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Fluorescence microscopy 
image noise reduction using a 
stochastically-connected random 
field model
S. A. Haider1, A. Cameron1, P. Siva1, D. Lui1, M. J. Shafiee1, A. Boroomand1, N. Haider2 & 
A. Wong1

Fluorescence microscopy is an essential part of a biologist’s toolkit, allowing assaying of many 
parameters like subcellular localization of proteins, changes in cytoskeletal dynamics, protein-protein 
interactions, and the concentration of specific cellular ions. A fundamental challenge with using 
fluorescence microscopy is the presence of noise. This study introduces a novel approach to reducing 
noise in fluorescence microscopy images. The noise reduction problem is posed as a Maximum A 
Posteriori estimation problem, and solved using a novel random field model called stochastically-
connected random field (SRF), which combines random graph and field theory. Experimental results 
using synthetic and real fluorescence microscopy data show the proposed approach achieving strong 
noise reduction performance when compared to several other noise reduction algorithms, using 
quantitative metrics. The proposed SRF approach was able to achieve strong performance in terms of 
signal-to-noise ratio in the synthetic results, high signal to noise ratio and contrast to noise ratio in the 
real fluorescence microscopy data results, and was able to maintain cell structure and subtle details 
while reducing background and intra-cellular noise.

Since its conception, fluorescence microscopy has become an essential part of a molecular biologist’s toolkit. 
It allows for the assaying of a multitude of parameters such as subcellular localization of proteins, changes in 
cytoskeletal dynamics, protein-protein interactions and the concentration of specific cellular ions. This technique 
utilizes fluorescent molecules or “fluorophores”. The principle is that after a fluorophore absorbs or is excited by a 
photon of a particular wavelength, it fluoresces by releasing another photon, typically of a longer wavelength. The 
difference between the excitation and emission wavelengths is known as the Stokes shift. This property allows for 
a fluorescence microscope with a specific wavelength illuminant to only view light emitted by the fluorophore.

Fluorescence microscopy provides an insight into the cellular world, but due to the inherent characteristics of 
the modality, non-representative intensity variations are present in the images. The variations in these images can 
interfere with the biologist’s research by making it difficult to observe low intensity signals and fine detail. These 
variations primarily exists due to the Poisson statistics of the incoming photons onto the detector with additional 
influence from sources like the detector itself, the optical setup, and the experimental parameters1,2. In addition, 
there can be additional unintentional signal from auto-fluorescence within cells and from the unintended accu-
mulation of fluorescent tags on organelles producing a signal bias which can interfere with observations3.

To reduce the intensity variations that can come from the detector, some fluorescence microscopes use an 
electron multiplying charge-coupled detector4. This detector uses an electron multiplying register at the end of the 
normal serial register to amplify weak signals before noise is added by the readout amplifier5. While this method 
does reduce the effects of readout noise, the resulting images still exhibit variations due to photon arrival and 
thus post-processing algorithms are needed to reduce the variations further. A number of algorithms have been 
proposed for the purpose of noise reduction, ranging from wavelet6–9, iterative10 and diffusion11–15 methods to 
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non-local mean16,17 and graphical model frameworks18–20 based methods, all of which make use of the underlying 
characteristics of the images.

In many imaging applications, the typical assumption is that the imagery is contaminated by an additive, 
stationary Gaussian white noise source, and as such traditional noise reduction algorithms based on stationary 
Gaussian noise assumptions may be utilized. However, in the case of fluorescence microscopy, the imagery is 
contaminated with intensity variation and noise from inherent properties of the imaging modality and captur-
ing apparatuses. The variation from the imaging modality is dominated by photon arrival and can be modelled 
using Poisson statisitcs, while the noise from the capturing apparatuses can be modelled from Gaussian sta-
tistics2,21,22. Due to the variations (which will be here on referred to as noise, for simplicity) from the imaging 
modality following a different statisitcal model, the direct applciation of noise reduction models based on sta-
tionaty Gaussian noise assumptions would result in sub-optimal performance and possibly the rise of processing 
artefacts. Existing noise reduction algorithms accommodate for Poisson and Poisson-Gaussian noise sources 
through several strategies. Variance stabilisation transforms9,17,23 have been used to transform Poisson-Gaussian 
noise into signal-independent, constant variance additive Gaussian noise24,25, allowing it to be handled using tra-
ditional methods based on stationary Gaussian noise assumptions. Risk estimators for noise parameter estimation 
that incorporates Poisson parameters directly into their formulation have also been used7,10,18,26. Lastly, algorithms 
have been proposed that can take the stochastic nature of the Poisson noise into account and model distribution 
similarly on stochastic distances16. All these methods perform fluorescence microscopy noise reduction to good 
effect.

