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A physical mechanism of cancer 
heterogeneity
Cong Chen1 & Jin Wang1,2,3

We studied a core cancer gene regulatory network motif to uncover possible source of cancer 
heterogeneity from epigenetic sources. When the time scale of the protein regulation to the gene is 
faster compared to the protein synthesis and degradation (adiabatic regime), normal state, cancer state 
and an intermediate premalignant state emerge. Due to the epigenetics such as DNA methylation and 
histone remodification, the time scale of the protein regulation to the gene can be slower or comparable 
to the protein synthesis and degradation (non-adiabatic regime). In this case, many more states emerge 
as possible phenotype alternations. This gives the origin of the heterogeneity. The cancer heterogeneity 
is reflected from the emergence of more phenotypic states, larger protein concentration fluctuations, 
wider kinetic distributions and multiplicity of kinetic paths from normal to cancer state, higher energy 
cost per gene switching, and weaker stability.

Tumor cells are known to have remarkable variability in phenotypes, a phenomenon known as heterogeneity. 
The distinct phenotypes lead to diversified biological behaviour. This is important in cancer research and clinical 
therapy. The origin of heterogeneity is closely related to the mechanism of cancer1. The idea of Darwinian-like 
clonal evolution is based on the discovery of acquisition of oncogenic mutations. It stresses the gene-centric 
development in which heterogeneity arises from the diversity of genotypes resulting from clonal evolution. On 
the other hand, the cancer cells are often hierarchically organized into nontumorigenic and tumorigenic cells with 
distinct phenotype manifestations2,3. The differences in tumorigenic potential within the same tumor is largely 
determined by epigenetic diversification. In other words, the origin of heterogeneity is often non-genetic4. The 
heterogeneity can be from the epigenetics and micro-environment such as DNA methylation and histone mod-
ifications. It can also come from stochastic nature of biological and chemical reactions involved. More and more 
evidences show that genetic heterogeneity is not likely to make major contribution to cancer heterogeneity5–8. 
Epigenetic origin of cancer heterogeneity is of both academic and clinical interest.

The cancer was often thought to be determined by the individual gene mutations. More evidences accumu-
lated that cancer is a disease state emerged from the whole gene network, rather than only through individual 
gene mutations9,10. The results of dynamics and evolution for the gene network are largely determined by the 
topology of the network while at the same time the gene network dynamics is stochastic with intrinsic fluctuation 
from statistical molecular number fluctuations and external fluctuation from cell environment11,12. The deter-
ministic and stochastic dynamics of cancer core network can provide possible source for cancer heterogeneity.

In cancer gene regulatory network, a key motif often emerged for function and cell fate decision making is 
the self activation and mutual repression13–15. For instance Rac1/RhoA circuits mediates amoeboid/mesenchy-
mal transitions in Metastatic carcinoma cells16. miR200/ZEB double negative circuits in many cancer cells17. To 
explore heterogeneity arising from network dynamics, we will study one such cancer gene motif.

The key character of the dynamics for this cancer gene motif is the involvement of multiple timescales: 
timescale of protein synthesis/degradation and timescale of gene regulation or gene state switching processes. 
Adiabaticity is introduced to quantify the hierarchy of these time scales15,18–22. Many studies are concentrated in 
adiabatic limit where the rates for gene state switching due to regulations are much faster than the rates of protein 
synthesis/degradation. At this limit, adiabatic approximation is valid and driving force often has the form of Hill 
function19,23. Two major stable states often emerge in this limit with one gene activated and the other repressed. 
We identify these two states to be normal state and cancer state. Analytical and numerical studies show that under 
certain conditions there can be a third intermediate state in addition to normal and cancer states. The intermedi-
ate state has the nature of pre-malignant state14,24–27.
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Although adibatic (fast regulation) assumption might be good for some prokaryotic cells such as bacteria, 
the regulation time scales can be elongated by the epigenetic factors in eukaryotic cells such as DNA methyla-
tion and histone remodifications. Slow regulatory binding has been shown to be important for cell fate decision 
making and stem cell differentiation and development18–21,28,29. As has been pointed out, though histone modi-
fication of single histones can be quick and frequent, the cooperative change of many histones which represents 
histone states occurs on a much slower time scale accompanied by dynamical DNA methylation/demethyla-
tion22,30. When TF binding/unbinding and histone modifications are considered explicitly, one can introduce the 
corresponding “adiabaticity”. In other words it introduces two levels of timescale hierarchy. The timescale hier-
archy between transcription/degradation and regulation processes, and timescale hierarchy within regulation 
processes. For our model we only consider TF binding/unbinding as the regulation mechanism for simlicity. Thus 
our model uses one time scale to represent the complexity of the time scale hierarchy. Since dynamical effects 
from epigenetics (histone modification and DNA methylation) are reflected from their corresponding timescales. 
We use the regulation timescale to effectively represent the whole timescale related to epigenetics and regulation. 
We believe our simplified model provides a reasonable approximation and captures the essential feature of epige-
netics. When the reaction time scale is extended to non-adiabatic regime with slower regulation. The translation/
transcription and degradation processes happen more frequently compared to the regulatory processes. The gene 
states rarely change and there’s sufficient time for protein copy number to reach transcription level determined by 
the gene state. This usually leads to slower epigenetic states change reflected from their corresponding timescales.

