same way; all curves increase nearly exponentially with δ.

Zener has studied interband charge transfer, in terms of electrical breakdown in an insulator under strong 
field and derived an analytical formula11. Based on this, the transferred charge is simulated as ∝ δ (− /δ)BQ expP , 
where = ∆ /B ma 4g

2 2, and m is electron mass. We have attempted to fit this formula to our experimental data. 
Since Zener has considered up to the 1st order of Fourier expansion for periodic potential, field strength was 
assumed to be small. Hence we attempted to better fit a lower-δ region (see more details in Method). In each panel 
of Fig. 3, this fitting (dashed curve) is superimposed with the measured data. It is evident that the Zener tunneling 
does not explain measured QP against δ; experiment and Zener’s formula are in a severe mismatch. Zener’s theory 
appears to overestimate the population of electrons promoted from the valence to conduction band compared to 
the measurement.

To theoretically describe the measured data at high fields, i.e., in the higher δ region, a series of numerical 
simulations was performed taking into account both interband and intraband transitions. The calculation is based 
on a tight-binding model for the atoms at their actual positions in the unit cell (see more details in Method). The 

Figure 3. Measured maximum transferred charge (∆ϕ = )Q 0P CE  as a function of δ (squares); fitting based on 
Zener-Keldysh interband tunneling formula (dashed) and theoretical computations (described in the text) 
including both interband and intraband transition (solid) for (a) quartz, (b) sapphire and (c) calcium fluoride. 
Error bars represent the same information as described in the caption of Fig. 2b.
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Schrödinger equation for electrons in a strong field and Maxwell equations are solved in parallel using the finite 
difference time domain (FDTD) method. General details of the technique are published elsewhere21,24,25. The 
model parameters were chosen to fit the band structure, and known linear optical properties of materials under 
study were correctly described, and no further modification of these parameters was made. Time-dependent 
Schrödinger equation has been solved taking electron interaction into account only through macroscopic electric 
field and neglecting electron-electron collisions, which is justified by the very short, ~1 fs, time scale of the inter-
action and very large values of the optical field, ∼ /E 2 V Åi , which are greater than internal fields in the crystals. 
In parallel, Maxwell’s equations, coupled with the Schrödinger equation through polarization and optical electric 
field, are solved by the FDTD method using parallel computing. From the above-described computations, we 
calculated current density ( )j t  as a function of δ. By integrating ( )j t  over time, we obtained the charge density ρcal.

To compare theory and experiment, ρcal is multiplied by an effective cross section Aeff  to obtain ρ= AQcal eff cal, 
which corresponds to experimentally measured charge transfer QP. Aeff  is a proportional constant to match values 
and dimensions of computed and measured charge, considering factors which could not be included in the calcu-
lation. The factors which influence Aeff  might be (1) mobility of a material, (2) property of electrical contact 
between dielectric substrates and metal electrodes, (3) microscopic imperfection in geometry during fabricating 
the electrodes or (4) misalignment of sample with respect to polarization axis or focal position.

According to the computation, the largest charge transfer is predicted for calcium fluoride at a given δ: greater 
than in quartz by 24 times and than in sapphire by 36 times. But it does not agree with experiment. The greatest 
charge transfer is measured in quartz, 3.3 times larger than sapphire and 1.8 times more than calcium fluoride. 
Aeff  of quartz is the largest, implying that it is most probable for electrons to be captured by the electrodes and 
detected as current in quartz. The values of Aeff  which ensures the best overlap to experimental data are 
. × µm1 36 103 2 for quartz, . × µm5 89 102 2 for sapphire, and . × µm2 53 101 2 for calcium fluoride, respectively.

By multiplying proper Aeff , the result for each material is plotted as a solid line in Fig. 3. We notice that our 
calculations fit the measured data points considerably better than the Zener-type tunneling curve. The contribu-
tion of intraband transition, which was irrelevant for the case of Zener’s formalization, amounted to 85% of total 
charge transfer at fields of δ ~0.5 and it became even more dominant, coming to about 95%, at a higher fields 
(δ ∼ 1.0). We note that (i) near-exponential increase is reproduced in simulations, in accord with the experiment 
and (ii) the good overlap of the experimental data with calculation results can be achieved by employing constant 
effective cross sections for the different materials. These imply that quartz, sapphire and calcium fluoride respond 
to the internal optical electric fields essentially in the same manner, despite the fact that they are very different in 
chemical composition, physical and crystallographic properties.