In this paper, we propose a novel algorithm for noise reduction of fluorescence microscopy images. We for-
mulate the noise reduction problem as a maximum a posteriori (MAP) problem that utilizes a novel random 
field model called a stochastically-connected random field (SRF) model. This model better accounts for abrupt 
data uncertainties while preserving structure making it well-suited for dealing with the fine detail and noise in 
fluorescent microscopy images and is demonstrated doing so in this paper with competitive quantitative results.

The rest of the paper is organized as follows. The formulation of the stochastically-connected random field 
model and its application to noise reduction of fluorescence microscopy images will be shown in sec:method 
along with the choice of parameters for the proposed approach and the experimental design for validation will be 
described. Finally, experimental results are presented in sec:results, with discussion presented in sec:discussion.

Methods
In the fluorescence microscopy noise reduction problem, the underlying goal is to obtain an estimate of a 
noise-free fluorescence microscopy image, Û, given noisy observations,  , of the noise-free image, U. In the case 
of fluorescence microscopy, U will be analogous to a representation of the number of true incident photons on the 
detector. We define U, Û, and   as sets of M pixels:

= , …, , …, ( )U u u u{ } 1i M1

= , …, , …, ( )ˆ ˆ ˆ ˆU u u u{ } 2i M1

= , …, , …, ( )v v v{ } 3i M1

The noise-free image, U, has been contaminated by noise processes following a combination of Poisson and 
Gaussian statistics due to the inherent properties of the imaging modality and capturing apparatuses2,21,22:

= + ( )g Z 40V ε

where Z is U degraded by a Poisson process, g0 is the gain applied to Z, and  is a Gaussian distribution, N εσ( , )m 2 .
We formulate this noise reduction problem as a MAP estimation problem. Given  , we obtain the MAP esti-

mate Û as:

= ( ) ( )Û P Uarg max 5U

where ( )P U   is the posterior probability. Taking a note from conditional random fields [?], we can reformulate 
( )P U  by decoupling it into the product of a unary term and a pairwise term:

 = ( ) ( ) ( )Û P U P Uarg max 6U
L P

where ( )P UL   is the unary term and ( )P UP  is the pairwise term of the posterior probability ( )P U . In the case 
of noise reduction, the pairwise term is a spatial constraint that will enforce a local smoothness prior on U based 
on the observations  , while the unary term seeks to minimize the error between the noise-free estimate at a pixel 
(ûi) and the observation (vi). The conditional independence assumption of the measurements given their states27 
gives us the general noise reducing form of the MAP estimate as:

∏= ( ) ( )
( )=

Û P u v P u varg max
7U i

M

L i i P i i
1

Modelling of the pairwise term in a way that provides a meaningful constraint that accounts for abrupt data 
uncertainties while maintaining awareness of image structure is important for noise reduction applications like 
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fluorescence microscopy, where fine structure is important. In fluorescence microscopy, fluorophores can be used 
to not only highlight the relatively large cytoplasmic fluid, but also highlight fine protein dynamics. These fine 
protein dynamics can be lost depending on the choice of the pairwise term. To this end, we propose a novel type 
of random field (RF), which we will denote as a stochastically-connected random field (SRF), to model the pair-
wise term ( )P UP  . We first define the SRF model, then formulate our noise reduction problem using an SRF 
model.

Stochastically-connected Random Field (SRF). An example of a popular random field (RF) configura-
tion is illustrated in Fig. 1. Each node in the RF represents a pixel in the image, and the random variables ui and uj 
are the noise-free image intensities of the ith and jth nodes. The pairwise term based upon the RF can be written as:

 ( ) = (− ( )) ( )P U
Z

E U1 exp 8P P

V
K C
∑ ∑( ) =





( )



 ( )∈ ∈

E U w f u
9

P
k c

c k c

where Z is a normalization constant to represent the value as probabilities,  denotes the set of all clique templates 
in the RF, uc is the subset of states of the RF determined by clique templates ∈c , fk denotes the kth arbitrary 
feature function, and  denotes the number of feature functions.

In a standard RF, ui is connected to all sites in a local neighbourhood with a weight wi,j as illustrated in Fig. 1 
(since we use a binary clique in this paper, we change wc to wi,j for simplicity of formulation). For example in 
Fig. 1, an 8-connected neighbourhood structure is illustrated. A common approach to obtaining weights for the 
RF from the observations is:

σ
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−
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where ⋅ 2 is the L2 norm and σ is a smoothness constant. There are two main limitations with this approach. 
First, it is sensitive to abrupt data uncertainties due to factors such as outlier intensities, which will still have a 
contribution to the smoothness term and thus affect estimation quality. Second, it has poor sensitivity to struc-
tural characteristics and detail in images, thereby also potentially reducing estimation quality. Both of these lim-
itations can affect noise reduction performance if used for the purpose of fluorescence microscopy. Some 
approaches have tried to improve outlier robustness of such weights [?], but addressing the second main limita-
tion at the same time as the first main limitation is not well-explored.