In this study we suggest a possible source of cancer heterogeneity as being from epigenetics through gene 
regulation dynamics in the non-adiabatic (slow regulation) regime. The cancer heterogeneity is reflected from 
the emergence of more phenotypic states, larger protein concentration fluctuations, wider distribution of kinetics 
and multiplicity of paths from normal to cancer state, higher energy cost per gene switching and weaker stability.

Model
We choose our cancer gene regulatory motif with mutually repression and self activation through transcription 
factor binding/unbinding. Figure 1 shows the regulation scheme of the two genes. Gene A and gene B each has 2 
binding sites. The first binding site can be bound to a monomer produced by the other gene and the synthesis rate 
will be suppressed by a factor λR at the bound state (representing the repression gene regulation). The second 
binding site can be bound to a tetramer produced by itself and the synthesis rate will be raised by a factor λA (rep-
resenting activation gene regulation). In previous similar gene regulatory network motif models, the form of 
transcription factor regulation is usually chosen from monomer to tetramer, such as monomer-tetramer and 
dimer-dimer, etc.13,20,27. While there is no direct experiment evidence as of which form transcription factor takes, 
we make a reasonable assumption that TF factors take monomer-tetramer form to represent the coorperativity of 
the regulatory binding consistent with previous studies. The 4 discrete states of each gene has protein synthesis 
rates set as: g00, g01 =  g00λA, g10 =  g00λR, g11λAλR. The first index i in gij represents the first binding site being at 
bound (1) state or unbound (0) state, the second index j represents the second binding site. The degradation rate 
for both proteins is set as k =  1. For simplicity, the unbinding rate for all binding sites is set as f. The binding rate 
for the first binding site (of both gene A and B) is given as =h ni

f
Xeq j1

1
 and for the second binding site is given as 

= ( − )( − )( − )h n n n n1 2 3i
f

Xeq i i i i2
2

. Xeq1 and Xeq2 are equilibrium constants(ratio of binding and unbinding 
kinetics). The adiabatic parameter is defined as ω =  f/k.

Conventional studies for gene regulation dynamics are concentrated at adiabatic limit of fast regulation bind-
ing/unbinding compared to the protein synthesis/degradation. In this case, adiabatic approximation is valid 

Figure 1. Regulation scheme of self activating mutually repressing regulatory motif. 
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and underlying stochastic dynamics can be described by the dynamic master equation, which has the form of 
2-dimensional Fokker-Planck equation in the continuous limit19. Deterministic part of the driving force has the 
form of Hill function14 while the stochastic part of the force can come from the intrinsic statistical number fluc-
tuations in concentrations or external fluctuations. The problem is greatly simplified. In the more general case, we 
should use master equation explicitly to describe the stochastic dynamics. Since each gene has four discrete states 
(00, 01, 10 and 11). The master equation which governs the dynamics, is 24 =  16 dimensional. At large volume 
limit, the protein concentration variables xi =  ni/V become continuous. The master equation becomes ‘Coupled 
Fokker-Planck’ equation. It has 16 discrete ‘Fokker-Planck’ states that correspond to the system being at one of the 
16 gene states. These Fokker-Planck states are coupled by the binding/unbinding reactions. There are two crucial 
time scales involved in such system: the timescale of protein synthesis/degradation and the timescale of binding/
unbinding of regulatory gene network. Adiabatic parameter ω =  f/k as the ratio between protein regulation bind-
ing/unbinding rate to the gene and the protein synthesis/degradation rate is introduced to quantify the hierarchy 
of the two timescales. The probability evolution follows the equation:

∂ = ( + ) ( )P H H P 1t 0 b

In the above coupled Fokker-Planck equation (master equation in large volume limit), the population or prob-
ability P is a 16 component state vector. Each component Ps stands for the probability of the system with protein 
concentration x being at gene state ‘s’. H0 and Hb are operators that can act on P. H0 is diagonal with 16 operators 
that describe the protein synthesis and degradation processes. Hb is non-diagonal with binding/unbinding terms 
that describe the ‘coupling’ between the gene states. The physical picture of coupled system is clear. Each com-
ponent of H0 defines a probability landscape corresponding to a discrete state of the four binding sites being at 
a specific bound/unbound gene state. Hb describes the ‘hopping’ processes between these states. The adiabatic 
parameter ω is a measure of the relative strength of regulatory binding/unbinding of protein to the gene and 
protein synthesis and degrdation. When ω is large, Hb dominates over H0, the ‘hopping’ happens so frequently 
that the ‘hopping’ processes reaches an equilibrium and adiabatic regime of fast regulation is reached. When ω is 
small, the ‘hopping’ is rare and the system tends to stay in one of the 16 gene state landscapes. The non-adiabatic 
regime of slow regulation is reached. The moderate ω non-adiabatic regime is of special interest where proper 
approximation or analytical treatment is often lacking.

In practice, we use Gillespie algorithm31 to solve the coupled Fokker-Planck equation (master equation) from 
which we obtain the steady state probability that gives the underlying landscape of the network system quantify-
ing the probability of the emergent phenotypic states and the evolution dynamics in time covering all the regimes 
of interests from adiabatic to non-adiabatic case and in between. Various analytical approximations made in adia-
batic and non-adiabatic regimes are consistent with the full Gillespie simulations. We also developed a method for 
quantifying the optimal path in both adiabatic and non-adiabatic regime. Details are included in the supporting 
information.

Results and Discussions
Cancer Heterogeneity from Landscape View. In our model, there are two time scales quantifying the 
interaction strengths of the gene networks. One is the protein synthesis (g) and degradation rates (k), while the 
other is the binding(h)/unbinding(f) of regulatory proteins to the gene leading the gene state to switch. When the 
relative time scale ω =  f/k is small, then the regulation processes are relatively slow and the gene switch (on and 
off) slower than the protein synthesis and degradation. In this non-adiabatic regime, the couplings among genes 
through protein regulations are loose due to the weak regulations. The individual genes can be either switched on 
or off without much influences from others. In this non-adibatic regime, the number of states one expects from 
the gene network can reach up to 2N where N is the number of genes. When the relative time scale ω =  f/k is large, 
then the regulation processes are fast and the genes switch faster than the protein synthesis and degradation. In 
this adiabatic regime, the couplings among genes are tight due to the strong regulations. The on and off states of 
genes are controlled by the interactions with other genes. Therefore, one expects that only finite number of states 
emerge as a result of gene interactions.

Due to the intrinsic and extrinsic fluctuations, the gene network dynamics is stochastic. Following the indi-
vidual stochastic trajectory will not provide global information. We explore the probability evolution instead. The 
steady state probability landscape quantifies the chances of each individual state. It gives a global description for 
the network system. From the simulations of the kinetic processes involved in our cancer gene network motif, we 
see the steady state probability (Pss) and potential landscape (U =  − lnPss) projected in two and three dimensions 
with respect to two protein concentrations (gene products). Heterogeneity is directly related to the number of 
attractors of the landscape. The numbers and locations of the attractors determine the possible phenotypes that 
can be observed25,32,33.

