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Control of Multilayer Networks
Giulia Menichetti1, Luca Dall’Asta2,3 & Ginestra Bianconi4

The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging 
from financial markets to the brain. Until now, network controllability has been characterized only on 
isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here 
we build a theoretical framework for the linear controllability of multilayer networks by mapping the 
problem into a combinatorial matching problem. We found that correlating the external signals in the 
different layers can significantly reduce the multiplex network robustness to node removal, as it can be 
seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover 
we observe that multilayer networks can stabilize the fully controllable multiplex network configuration 
that can be stable also when the full controllability of the single network is not stable.

Most of the real networks are not isolated but interact with each other forming multilayer structures1,2. For exam-
ple, banks are linked to each other by different types of contracts and relationships, gene regulation in the cell is 
mediated by the different types of interactions between different kinds of molecules, brain data are described by 
multilayer brain networks. Studying the controllability properties of these networks is important for assessing the 
risk of a financial crash3,4, for drug discovery5 and for characterizing brain dynamics6–10. Therefore the controlla-
bility of multilayer networks is a problem of fundamental importance for a large variety of applications.

Recently, linear11–19 and non-linear20–30 approaches are providing new scenarios for the characterization of 
the controllability of single complex networks. In particular, in the seminal paper by Liu et al.12 the structural 
controllability of complex networks has been addressed by mapping this problem into a Maximum Matching 
Problem that can be studied using statistical mechanics techniques31–36. Other works approach the related prob-
lem of network observability37, or target control38 which focuses on controlling just a subset of the nodes. Despite 
the significant interest in network controllability, all linear and non-linear approaches for the controllability of 
networks are still restricted to single networks while it has been recently found that the multiplexity of networks 
can have profound effects on the dynamical processes taking place on them39–44. For example, percolation pro-
cesses that usually present continuous phase transitions on single networks can become discontinuous on such 
structures39–43 and are characterized by large avalanches of disruption events.

Here, we consider the elegant framework of structural controllability12 and investigate how the multilayer 
structure of networks can affect their controllability. We focus on multiplex networks, which are multilayer net-
works in which the same set of nodes are connected by different types of interactions. Multiplex network control-
lability is studied under the assumption that input nodes are the same in all network layers, thus mimicking the 
situation in which input nodes can send different signals in the different layers of the multiplex but the position of 
the external signals in the layers is correlated.

We show that controlling the dynamics of multiplex networks is more costly than controlling single layers 
taken in isolation. Moreover, the controllability of multiplex networks displays unexpected new phenomena. In 
fact these networks can become extremely sensible to damage in conjunction with a discontinuous phase transi-
tion characterized by a jump in the number of input points (driver nodes). A careful investigation of this phase 
transition reveals that this is a hybrid phase transition with a square root singularity, therefore in the same uni-
versality class of the emergence of the mutually connected component in multiplex networks1,39,41. The number 
of driver nodes in the multiplex network is in general higher than the number of driver nodes in the single layers 
taken in isolation. Nevertheless the degree correlations between low-degree nodes in the different layers can 
affect the controllability of the multiplex network and modulate the number of its driver nodes. Moreover, a fully 
controllable configuration can be stable in a multilayer network even if it is not stable in the isolated networks that 
form the multilayer structure.
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Results
We consider multiplex networks1 in which every node = , ,…,i N1 2  has a replica node (i, α) in each layer α and 
every layer is formed by a directed network between the corresponding replica nodes. We assume that each rep-
lica node (i, α) is characterized by a different dynamical variable ∈αx Ri  and that each layer is characterized by a 
possibly different dynamical process. We consider for simplicity a duplex, i.e. a multiplex formed by two layers 
{A, B} where each layer α ∈ ,A B{ } is a directed network. The state of the network at time t is governed by a linear 
dynamical system

( )
= + , ( )

d t
dt
X

X u 1G K

in which the 2N-dimensional vector X(t) describes the dynamical state of each replica node, i.e. =X xi i
A and 