To address these two important issues, one can enforce a deterministic threshold on the weights based on 
some similarity criteria such as the L2 norm (similar to the approach taken by Boykov et al.28):

σ=











−
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− <
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where T is a threshold that dictates edge connectivity. In the presence of an abrupt change ( − ≥ )‖ ‖v v Ti j 2
, the 

connectivity weight wi,j becomes 0, thus indicating a lack of connectivity between sites i and j and hence no 
smoothness constraint is enforced between these two sites. Therefore, the connectivity of sites in the RF is 
enforced deterministically based on abrupt changes in the underlying data characteristics. In this way, one can 
improve robustness to abrupt data uncertainties and improve structural preservation. One of the biggest issues 
with taking such an approach is that it is highly sensitive to the choice of the connectivity threshold T. A high T 
may improve structural preservation but be poor at handling noise and data uncertainties. A low T may provide 
better noise and data uncertainty but lead to poor structural preservation. To address this issue, we avoid this 
“hard thresholding” approach by employing random graph theory29,30, where edge connectivity between sites is 
determined in a stochastic manner. This amalgamation of random graph theory and random field theory results 
in an SRF.

Figure 1. A random field with 4-connected smoothness constraint. Each connection weight wi,j∈c is obtained 
as an exponentially weighted difference between observations ui and uj.
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The SRF is an RF where the edge connectivity and weights are stochastically determined, resulting in random 
graphs where the edges exist with a certain probability γ. The clique (clq) structure and connectivity of two nodes 
are determined based on a distribution (illustrated here using indicator function 1(⋅ )):

( , ) =





≥ γ
( )

,i j
P

1
1
0 otherwise 12clq

i j

γ = ( , ( − − )) ( )‖ ‖Q v vmin 1 exp 13i j 2

where Q is a flexibility constant and Pi,j is the probability of connectivity between i and j. As such, the weighting 
function (weight of the smoothness constraint) for SRF can be written as:
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The novelty of this random field relates to the stochastic clique structures. The set of clique structures of the 
SRF, , is determined based on a distribution. In this paper, binary cliques are utilized; according to the neighbor-
hood  , two nodes , ∈u u{ }i j   are connected based upon a probability drawn from the distribution.

The connectivity weights for edges between sites, as well as the existence of said edges, are no longer determin-
istic but randomly sampled from an exponential distribution, as determined by γ and illustrated by the dashed 
connections in Fig. 2. The exponential distribution does allow for the connection of pixels across more abrupt 
data changes with a small probability. The energy function for SRF is the same as Eq. (9) with weights defined per 
Eq. (14).

To compute the unary term ( ( )P UL  ), we assume the conditional independence assumption of measurement 
given label. Due to the Poisson-Gaussian characteristic noise sources in fluorescence microscopy (as modelled in 
Eq. (4)), we wish to account for the Poisson-Gaussian noise characteristics in the unary term ( )P UL  . One chal-
lenge with incorporating the Poisson-Gaussian noise statistics in the unary term directly is that the optimization 
process comes significantly more challenging from a computational perspective. Therefore, to reduce the com-
plexity of the optimization process while still taking the Poisson-Gaussian noise characteristics into account, a 
variance-stabilization transform9,22,24,25,31,32 is incorporated into an energy function ( )E UL , which in effect 
transforms the Poisson-Gaussian noise characteristics into approximately Gaussian distributed noise 
characteristics:

 ( )∑ σ σ( ) = − ( − ) + − − ( − ) +
( )

ε ε
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where g0 is the gain on the photon signal, m and σε are parameters for the estimated Gaussian noise distribution 
ε N σ( , )ε~ m 2 . This energy function ( )E UL  can then be used within a negative exponential unary term ( )P UL   
as:

( ) = (− ( )) ( )P U E Uexp 16L L 

To minimize the energy function and infer the configuration with highest probability, the unary and pairwise 
energy functions ( ( )E UL   and EP(U)) are aggregated:

  ( ) = ( ) + ( ) ( )E U E U E U 17L P

Next, we explain noise reduction using SRF.