As shown in Fig. 2(a,d,g), in the adiabatic regime when the gene network is strongly coupled (gene regulation 
time scale is much faster than the protein synthesis and degradation), three states emerge. Two states are mutually 
repressive to each other. One state has one gene on and the other gene off. This leads to the state with one gene 
expression high and the other gene expression low. Here gene expression is represented by the corresponding 
protein concentration. The other state is just the opposite. The high expression of the first gene and low expression 
of the second gene can be used to represent the cancer state, while the high expression of the second gene and low 
expression of the first gene can be used to represent the normal state. Then we see both normal and cancer states 
emerge from the gene network motif. Furthermore, both states are quantified by the two basins of attractions on 
the landscape with large probability. The reason of the normal and cancer state/basin appearance lies in the fact 
of the mutual repressing interactions among the genes. We also notice that a third state quantified by the basin 
of attraction emerges representing an gene on-gene on state. The appearance of this state/basin is from the self 
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activation of both genes. Both experimentally and clinically, premalignant states between normal and cancer have 
been observed34,35. The emergence of intermediate state/basin between normal and cancer state in this core cancer 
gene regulatory motif may shed lights on quantifying the premalignant state.

As shown in Fig. 2(b,c,e,f,h,i), in the non-adiabatic regime when the gene network is weakly coupled (gene 
regulation time scale is slower than the protein synthesis and degradation), more states quantified by local basins 
of attractions emerge. As mentioned, the slow regulations can reflect epigenetic effects of extra time scales from 
DNA methylation and histone regulations. The normal, intermediate premalignant and cancer state basins still 
persist under slow regulation regime. Besides these three major state basins (normal, cancer and intermediate 
state), we have observed the emergence of many local state basins around the major basins. The multiple local 
basins around the major basins give a quantitative picture of the cancer heterogeneity.

We also see the emergence of other states. Cancer and premaliganant states are not individual states but com-
posed of many states as we can see clearly under the epigenetic conditions (relatively slow regulations). The 
possible physical mechanism of the cancer heterogeneity is thus from the weakening of the regulatory interac-
tions among genes in the gene network. The epigentics such as DNA mythylation and histone remodification 
can naturally lead to the effective weakening of the gene interactions. The results of our model show that both 
premalignant intermediate and heterogeneity can coexist under epigenetic conditions. This is consistent with the 

Figure 2. Two and Three dimensional landscape from fast regulation adiabaticity to slow regulation 
non-adiabaticity at ω = 100, 0.1, 0.001. (a) Two dimensional steady state distribution at ω =  100. (b) Two 
dimensional steady state distribution at ω =  0.1. (c) Two dimensional steady state distribution at ω =  0.001. 
(d) Three dimensional steady state distribution at ω =  100. (e) Three dimensional steady state distribution 
at ω =  0.1. (f) Three dimensional steady state distribution at ω =  0.001. (g) Three dimensional landscape at 
ω =  100. (h) Three dimensional landscape at ω =  0.1. (i) Three dimensional landscape at ω =  0.001.
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experimental findings36. Our model gives the underlying physical mechanisms behind this. The regulatory inter-
actions lead to the premalignant intermediate state (the self activation in this network motif) while the epigenetic 
interactions lead to cancer heterogeneity.

From another angle, we can see as the gene network is weakly coupled due to the weakening of interactions 
in Hb of Eq. (1). (with epigenetics of DNA methylation and histone remodification being possible source), one 
expects to have the emergence of many states or phenotypes. The state basins are relatively shallow. Thus this is a 
possible physical mechanism of cancer heterogeneity. As the coupling among genes become stronger, more and 
more states are merged together. Shallower basins are merged to deeper and larger basins. As a result, there are 
less phenotypic states but relatively more stable. While the weak couplings between genes (or landscapes of fixed 
gene states) at non-adiabatic regime can explain qualitatively the emergence of alternative phenotypic states, we 
will perform a quantitative study of fluctuation, stability, state transitions and thermodynamic properties to fur-
ther uncover the relationship between heterogeneity and time scale (non-adiabaticity) of the regulation dynam-
ics. The epigenetics can be seen as environments of genes. The effects or strengths of epigenetics physically can be 
quantified through the dynamical timescale involved.