Even though the microscopic description presented above provides good description of the experimental 
data, we would like to build a physical picture of the phenomena observed, especially to explain qualitatively why 
the very dissimilar dielectric crystals exhibit very similar behavior in strong fields suggesting universality of this 
phenomenon and underlying physics.

We interpret this universality as a result of the WS localization9. This is an adiabatic phenomenon occurring 
when electrons in a given band are accelerated to the boundary of the Brillouin zone and reflected back experi-
encing the Bloch oscillation1 at a frequency of ω = /eFaB . Under our conditions, for ∼ /F 2 V Å and ∼a 5 Å, 
the Bloch frequency is on the order of the bandgap, ω ∼ 10 eVB . The WS states originating from a single band 
form an equidistant spectrum with spacing equal to ωB called WS ladder.

The condition of adiabaticity is that the optical frequency, ω, is much less than the level spacing. At low fields, 
it is well satisfied for wide-bandgap dielectrics. ω ∆ g . At high fields, the adiabaticity condition is ω ω B, 
and it is also well satisfied under our conditions. Thus the adiabatic picture of the WS states is well applicable both 
for low and high fields.

All WS states are localized within localization radius ∼ ∆ /( )L eFWS b , where ∆b is the energy width of a band 
(valence or conduction). For maximum fields δ ∼ 1, ∼ ∆ /( )F eag , and, assuming realistically that ∆ ∼ 6 eVb , 
we estimate ∼ ∆ /∆ ∼L a 3 ÅWS b g . Thus, under our conditions, the WS localization is strong – within a unit 
cell. Such a strongly localized electron does not explore the long-range order and symmetry of the crystal. This 
qualitatively explains the observed universality – insensitivity of the semimetallization phenomena to the crystal 
structure.

Conclusion
In conclusion, we have shown experimentally that wide-bandgap insulators, quartz, sapphire and calcium fluo-
ride, undergo semimetallization in strong optical fields: there is charge transfer along the field direction, which is 
dependent on the maximum instantaneous field and is controlled by the CEP of the pulse. For these crystals, the 
semimetallization occurs in a very similar way, although their chemical compositions, crystallographic, and 
linear-optical properties are quite dissimilar. These observations can be understood in view of the WS localization 
of electrons. Since under our conditions, fields of ∼ /1 V Å, the WS localization is strong, confining the electron 
wavefunction within the lattice unit cell, the electrons do not explore the symmetry and long-range order; thus 
the semimetallization occurs in the same way regardless of the detailed structure of the crystals. The semimetal-
lization is not so well-described by Zener-Keldysh tunneling formula and the mismatch gets even more for high 
fields. This is because it is indeed intraband transition which dominates but is neglected in derivation of Zener’s 
tunneling rate formula. The quantum mechanical simulations including both inter-and intraband transition and 
population dynamics do describe the semimetallization and its similarity among different crystals. This study of 
the semimetallization controlled by optical field potentially opens a door for electron manipulation and signal 
processing on the sub-femtosecond time scale using wide-bandgap dielectric materials. To understand the ultra-
fast semimetallization of insulators under strong field in another dimension, optical pump-THz probe 
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measurement, which has been successful26–28, will be useful. Conductivity of an insulating solid strongly depends 
on frequency. Terahertz (THz) measurements provide conductivity at much lower frequencies, which, together 
with investigation in optical frequency region, will enhance our understanding. Also, strong THz fields by them-
selves can cause a multitude of nonlinear phenomena16. This is a separate wide field that deserves a separate study.

Method
Details of Theoretical Computations. We assume that the electron dynamics in external electric field of 
the optical pulse is coherent (which means that the duration of the laser pulse is less than the characteristic elec-
tron scattering time) and can be described by the time dependent Schrödinger equation

 Ψ = ( )Ψ, ( )i d
dt

H t 1

where the Hamiltonian ( )H t  has explicit time dependence and has the following form

( ) = + ( ) , ( )H t H e tF r 20

where r is a three-dimensional vector, ( )tF  is the electric field of the optical pulse, and H0 is the free-electron 
Hamiltonian, which is described by the tight-binding model and has the size ×N Nb b. Here Nb is the number of 
the basis orbitals per unit cell and also is the number of valence and conduction bands taking into account in our 
calculations. The advantage of the tight-binding model is that it captures the symmetry properties of the solid.