Figure 2. A stochastically-connected random field (SRF) with an 8-connected smoothness constraint. 
Each connection weight wi,j∈c is stochastically sampled from an exponential distribution. The use of stochastic 
weights results in an uncertainty on which of the weighted edges between sites exist, as indicated by the dashed 
connections.
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Noise reduction with SRF. We use a multi-layer, higher order SRF for the noise reduction of fluorescence 
microscopy images. A higher order connectivity model was employed to better characterize local spatial-feature 
context, while the multi-layer structure allows for better characterization of complex structural data intricacies at 
different scales. The multi-layer structure is inspired by iterative scale-space, with the output state of layer l −  1 
being used as the observation of layer l. The multi-layer, higher order SRF is illustrated in Fig. 3. The pairwise 
energy for the lth layer SRF can be written as:

K C
∑ ∑( ) =





( )



 ( )

−
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E U U w f u

18
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k c
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where Ul is the state at layer l, Ul − 1 is the state at layer l −  1, and = ,w wc
l

i j
l  is the weight of the smoothness con-

straint between pixels i and j computed using Ul − 1.
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The 1clq(i, j) has the same functionality like before but:

γ = ( , ( − − )) ( )
− −‖ ‖Qmin 1 exp 20i

l
j
l1 1

2
 

where i  is region defined by a vector of observation values from Ul − 1 corresponding to a set of nodes centered 
at node i, and . 2 is the L2-norm between two vectors. Unlike Eq. (14), the computation of ,wi j

l  in Eq. (19) uses the 
solution from the previous level as well as −

i
l 1  and −

j
l 1  which are regions surrounding −ui

l 1 and −uj
l 1. This is 

because the regional difference allows for characterization of local spatial-feature context and thus, results in 
better estimation of intensity differences in the presence of noise rather than using per-pixel differences. Typically, 
this assumption holds for fluorescence microscopy due to the point spread function of the imaging system being 
larger than a single pixel and having a Gaussian profile33.

The multi-layer structure allows us to compute our smoothness weight ,wi j
l  based on the solution of the previ-

ous layer. Not only does it allow for better characterization of data intricacies at different scales, but this also 
results in an iterative improvement on the smoothness as the noise is reduced at each layer, allowing a better 
estimate of the weight to be computed.

The edges stochastically connect i to all sites j in a local neighbourhood  i surrounding i, where the size of i  
is greater than or equal to 3 ×  3. This results in a higher order SRF, but we find that the higher-order connections 

Figure 3. A multi-layer, high-order, stochastically-connected random field (SRF). At each layer, the 
connection weights , ∈wi j c

l  are stochastically obtained from the exponential difference between the L2 norm of 
the regions , ∈i j c  surrounding each of the pairs of points from the previous solution Ul − 1 and thusly, each node 
is stochastically-connected to a local neighbourhood  i, where size of i  is greater than 3 ×  3, creating higher-
order connections.
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are particularly good for fluorescence microscopy images due to the presence of large homogeneous regions in the 
images.

By utilizing this novel clique structure and its corresponding weights, the SRF can involve the measurement 
into the priori model implicitly. As a result, the states in the SRF are not assumed independent on measurements.

Optimisation. We obtain an approximate solution of Eq. (9), using Eq. (18), by using gradient descent. The 
iterative solution for a site s is:

β= −
∂ ( )
∂ ( )

, + , −
ˆ ˆU U

E U U
U 21i

l n
i
l n i

l
i
l

i
l

1 1

where β is the step size and n =  0…N −  1 is the nth iteration of gradient descent for a total of N iterations and we 
introduce λ as a regularization term between the likelihood and prior term for our MAP problem. We initialise 
the iterative solver with the noisy image == , =u vs

l n
s

0 0
 and at each layer l >  1, we set =, = − , = −u us

l n
s
l n N0 1 1.

For each layer l, we do not completely solve for Û
l, instead only taking a single gradient step (i.e. N =  1). First 

we fix wsc
l  then solve for Û

l
, then we fix Û

l
 and solve for +wsc

l 1. In this way we can simultaneously optimise for U and 
wsc for our multi-layer SRF.

Algorithm Design. The choice of parameters is important when using an SRF model to address the fluores-
cence microscopy noise reduction problem. Several parameters can be tuned to produce varying estimates of the 
spatial prior in the SRF. In summary, there are two parameters of the SRF whose consequences are worth men-
tioning: i) the neighbourhood size,  i at site i and ii) the flexibility constant, Q. The modification of  i at site i 
dictates the spatial extent to which we can guess smoothness. The modification of the flexibility constant, Q, 
adjusts the existence of edges between states where there is likely to be a smooth signal. We will fix  i to have a 
fairly large size as recommended in this paper, 11 ×  11, and the flexibility constant will be the smoothness con-
stant. The step size parameter for gradient descent is trivial and will be fixed to β =  0.5.