The heterogeneity in terms of concentrations, fluctuations through Fano factors and associated distributions 
on landscape topography shows similar heterogeneity from intermediate to extreme non-adiabaticity (since inter-
mediate non-adiabaticity we chose here already represents enough weak couplings that almost all possible phe-
notypic states emerge). The above similarity in heterogeneity can be further differentiated through the kinetics. 
This is done through the explorations in quantitative details of heterogeneity from kinetic rate and path transition 
perspectives in supporting information. We see that intermediate level of non-adiabaticity seems to give more 
kinetic heterogeneity due to the interplay of regulation and synthesis/degradation time scales.

Cancer Heterogeneity from Fluctuations in Concentrations and Kinetics. We can further charac-
terize the cancer heterogeneity from the fluctuations in concentrations and kinetics. Figure 3 shows the Fano fac-
tor which is the ratio of variance versus the mean of the protein concentrations (gene products). In a pure random 
process, statistical fluctuations from intrinsic noise has a Poisson nature in which case Fano factor is equal to 1. 
We see when the adiabaticity parameter ω of relative regulatory binding/unbinding to protein synthesis and deg-
radation is large, the fluctuations is non-Poisson in this adiabatic regime. This is due to the nature of underlying 
reactions of protein synthesis and degradation. On the other hand, when the adiabaticity parameter ω of relative 
regulatory binding/unbinding to protein synthesis and degradation is small, the fluctuations are significantly 
larger. The significant larger fluctuations give the variances and heterogeneity. This heterogeneity is coming from 
the emergence of the many local state basins of attractions.

In Fig. 4(a–c), we also show the heterogeneity in kinetics. We plot the statistical distribution of first passage 
time from normal to cancer state. We see when the adiabaticity parameter ω of relative binding/unbinding to 
synthesis and degradation is large (Fig. 4(a)), the distribution of kinetics is rather narrow in this adiabatic regime. 
This is due to the limited kinetic paths between normal and cancer state basins. On the other hand, when the 
adiabaticity parameter ω of relative binding/unbinding to synthesis and degradation becomes smaller (Fig. 4(b)), 
the statistical distribution of the kinetics is significantly wider. The significant wider distribution indicates that 
there are many more pathways from normal to cancer state basins. This shows the kinetic variance and heteroge-
neity. Again, this kinetic heterogeneity is coming from the emergence of the many local state basins of attractions. 
These new basins of attractions lead to a rougher landscape and therefore multiple non-equivalent pathways from 
normal to cancer state. Finally, when the adiabaticity parameter ω of relative binding/unbinding to synthesis and 
degradation is extremely small (Fig. 4(c)), the statistical distribution of the kinetics becomes narrower. Under 
this condition, the rate limiting step is the switching speed of the genes rather than the protein synthesis or deg-
radations. Due to the slowness of the switching speed caused by the slow regulation, single or limited switchings 
dominate the kinetics. Therefore, although there are more local basins, there are only limited explorations under 
extreme slow switchings and the kinetic heterogeneity becomes less.

Figure 3. Fano factor from slow regulation non-adiabaticity to fast regulation adiabaticity. 
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Cancer Heterogeneity from Kinetic Paths, Energy Cost and Stability. We can see the effects of 
heterogeneity on the kinetic paths from normal state to cancer state. We show the optimal kinetic paths when the 
adiabaticity parameter ω of relative binding/unbinding to synthesis and degradation is large (Fig. 5(a)). We can 
see there is almost a unique path from normal state to cancer state through the intermediate premalignant state. 
The fluctuations around the optimal paths are small and the optimal path tube is narrow. However, when the adi-
abaticity parameter ω of relative binding/unbinding to synthesis and degradation is small (Fig. 5(b)), the optimal 
path from normal state to cancer state deviates from the adiabatic optimal path. This is due to the emergence of 
more local state basins of attractions, leading to the shifts for the optimal paths. Furthermore, we see the fluc-
tuations around this optimal path is relatively large compared with the adiabatic path, resulting a wider optimal 
path tube from normal to cancer state. Again, this is due to the presence of the multiple local state basins. Notice 
the discussion on the path fluctuations here in relation to the heterogeneity is consistent with the discussion on 
the kinetic heterogeneity (Fig. 4) where wider distribution of kinetics implies multiple paths from normal state 
to cancer state.