=+X xN i i
B for = , ,…,i N1 2 . The matrix  is a 2N ×  2N (asymmetric) matrix and  is a 2N ×  P matrix. They 
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in which gα are the N ×  N matrices describing the directed weighted interactions within the layers and Kα are the 
N ×  Pα matrices describing the coupling between the nodes of each layer α and Pα ≤  N external signals. The latter 
are represented by a vector u(t) of elements uγ and γ = , … = +P P P1 2 A B. Here we consider the concept of 
structural controllability11,12 that guarantees the controllability of a networks for any choice of the non-zeros 
entries of  and , except for a variety of zero Lebesgue measure in the parameter space. Therefore each layer of 
the duplex networks can be structurally controlled by identifying a minimum number of driver nodes, that are 
controlled nodes which do not share input vertices. If different replicas of the same node can be independently 
controlled, then the controllability properties of the multiplex network factorize and each layer can be studied as 
if was taken in isolation11,12,16,20. Liu et al.12 showed that in a single layer the minimum set of driver nodes can be 
found by mapping the problem into a matching problem. In real multiplex networks however nodes are usually 
univocally defined and share common properties across different layers, therefore we make the assumption that 
each node of the duplex network is either a driver node in each layer or it is not a driver node in any layer. The prob-
lem of finding the driver nodes of the duplex network can be thus mapped into a maximum matching problem in 
which every node has at most one matched incoming link and at most one matched outgoing link, with the con-
straint that two replica nodes either have no matched incoming links on each layer or have one matched incoming 
link in each layer (see Fig. 1). This problem can be studied, using statistical mechanics techniques, such as the 
cavity method and the Belief Propagation (BP) algorithm. Following12,16, we consider the variables = ,αs 1 0ij  
indicating respectively if the directed link from node α( , )i  to node α( , )j  in layer α = ,A B is matched or not. In 
order to have a matching in each layer of the duplex the following constraints have always to be satisfied

∑ ∑≤ , ≤ .
( )

α α

∈∂ ∈∂α α
+ −

s s1 1
3j i

ij
i j

ij

Figure 1. Control of a multiplex network. The controllability of a duplex network (multiplex with M =  2 
layers) can be mapped to a Maximum Matching Problem in which the unmatched nodes (indicated with a white 
circle) are the driver nodes of the duplex network. Here we have indicated with red thick links the matched links 
and by black thin links the unmatched links.
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where ∂α+i is the set of replica nodes α( , )j  in layer α that are reached by directed links from α( , )i  and ∂α−j is the 
set of replica nodes α( , )i  in layer α that point to α( , )j . In addition, we impose that the driver nodes in the two 
layers (the unmatched nodes) are replica nodes, i.e.

∑ ∑= .
( )∈∂ ∈∂− −

s s
4i j

ij
A

i j
ij
B

A B

In this formalism, computing the maximum matching corresponds to minimize an energy function 
= =E N NnD D where ND is the number of unmatched replica nodes associated to each matching. The energy E 

for a given matching, can be expressed in terms of the variables sij as
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In order to study this novel statistical mechanics problem, we derived the BP equations33,35,36 (see Methods and 
Supplementary Material) valid in the locally tree-like approximation, as described for the case of a single network 
problem in12,16,31,32,34.

Discussion
The controllability of multiplex networks displays a rich phenomenology, coming from the interplay between the 
dynamical and the structural properties of multiplex networks. Here we characterize the controllability of multi-
plex networks with different degree distribution and with tunable level of structural correlations.

Phase transition in Poisson duplex networks. We consider duplex networks in which the two layers are 
realizations of uncorrelated directed random graphs characterized by Poisson distributions for in-degree and 
out-degree with same average value c, i.e. = = = =k k k k cin

A
out
A

in
B

out
B . In Fig. 2A we report the average 

rescaled number of driver nodes nD as function of the average degree c computed from the solutions of Eq. (8) on 
single instances and from the graph ensemble analysis. A comparison with two independent layers with the same 
topological properties shows that the controllability of a duplex network is in general more demanding in terms 
of number of driver nodes than the controllability of independent single layers, in particular for low average 
degrees. In addition, a discontinuity in the number of driver nodes at ⁎= = . …c c 3 2223  marks a change in the 
controllability properties of duplex networks that is not observed in uncoupled networks. This is due to a struc-
tural change in the solution of the matching problem, in which a finite density of zero valued cavity fields emerges. 
A careful investigation (see Supplementary Material) reveals that this is a hybrid phase transition with a square 
root singularity, therefore in the same universality class of the emergence of the mutually connected component 
in multiplex networks1,39,41.