The remaining parameters for noise reduction (ie. the number of layers, l, and the regularization term, λ) 
will be tuned using quantitative metrics. Explanation for the experimental setup for the parameter tuning will 
be explained in section 0. The smoothness constant, σ, for each channel was chosen using estimates of the back-
ground SNR.

Experimental Setup
In this section we outline the synthetic and empirical datasets used and the quantitative metrics used in experi-
menting and validating the performance of the proposed algorithm (SRF) existing methods.

Synthetic Data. To objectively demonstrate the efficacy of the SRF on reducing noise in fluorescence micros-
copy images, we generated a synthetic fluorescence microscope image. To mimic the formation of an image from 
a fluorescence microscope, we took the general structure of an image from the Yeast Resource Centre Public 
Image Repository4 and incorporated additional information from different sources, contributing to both signal 
and noise.

The synthetic image is based on the cyan channel of experiment 24 from the Yeast Resource Centre Public 
Image Repository(YRCPIR)4, where we had its noise floor removed and then quantized on an 8-bit scale. These 
new pixel intensities were then interpreted as the number of photons captured without statistical uncertainties 
(U).

Similar to Boulanger et al.22, we added additional background signal that can arise from autofluorescence 
within the cell as well as from the unintended accumulation of fluorescent tags on organelles. We simulated this 
background signal with 200 Gaussian profiles with an assumed photon count from 0 to 20. To simulate the sta-
tistical uncertainty associated with photon arrival, realized as a Poisson distribution, we followed Verveer et al.3 
by using a scaled version of the certain photon count, βU, as the mean of a Poisson distribution. With an increase 
in β, the average number of photons detected increases and decreases noise level. Verveer et al.3 describe the 
reciprocal of β as the photon-conversion factor which is the product of several multiplicative factors, including 
integration time and the quantum efficiency of the detector. The dark current from the detector that arises from 
thermal energy can be modelled as additive Gaussian noise to the signal on the detector. We added Gaussian noise 
with mean of 12 and a standard deviation of 0.5. Figure 4 shows the FM phantom with no added noise and the 
phantom with added noise. The phantom with added noise will be the baseline measure of noise reduction in the 
synthetic tests.

We generated images with varying β parameters to simulate conditions ranging from photon starved (β =  0.1) 
to photon nominal (β =  0.9). All the other added signal and noise stayed constant to mimic constant temperature 
and consistent system specifications.

Empirical Data. Raw fluorescence microscopy datasets were taken from YRCPIR4 for algorithm validation. 
These images were taken by members of the Trish Davis laboratory in the Department of Biochemistry at the 
University of Washington studying Saccharomyces cerevisiae. The images were of live cells mounted on agarose 
pads acquired with a DeltaVision System microscope from Applied Precision.

Two experiments were chosen from the set available on the YRCPIR. The criteria used for choosing these 
experiments were to ensure that the images from these experiments had a significant presence of noise to illus-
trate the efficacy of the tested methods. A constraint placed on the choices however was that there had to be a 
contrast to noise ratio (CNR) of about 10 dB between the intracellular signal and background. The experiments 
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chosen were experiment 80 and the first colour channel of experiment 165099. Both the colour channels of exper-
iment 80 were chosen since they satisfied the criteria and constraints; however, only the first colour channel was 
selected for experiment 165099 because the other did not satisfy the CNR requirement. The experiment was cho-
sen nonetheless due to the interesting intracellular fluorescing structure. The fluorescent protein and the number 
of colour channels acquired in each of these experiments are summarized in Table 1.

In the experiments considered above, only the colour channels were used for algorithm validation. The other 
channels typically present in the experiments are the FRET channels, which differentiate the signal between 
closely interacting molecules, and the differential interference contrast channel. The differential interference con-
trast and FRET channels were discarded because their image intensity distributions are not well-modelled by the 
Poisson-Gaussian mixture used here, and thus beyond the scope of this work.

Competing Algorithms. We compared against state-of-the-art spatial algorithms for fluorescence micros-
copy noise reduction (Implementation sources of these algorithms are listed in the Supplementary Information). 
The algorithms compared against were:

NCDF Adaptive Complex Diffusion Despeckling Filter34.
DiffusionO Anisotropic Non-Linear Diffusion Imaging13.
Molecular Hybrid Model for Molecular Image Denoising15.
MSVST Multiscale Variance-Stabilizing Transform9.
VWNF Versatile Wavelet Domain Noise Filtration Technique6.
PURELET PURE-LET for Poisson Image denoising7.
Each algorithm has had their parameters trained for fluorescence microscopy image noise reduction, evalu-

ated through quantitative metrics, for comparison. This process is outlined in the next subsection. The proposed 
algorithm will be referred to as SRF in figures and tables.