The cancer heterogeneity can also be reflected by the energy cost per gene switching. Being a non-equilibrium 
dynamical system, there is energy or heat dissipation measured by the entropy production associated with the 
irreversibility from the non-equilibriumness20,32,37. Figure 6 shows the energy cost per gene switching from 
non-adiabaticity of slow regulation compared to protein synthesis/degradation to adiabaticity of fast regulation 
compared to protein synthesis/degradation. We see the energy cost per gene switching increases monotonically 
with respect to the slower regulation compared to the protein synthesis/degradation (decrease in ω). The increase 
of the energy cost is due to the heterogeneity in non-adiabatic slow regulation regime from the emergence of mul-
tiple state basins of attractions. Gene switchings cost more energy because of the number of state flipping is more.

The heterogeneity can also be seen from the stability explorations. The stability of the normal and cancer state 
can be quantitatively measured by the kinetic time from one state to another. If the kinetic transition time from 
normal(cancer) state to cancer(normal) state is long, then the stability of normal(cancer) state is high. This is 
because the normal state can then be maintained for a long (short) time. In Fig. 7, we see the mean first passage 
time from normal to cancer state with respect to the adiabaticity parameter ω of gene regulation versus protein 
synthesis/degradation. The kinetics shows a non-monotonic behavior. At very low ω of extreme non-adiabatic 
regime with slow regulation, the rate limiting step is the gene switching. Increasing the regulation speed leads to 

Figure 4. FPT distribution from slow regulation non-adiabaticity to fast regulation adiabaticity. (a) FPT 
distribution at ω =  100. (b) FPT distribution at ω =  0.1. (c) FPT distribution at ω =  0.001.

Figure 5. Compare optimal path(white and green) at adiabatic limit and moderate non-adiabatic region. 
Colored paths are real paths generated by Gillespie simulation. (a) ω =  100 Adiabatic Approximation.  
(b) ω =  0.1 x−c Approximation.
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the faster switching and therefore faster kinetics. On the other hand, as the regulation time scale becomes faster 
than the protein synthesis and degradation, there is no sufficient time for protein copy numbers to reach to the 
transcription level corresponding to the gene state for each gene switching. Therefore, the rate limiting step is 
no longer gene switching anymore. In fact, the adiabatic barrier from one transcription (concentration) level to 
another is determined by the protein synthesis/degradation averaged over the rapid gene switchings. The faster 
the regulation speed or gene switchings, the harder for the gene transcription in terms of protein concentration 
level to catch for the specific gene state, therefore the kinetics becomes longer. Therefore both faster and slower 
regulation or switching give slower kinetics, while in the moderate regime of ω of gene regulation or switching 
relative to protein synthesis/degration, there is an optimal kinetic speed from normal to cancer state. Therefore, 
from the kinetics, we can see the stability is high at large ω (adiabatic regime). This is due to the limited state 
basins with significant depths. For smaller ω (non-adiabatic regime), the faster kinetics emerges. This implies less 
stability. The lower stability is from the the emergence of the multiple states with shallower basins. The very small 
ω of extreme non-adiabatic regime only has a moderate increase of the kinetic time scale and therefore slightly 
higher stability relative to the optimal one, in contrast with the adiabatic case for much longer duration and 
higher stability. As we can see the lower stability is another reflection of the underlying heterogeneity.

Conclusion
In this study, we use a core cancer gene regulatory motif to study the possible source of cancer heterogeneity. 
Normal state and cancer state, as well as intermediate states emerge as possible phenotype alternations in both 
adiabatic fast and non-adiabatic slow regulation regime. Slow regulations can come from epigentics of DNA 
methylation and histone remodification which lead to weaker coupling among genes. As a result, more steady 
states corresponding to more phenotype manifestations emerge. The cancer heterogeneity is reflected from the 
emergence of more phenotypic states, the larger transcription level concentration fluctuations, wider kinetic dis-
tributions and multiplicity of kinetic paths from normal to cancer state, more energy cost per gene switching, and 
weaker stability. The relationship between non-adiabatic slow regulation dynamics and epigenetic heterogeneity 
in cancer gene networks calls attention for further study.

Figure 6. Energy cost per turnover from slow regulation non-adiabaticity to fast regulation adiabaticity. 

Figure 7. MFPT from slow regulation non-adiabaticity to fast regulation adiabaticity. 
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