Figure 2. Controllability of Poisson duplex networks with average degrees = = = =, , , ,k k k k cA in A out B in B out . 
In panel (A) the fraction nD of driver nodes in a Poisson duplex network with = = = =, , , ,k k k k cA in A out B in B out , 
plotted as a function of the average degree c. The points indicate the average BP results obtained over 5 single 
realizations of the Poisson duplex networks with average degree c and N =  104, the solid line is the theoretical 
expectation (the error bar, indicating the interval of one standard deviation from the mean, is always smaller or 
comparable to marker size). The dashed line represents twice the density of driver nodes for a single Poisson 
network with the same average degree. In panel (B) the densities nc, nr and no respectively of critical redundant 
and ordinary nodes are shown as functions of c for the same type of duplex networks with N =  103, where each 
point is the average over 100 different instances. In both panels the dot-dashed vertical line indicates the phase 
transition average degree = . …⁎c 3 222326106 .
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In correspondence to this phase transition the network responds non trivially to perturbations. This is 
observed by performing a numerical calculation of the robustness of the networks. Following12 we classify the 
nodes into three categories: critical nodes, redundant nodes and ordinary nodes. When a critical node is removed 
from the (multiplex) network, controllability is sustained at the cost of increasing the number of driver nodes. 
If the number of driver nodes decreases or is unchanged, the removed nodes are classified as redundant and 
ordinary respectively. Figure 2B shows that the fraction of critical nodes reaches a maximum at the transition, 
revealing an increased fragility of the duplex network to random damage with respect to single layers. While an 
abrupt change in the number of driver nodes can result from a small change in the network topology, it is impor-
tant to stress that the non-monotonic behavior of these quantities around the critical average degree value could 
be interpreted as a precursor of the discontinuity.

In a duplex network formed by directed Poisson random graphs with different average degree in the two layers 
(i.e. = =α α

αk k cin out ) a similar discontinuous phase transition is observed (see Fig. 3).

Effect of degree correlations on the controllability of duplex networks. We consider a model 
of duplex network in which the replica nodes of the directed random graphs in the two layers have correlated 
degrees. In particular, we consider a case in which only the low in-degree nodes (nodes with in-degree equal to 
0, 1, 2) are correlated (replica nodes in different layers have same degree with probability p) and a case in which 
the in-degrees of the replica nodes are equal with probability p independently of their value (see Supplementary 
Material for details). The controllability of the network is affected by these correlations as shown in Fig. 4. In fact, 
the number of driver nodes nD decreases as the level of correlation increases. In duplex networks with Poisson 
degree distribution, low-degree correlations modify both the position of the hybrid transition and the size of the 
discontinuity. Once the replica nodes with low in-degree are correlated, a further correlation of the remaining 
replica nodes does not substantially change the number of driver nodes. This result confirms that structural con-
trollability of random tree-like networks is essentially determined by the control of low degree nodes16.

Stability of the fully controllable solution. A fully controllable solution, in which a single driver node is 
necessary to control the whole duplex network, exists if the minimum in-degree and the minimum out-degree are 
both greater than 1 in both layers. This solution of the cavity equations gives the correct solution to the maximum 
matching problem describing the controllability of multilayer networks only if no instabilities take place. The 
stability conditions are then found by imposing that the Jacobian of the systems of equations derived by the cavity 
method has all its eigenvalues λi of modulus less than one, i.e. λ < 1i . In random duplex networks with the same 
degree distribution in the two layers, the fully controllable solution is stable (see Supplementary Material for the 
details of the derivation) if and only if
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for α =  A, B. On single random networks it was instead recently found16 that the fully controllable configuration 
is only stable for
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Figure 3. Phase diagram of the controllability for a Poisson duplex networks with average degrees 
= =, ,k k cA in A out

A and = =, ,k k cB in B out
B. The color code indicates the density of driver nodes 

nD =  E/N in the multiplex network.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:20706 | DOI: 10.1038/srep20706

( ) <
( − )

, ( ) <
( − )

.
( )

P
k

k k
P

k
k k

2
2 1

2
2 1 7

in in

out

out in

in

2 2

This implies that for multiplex networks with asymmetric in-degree and out-degree distributions it might 
occur that the fully controllable solution is stable in the multiplex network but unstable in the single networks 
taken in isolation (see Fig. 5 for the characterization of the controllability of a similar type of multiplex networks). 
Therefore a multiplex structure can help to stabilize the fully controllable solution.

In conclusion, within the framework of structural controllability, we have considered the controllability prop-
erties of multiplex networks in which the nodes are either driver nodes in all the layers or they are not driver 
nodes in any layer. Our results show that controlling multiplex networks is more demanding, in terms of number 
of driver nodes, than controlling networks composed of a single layer. In random duplex networks with Poisson 
degree distribution, it is possible to observe a hybrid phase transition with a discontinuity in the number of 