Quantitative Analysis. We divided the quantitative analysis into two sections: synthetic and empirical. For 
the synthetic analysis, we evaluated each algorithm based on the signal-to-noise ratio (SNR), the improvement 
in signal-to-noise ratio (ISNR), and the peak signal-to-noise ratio (PSNR), between the noise-reduced image 
and the synthetic ground truth. The empirical analysis is done by comparing the SNR and CNR values of the 
noise-reduced images between tested methods as well as the original noisy images. This was done for each chan-
nel in the empirical experiments separately.

To improve fairness of the tests, all tested methods are configured using a grid search to achieve optimal PSNR 
on a subset of the synthetic data and used those same parameters on the remaining synthetic data. The empirical 
data from the YRCPIR had the parameters optimized for each tested method using a grid search to maximize 
SNR.

To evaluate the effectiveness of the algorithm on synthetic data, we used the SNR, ISNR and PSNR. The SNR 
provides a decibel representation of the ratio between the squared sum of the signal and the mean squared error 
(MSE) between the noisy and noise reduced image, Eq. (22). The ISNR value provides a decibel representation 
of the ratio between the MSE between the noisy image and the ground truth and the MSE between the noisy and 
noise reduced image, Eq. (23). The PSNR provides a decibel representation of the ratio between the maximum 
possible data value over the MSE between the noise reduced image and the ground truth, Eq. (24). The higher any 
of these metrics, the closer the denoised image is to the ground truth.

Figure 4. Synthetic noise phantoms. (a) Noise-free phantom, and (b) Noise contaminated phantom.

Experiment # Fluorescent Protein Colour Channels

80 KIP3 (GFP) Green, Red

NUF2 (CHERRY)

165099 Nil Blue

Table 1.  Properties of Validation Datasets. Summaries of the experiment number, fluorescent proteins and 
colour channels for the experiments used for validation experiments.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:20640 | DOI: 10.1038/srep20640

Figure 5. Regions used for calculating SNR and CNR for the empirical experiments. (a) Experiment 80: green 
channel, (b) experiment 80: red channel, and (c) experiment 165099: blue channel. The red bounding box represents 
a assumed smooth cell signal region and the blue bounding box is a region of assumed smooth background.

Figure 6. Baseline images used for empirical parameter tuning. (a) Experiment 80 baseline multi-channel 
image, and (b) experiment 165099 baseline multi-channel image.

Figure 7. Noise reduction results for the noise-contaminated synthetic phantom having a photon-
conversion factor (β) of 0.5. (a) Baseline (PSNR: 31.32 dB), (b) SRF (PSNR: 38.26 dB), (c) NCDF (PSNR: 
24.95 dB), (d) DiffusionO (PSNR: 32.17 dB), (e) Molecular (PSNR: 29.92 dB), (f) MSVST (PSNR: 28.70 dB), (g) 
VWNF (PSNR: 33.94 dB), and (h) PURELET (PSNR: 27.99 dB).
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Method
SNR(dB)

β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9
Baseline 2.61 3.70 4.88 6.13 7.40 8.53 9.25 9.31 8.67
SRF 7.60 17.00 19.72 16.80 20.34 18.85 18.05 18.47 18.11
NCDF 1.11 2.78 5.73 6.15 7.03 7.96 6.85 7.74 8.44
DiffusionO 7.53 7.53 10.42 10.20 14.25 15.51 14.39 14.83 16.02
Molecular 4.03 4.03 7.16 9.07 12.00 10.97 11.46 10.56 10.45
MSVST 10.68 10.68 10.50 10.78 10.56 10.97 10.48 10.56 10.64
VWNF 13.20 15.55 15.19 14.25 16.02 16.30 16.74 15.99 17.14
PURELET 5.69 6.99 9.70 9.15 10.07 12.23 10.65 9.09 11.00

Table 2. SNR Results for synthetic experiment. Using a photon-conversion factor of (β) 0.5, optimal 
parameters were found via grid search to produce the highest PSNR for all methods. This table summarizes 
the SNR, using Eq. 22, values of those parameters applied for the remaining photo-conversion factors. Highest 
values are shown in bold and the Baseline refers to the noisy synthetic phantom.