The free-electron Hamiltonian H0 determines both the energy spectrum, ( )αE k , α = , …, N1 b, and the cor-
responding wave functions, Φ ( )α, rk , of a free electron in the solid. It is convenient to solve the time-dependent 
Schrödinger equation in the basis of Houston functions, which are given by the following expression

∫Φ ( , ) = Φ ( ) , ( )α α
( )

, ( , )
− ( ( , ))α

−∞t r er 3
H

t
i
h

E t dt
q k q

k q
T

t
T 1 1

where

∫( , ) = + ( ) . ( )−∞
Ft e t dtk q q 4T

t
1 1

The Houston functions are solutions of time-dependent Schrödinger equation (1) within a single-band approx-
imation. They describe the intraband electron dynamics in time dependent electric field. Using the Houston 
functions as the basis, we express the general solution of the Schrödinger equation (1) in the following form

∑ βΨ ( , ) = ( )Φ ( , ).
( )

α
α

α
= ,…,

( )t t tr r
5N

H
q q q

1 b

The expansion coefficients β ( )α tq  satisfy the following system of differential equations

∑
β

β
( )
= −

( )
( ) ( ),

( )

α

α
α α α

= ,…,
, , ,

d t
dt

i t t tF Q
6N

q
q q

1 b1
1 1

where α = , …, N1 b, and vector-function ( )α α, , tQ q1
 is proportional to the inter-band dipole matrix elements

∫( ) = ( , ) . ( )α α α α, , ,
− 

 ( ( , ) )− ( ( , )) α α
−∞t t eQ D k q[ ] 7T

E t E t dt
q

k q k qh
i t

T T
1 1

1 1 1 1

Here ( )α α,D k
1

 are the dipole matrix elements between the states of bands α and α1,

Figure 4. (a) Fitted curves by Zener’s formula for transition probability multiplied by a constant which ensures 
least discrepancy to the experimental data for δ  smaller than a value given in the legend for calcium fluoride  
(b) magnified view for black rectangle in the left panel.
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( ) = Φ ( ) Φ ( ) . ( )α α α α, , ,D k r r r 8k k1

It is easier to calculate the dipole matrix elements in terms of the interband matrix elements of the velocity oper-
ator, α α,Vj

1. The velocity operator is defined by the following expression:

=
∂
∂
.

( )
V̂ H

k
1

9
j

j

0


Then the dipole matrix elements are defined as

( ) =

 ( ) − ( )

,
( )

α α

α α

α α
,

,

i E E
D k V

k k 10
1

1

1



where α α,V 1 is velocity-operator matrix element.
System of equations (6) determines electron dynamics in the time-dependent field of the laser pulse. For 

numerical solution of the problem we consider =N 1000q  q-points in the reciprocal space. For each q-point, 
system of equations (6) has dimension ×N Nb b. We solve Nq such systems numerically by fourth order 
Runge-Kutta method. From the solutions of systems of equations (6) we obtain reciprocal space distribution of 
electrons in the conduction and valence bands.

From these electron distributions we can find the current generated in the system in the field of the pulse,

∑∑∑ β β( ) = ( ) ( ).
( )α α

α
α α

α
,⁎J t e

a
t V t

11
j

q
jq q2

1 2
1

1 2
2

The current is determined by the matrix elements of the velocity operator. The generated current results in the 
charge transfer through the system, which is determined by an expression

∫( ) = ( ) . ( )−∞

∞
Q t J t dt 12j j

For corundum (Al2O3), the primitive unit cell has 15 atoms (three Al2O3 units). We take into account the s- 
and p-orbitals for each atom and use the corresponding parameters of the tight-binding Hamiltonian reported in 
Ref. 29. The parameters of the model in notations of Ref. 30 are shown in Table 1.

For CaF2, we consider the minimal tight-binding model, which includes only s and p states for Ca and F. The 
parameters are given in Table 2 (see Ref. 31).

The quartz (SiO2) is modeled in a virtual crystal approximation with the corresponding tight-binding param-
eters given in Table 3 (see Ref. 32).

σss σsp σpp σpp πpp

− 3.117 4.097 7.214 3.776 − 1.803

E (s) E (p)

O − 29.14 − 14.13

Al − 10.11 − 4.86

Table 1.  The nearest-neighbor tight-binding parameters for Al2O3 in eV.