Figure 4. The effect of the degree correlation between replica nodes in different layers on the controllability 
of multiplex networks. Correlations between the low in-degrees (ld) and correlations between any in-degree 
node (td), parametrized by p, affect the fraction of driver nodes in the network nD, both in the case of Poisson 
networks with the same in and out average degree c across the two layers (Panel A) and in the case of scale-free 
networks with the same in and out degree distribution across the layers, given by ( ) ∝ γ−P k k  and minimum in/
out degree 1 (Panel B). When p =  0 there is no degree correlation between replica nodes in different layers. The 
BP data are shown for networks with N =  104, and are averaged 5 times for panel A and 20 times for panel B.
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Figure 5. The fully controllable solution can be stable for the multiplex network also if it is not stable for 
the single layers taken in isolation. Histogram of the number of networks that out of 100 realizations have ND 
driver nodes. The results obtained for the control of a duplex networks and its two layers are compared. The 
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minimum out-degree equal to 3 and ( ) = ( ) = ., ,P P2 2 0 3A in B in .
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driver nodes as a function of the average degree, that is phenomenologically similar to the emergence of mutually 
connected components. Close to this phase transition the duplex network exhibits an increased fragility to ran-
dom damage. The existence of correlations between the degrees of replica nodes in different layers, in particular 
between low-degree nodes, has the effect of reducing the number of driver nodes necessary to control duplex 
networks. Finally, multiplex structure of networks can stabilize the fully controllable solution also if this solution 
is not stable in the single layers that form the multiplex network.

Methods
The BP equations. The BP equations of this problem are derived using the cavity method33,35,36 as described 
for the case of a single network problem in12,16,31,32,34. The same approximation methods can be applied here, as 
long as the structure of the interconnected layers is locally tree-like both within the layers and across them. Under 
the decorrelation (replica-symmetric) assumption, the cavity fields (or messages) α

→h{ }i j  and ^
α

→h{ }i j , defined on 
the directed links between neighboring nodes α( , )i  and α( , )j  in the same layer α =  A, B satisfy the zero-temper-
ature limit of the BP equations, also known as Max-Sum equations,
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in which the fields are defined to take values in the discrete set − , ,{ 1 0 1} and here and in the following we use the 
convention that the maximum over a null set is equal to − 1 (see Supplementary Material for details). In terms of 
these fields, the energy E in Eq. (5) becomes
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BP equations over ensemble of networks. Let us consider the case of uncorrelated duplex networks in 
which the degree of the same node in different layers are uncorrelated and there is no overlap of the links. In each 
layer α =  A, B we consider a maximally random network with in-degree distribution ( )α,P kin  and out-degree 
distribution ( )α,P kout . At the ensemble level, each link of (the infinitely large) random network forming layer α 
has the same statistical properties, that we describe through distributions ( )α

αh  and  ( )α

α
 ĥ  of cavity fields that 

are defined on the support of Eq. 8, i.e.

^ ^ ^ ^ ^ ^ ^ ^
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where α =  A, B and where the probabilities αw1 , αw2 , αw3  are normalized + + =α α αw w w 11 2 3  as well as the proba-
bilities αw1 , αw2 , αw3  that satisfy the equation + + =α α α

  w w w 11 2 3 . The cavity method at the network ensemble level 
is also known as density evolution method36.

It is useful to introduce the generating functions ( ),α, /G zin out
0  and ( )α, /G zin out

1  of the multiplex network as 
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1, with α =  A, B. In this way, we can 
derive recursive equations for the probabilities α
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, that are the analogous of the BP equa-
tions for an ensemble of uncorrelated duplex networks
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with = − − ,α α αw w w13 1 2  and = − −α α α
  w w w13 1 2 . The energy E and the entropy density s of the matching 

problem can be also expressed in terms of the α
= , ,w{ }i i 1 2 3

 and 


α
= , ,w{ }i i 1 2 3

 (see Supplementary Material for details).

Hybrid transition for Poisson duplex network. Here we consider the case of two Poisson networks  
with the same in/out average degree. In other words, we consider the situation in which 
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= = = =, , , ,k k k k cA in A out B in B out . We notice that the BP equations can be rewritten to form a closed 
subsystem of equations for w1 and w2 (see Supplementary Material for details),

= ( , ) = 

 −



 ( )

− −− − ( − )
  

 

w h w w e e1 12
ce ce
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from the solution of which the remaining quantities can be determined.
The value ⁎c  of the average degree c at which the discontinuity in the number of driver nodes nD observed is 

found by imposing that Eqs. (12–13) are satisfied together with the condition

= , ( )J 0 14

with J indicating the Jacobian of the system of equations (12–13). Imposing that Eqs. (12–13) and condition (14) 
are simultaneously satisfied, the solution ⁎ = . …c 3 222326106  is found. For ⁎<c c  we observe that = =w w 03 3 . 
At ⁎c  we observe a discontinuity in both w3 and w3, but for ⁎>c c  the functions ( , ) h w w1 1 2  and ( , ) h w w2 1 2  are 
analytic, and analyzing Eqs. (12) and (13) we obtain the behaviour of the order parameters w3 and w3 for ⁎>c c
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showing that the transition is hybrid.
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