Method
ISNR(dB)

β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9
Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SRF 4.99 13.29 14.84 10.67 12.94 10.32 8.80 9.16 9.43
NCDF − 1.50 − 0.92 0.85 0.02 − 0.37 − 0.57 − 2.41 − 1.57 − 0.24
DiffusionO 4.92 3.83 5.54 4.07 6.85 6.98 5.13 5.52 7.34
Molecular 1.42 0.33 2.28 2.94 4.60 2.44 2.20 1.25 1.77
MSVST 8.07 6.98 5.62 4.65 3.16 2.44 1.22 1.25 1.97
VWNF 10.59 11.85 10.31 8.12 8.62 7.77 7.48 6.68 8.47
PURELET 3.08 3.29 4.82 3.02 2.67 3.70 1.39 − 0.22 2.32

Table 3.  ISNR Results for synthetic experiment. Using a photon-conversion factor of (β) 0.5, optimal 
parameters were found via grid search to produce the highest PSNR, using Eq. 23, for all methods. This table 
summarizes the ISNR values of those parameters applied for the remaining photo-conversion factors. Highest 
values are shown in bold and the Baseline refers to the noisy synthetic phantom.

Method
PSNR(dB)

β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9
Baseline 22.64 24.11 28.64 28.91 31.32 32.19 31.97 33.18 34.17
SRF 25.52 34.91 37.64 34.72 38.26 36.77 35.97 36.39 36.03
NCDF 19.03 20.70 23.65 24.07 24.95 25.88 24.77 25.66 26.36
DiffusionO 25.45 25.45 28.34 28.12 32.17 33.43 32.31 32.75 33.94
Molecular 21.95 21.95 25.08 26.99 29.92 28.89 29.38 28.48 28.37
MSVST 28.60 28.60 28.42 28.70 28.48 28.89 28.40 28.48 28.56
VWNF 31.12 33.47 33.11 32.17 33.94 34.22 34.66 33.91 35.06
PURELET 23.61 24.91 27.62 27.07 27.99 30.15 28.57 27.01 28.92

Table 4.  PSNR Results for synthetic experiment. Using a photon-conversion factor of (β) 0.5, optimal 
parameters were found via grid search to produce the highest PSNR, using Eq. 24, for all methods. This table 
summarizes the PSNR values of those parameters applied for the remaining photo-conversion factors. Highest 
values are shown in bold and the Baseline refers to the noisy synthetic phantom.
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where MAX is the maximum possible value.
In addition to looking at image quality metrics, we will look at the computational cost of each algorithm as it 

processes the synthetic images. The average computational cost in seconds over all the photon-conversion factors 
will be summarised in a table with the lowest value performing the best. The methods were run in MATLAB 
2014b (Mathworks, Inc., MA) with an Intel i5-4210M CPU with 8 GB of RAM.

For quantitative analysis of the compared approaches on empirical data, there is no ground truth, so we use 
the Gaussian representation of SNR and CNR, Eq. (25) and Eq. (26), respectively. These metrics were calculated 
for two selected regions. One region was chosen from the background while the other was selected in a region of 
homogeneous intensity in a cell. The background region was representative of the underlying noise process while 
the cell region was selected as representative of the signal. For both the experiments, the regions chosen are shown 
in Fig. 5. SNR was calculated as follows, in decibels:

Figure 8. Noise reduction results for the noise-contaminated synthetic phantom having a photon-
conversion factor (β) of 0.1. (a) Baseline (PSNR: 22.64 dB), (b) SRF (PSNR: 27.14 dB), (c) NCDF (PSNR: 
19.03 dB), (d) DiffusionO (PSNR: 22.99 dB), (e) Molecular (PSNR: 19.54 dB), (f) MSVST (PSNR: 29.11 dB), (g) 
VWNF (PSNR: 31.12 dB), and (h) PURELET (PSNR: 23.61 dB).

Figure 9. Magnified noise reduction results for the noise-contaminated synthetic phantom having a 
photon-conversion factor (β) of 0.5. (a) Baseline, (b) SRF, (c) NCDF, (d) DiffusionO, (e) Molecular, (f) 
MSVST, (g) VWNF, and (h) PURELET.
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Figure 10. Magnified noise reduction results for the noise-contaminated synthetic phantom having 
a photon-conversion factor (β) of 0.1. (a) Baseline, (b) SRF, (c) NCDF, (d) DiffusionO, (e) Molecular, (f) 
MSVST, (g) VWNF, and (h) PURELET.

Method Time(s)

SRF 81.59

NCDF 14.19

DiffusionO 5.40

Molecular 8.85

MSVST 120.15

VWNF 11.25

PURELET 32.48

Table 5.  Computational Cost for each algorithm. This table summarizes the computational cost of each 
method. Highest value is shown in bold.