σss σsp σps σpp πpp

− 1.139 0.36 1.086 3.776 − 0.088

E(s) E(p)

Ca 5.75 10.4

F − 30.91 − 8.0

Table 2.  The nearest-neighbor tight-binding parameters for CaF2 in eV.

σss σsp σps σpp πpp

− 2.27 3.927 3.927 5.466 − 0.314

E(s) E(p)

SiO2 4.8 1.83

Table 3.  The nearest-neighbor tight-binding parameters for SiO2 in eV.
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Fitting with Zener’s tunneling rate formula. Zener’s formula was derived based on assumptions and 
approximations. For example, (1) a lattice is simplified to one dimension, (2) the periodicity of potential is con-
sidered up to the 1st order in Fourier expansion, and (3) the applied field is not too strong that the energy change 
for displaced electrons in the crystal is rather still small. The field strength in which Zener’s approximation is valid 
is, considering typical lattice constants, estimated to be on the order of a few volts per nanometer, or δ is a few 
tenths. The threshold value below which Zener formula is valid is not clear. We have done several fittings with 
data for small δ.

The data for small δ is limited because signals become so small that they are buried in noise. Yet we still have 
meaningful data for δ < .0 4 in the case of calcium fluoride. Such fittings were done for calcium fluoride. The 
results are shown in Fig. 4, We fit experimental data points for up to δ =lim  0.4(blue line), 0.5(red line) and 
0.6(green line) using Zener’s formula. The fitting to the data for small δ is zoomed in and shown in the right panel. 
The agreements are not good and all curves skyrocket near its threshold δlim. It is clear that Zener formula is not 
valid for the field strength corresponding to δ .~ 0 4, not to mention the field of δ > .0 4. Quartz or sapphire have 
only a few data points for δ < .0 5 since signals are weaker. Hence we have tried to fit data for δ < .0 6 for all sam-
ples to clearly demonstrate that Zener formula cannot describe the data for high field.

References
1. Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik 52, 555–600 (1929).
2. Zener, C. Non-Adiabatic Crossing of Energy Levels. Vol. 137 (1932).
3. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).
4. Ghimire, S. et al. Generation and propagation of high-order harmonics in crystals. Phys. Rev. A 85, 043836 (2012).
5. Golde, D., Kira, M., Meier, T. & Koch, S. W. Microscopic theory of the extremely nonlinear terahertz response of semiconductors. 

Phys. Status Solidi B 248, 863–866 (2011).
6. Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical 

inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).
7. Kemper, A. F., Moritz, B., Freericks, J. K. & Devereaux, T. P. Theoretical description of high-order harmonic generation in solids. 

New J. Phys. 15, 023003 (2013).
8. Wannier, G. H. Elements of solid state theory. (University Press, 1959).
9. Wannier, G. H. Wave Functions and Effective Hamiltonian for Bloch Electrons in an Electric Field. Phys. Rev. 117, 432–439 (1960).

10. Keldysh, L. V. Ionization in the Field of a Strong Electromagnetic Wave. J. Exp. Theor. Phys. 20, 1307 (1965).
11. Zener, C. A. Theory of the Electrical Breakdown of Solid Dielectrics. Vol. 145 (1934).
12. Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photonics 8, 205–213 

(2014).
13. Brabec, T. & Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).
14. Gruzdev, V. E. Features of the laser ionization of crystalline broad-band insulators. J. Opt. Technol +  73, 385–390 (2006).
15. Ghimire, S. et al. Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field. 

Phys. Rev. Lett. 107, 167407 (2011).
16. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon 8, 119–123 

(2014).
17. Ghimire, S. et al. Strong-field and attosecond physics in solids. J. Phys. B: At, Mol. Opt. Phys. 47, 204030 (2014).
18. Hammond, T. J., Kim, K. T., Zhang, C., Villeneuve, D. M. & Corkum, P. B. Controlling attosecond angular streaking with second 

harmonic radiation. Opt. Lett. 40, 1768–1770 (2015).
19. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).
20. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).
21. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).
22. Barfuss, H., Böhnlein, G., Hohenstein, H., Kreische, W. & Niedrig, H. Experimental proof of radiation induced F- interstitials in 

CaF2. Phys. Lett. A 90, 415–418 (1982).
23. Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).
24. Kelardeh, H. K., Apalkov, V. & Stockman, M. I. Graphene in ultrafast and superstrong laser fields. Phys. Rev. B 91, 0454391–0454398 

(2015).
25. Apalkov, V. & Stockman, M. I. Metal nanofilm in strong ultrafast optical fields. Phys. Rev. B 88, 2454381–2454387 (2013).
26. Hilton, D. J. et al. Enhanced Photosusceptibility near Tc for the Light-Induced Insulator-to-Metal Phase Transition in Vanadium 

Dioxide. Phys. Rev. Lett. 99, 226401 (2007).
27. Kübler, C. et al. Coherent Structural Dynamics and Electronic Correlations during an Ultrafast Insulator-to-Metal Phase Transition 

in VO2. Phys. Rev. Lett. 99, 116401 (2007).
28. Pashkin, A. et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B 83, 195120 

(2011).
29. Godin, T. J. & LaFemina, J. P. Atomic and electronic structure of the corundum (α -alumina) (0001) surface. Phys. Rev. B 49, 

7691–7696 (1994).
30. Jancu, J.-M., Scholz, R., Beltram, F. & Bassani, F. Empirical spds* tight-binding calculation for cubic semiconductors: General 

method and material parameters. Phys. Rev. B 57, 6493–6507 (1998).
31. Strahberger, C. & Vogl, P. Model of room-temperature resonant-tunneling current in metal/insulator and insulator/insulator 

heterostructures. Phys. Rev. B 62, 7289–7297 (2000).
32. SungGeun, K., Luisier, M., Paul, A., Boykin, T. B. & Klimeck, G. Full Three-Dimensional Quantum Transport Simulation of 

Atomistic Interface Roughness in Silicon Nanowire FETs. IEEE Trans. Electron Dev. 58, 1371–1380 (2011).

Acknowledgements
We gratefully thank Nicholas Karpowicz, Sabine Keiber, and Ferenc Krausz for fruitful discussion and support. 
This research has been supported in part by Global Research Laboratory Program [Grant No. 2009-00439], by 
Max Planck POSTECH/KOREA Research Initiative Program [Grant No. 2011-0031558] through the National 
Research Foundation of Korea (NRF) funded by Ministry of Science, ICT & Future Planning. MIS research main 
support came from Grant No. DE-FG02-01ER15213 from the Chemical Sciences, Biosciences and Geosciences 
Division, and an additional support was provided by Grant No. DE-FG02-11ER46789 from the Materials Sciences 
and Engineering Division of the Office of the Basic Energy Sciences, Office of Science, U.S. Department of Energy, 
and MURI grant No, FA9550-15-1-0037 from the Air Force Office of Scientific Research. The work by VA was 



www.nature.com/scientificreports/

9Scientific RepoRts | 6:21272 | DOI: 10.1038/srep21272

supported by Grant No. ECCS-1308473 from the US National Science Foundation. This work was also supported 
by the Munich Center for Advanced Photonics.

Author Contributions
O.K. and D.K. organized and administered the experiments. O.K., T.P.-C., B.-K.K. and J.-J.K. designed and 
fabricated the samples. O.K. performed the measurements. V.A. and M.I.S. conducted theoretical modeling and 
calculation. O.K., T.P.-C. and D.K. participated in analysis and interpretation of experimental data. All authors 
discussed the results and contributed to the final manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Kwon, O. et al. Semimetallization of dielectrics in strong optical fields. Sci. Rep. 6, 
21272; doi: 10.1038/srep21272 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Semimetallization of dielectrics in strong optical fields
	Introduction
	Experiments
	Experimental Results and Discussion

	Conclusion
	Method
	Details of Theoretical Computations
	Fitting with Zener’s tunneling rate formula

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Semimetallization of dielectrics in strong optical fields
            
         
          
             
                srep ,  (2016). doi:10.1038/srep21272
            
         
          
             
                Ojoon Kwon
                Tim Paasch-Colberg
                Vadym Apalkov
                Bum-Kyu Kim
                Ju-Jin Kim
                Mark I. Stockman
                D. Kim
            
         
          doi:10.1038/srep21272
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep21272
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep21272
            
         
      
       
          
          
          
             
                doi:10.1038/srep21272
            
         
          
             
                srep ,  (2016). doi:10.1038/srep21272
            
         
          
          
      
       
       
          True
      
   