Figure 11. The resultant noise-reduced images for experiment 80. (a) Baseline, (b) SRF, (c) NCDF, (d) 
DiffusionO, (e) Molecular, (f) MSVST, (g) VWNF, and (h) PURELET.
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where u defines the mean value of the cell region and σ defines the standard deviation of the background region. 
CNR is also expressed in decibels as:

σ
=

| − |

( )

u u
CNR 20 log

26
fg bg

bg
10

Figure 12. The resultant noise-reduced images for experiment 80. These images focus on a single cell in 
experiment 80. (a) Baseline, (b) SRF, (c) NCDF, (d) DiffusionO, (e) Molecular, (f) MSVST, (g) VWNF, and (h) 
PURELET.

Figure 13. The resultant noise-reduced images for experiment 165099. (a) Baseline, (b) SRF, (c) NCDF, (d) 
DiffusionO, (e) Molecular, (f) MSVST, (g) VWNF, and (h) PURELET.
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where u fg  and ubg  are the mean values of the selected cell region and the background region, respectively, and σbg 
is the standard deviation of the background region.

Figure 14. The resultant noise-reduced images for experiment 165099. These images focus on a group of 
cells in experiment 165099. (a) Baseline, (b) SRF, (c) NCDF, (d) DiffusionO, (e) Molecular, (f) MSVST, (g) 
VWNF, and (h) PURELET.

Method

SNR (dB)

ID 80 ID 165099

Green Red Blue

Baseline 8.27 9.63 15.15

SRF 14.91 39.83 20.77

NCDF 15.18 32.59 21.87

DiffusionO 12.28 18.86 19.50

Molecular 14.03 26.67 19.30

MSVST 13.43 30.57 18.97

VWNF 12.84 31.89 17.88

PURELET 13.95 35.34 5.88

Table 6.  SNR values for empirical experiments. Highest values are shown in bold. ID numbers denote the 
experiment ID of each dataset in4.

Method

CNR (dB)

ID 80 ID 165099

Green Red Blue

Baseline 13.81 10.68 24.46

SRF 119.85 92.41 60.23

NCDF 118.73 85.28 44.32

DiffusionO 32.25 24.97 42.78

Molecular 55.35 43.42 52.43

MSVST 87.78 73.26 80.93

VWNF 88.86 67.40 51.18

PURELET 73.85 61.10 5.56

Table 7.  CNR values for empirical experiments. Highest values are shown in bold. ID numbers denote the 
experiment ID of each dataset in4.
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Results
We present the quantitative results of the synthetic and empirical experiments comparing the proposed algorithm 
to the other competing approaches in this section.

Figure 4 shows the phantom image used for parameter tuning of the SRF and other competing algorithms for 
the synthetic testing. The baseline images in Fig. 6 were used for algorithm parameter tuning for empirical testing.

Synthetic Results. The results for the synthetic experiments are summarised in Tables 2–4. Due to the sto-
chastic nature of the proposed algorithm, it was run 30 times and the average metrics are presented.

The SNR, ISNR, and PSNR results are summarized in Tables 2–4. SRF produces the best overall SNR, ISNR, 
and PSNR values with photon-conversion factors of β =  0.2 ···0.9 with the VWNF method producing the next 
highest.

The resulting images are shown in Fig. 7. Figures 7 and 8 show the results of photon-conversion factor β =  0.5 
and β =  0.1. Figures 9 and 10 show a magnified region showing a group of cells from Figs 7 and 8, respectively.

In Fig. 7, which is representative of a common photon starved case with a photon conversion factor of β =  0.5, 
the proposed algorithm is able to maintain the structural edges of the cells while smoothing inter-cellular inten-
sity inconsistencies, noise, and maintaining low frequency intensity changes to achieve the highest SNR, ISNR, 
and PSNR. Other algorithms either lose cellular structure to reduce inter-cellular noise like NCDF and, in a more 
extreme case, MSVST, or maintain cellular structure at the expense of reducing noise like DiffusionO and VWNF.

In the highly photon starved case with a photon conversion factor of β =  0.1, the method that resulted in the 
highest metrics in Fig. 8 was VWNF followed by MSVST. This is the conversion factor that where SRF ranked 
third amongst all the algorithms. The results of the SRF algorithm show good edge structure preservation com-
pared to NCDF, Molecular, and MSVST, and improved noise suppression compared to the baseline, DiffusionO, 
Molecular, VWNF, and PURELET. However, there is some loss in smaller details in the results of the SRF algo-
rithm (such as the loss of a small nucleoli in the right-most cell (see Fig. 10), which illustrates limitations with the 
use of the proposed SRF algorithm under highly photon starved cases. Note that while VWNF was able to achieve 
a higher SNR, ISNR, and PSNR, intra-cellular noise was not reduced, and wavelet-related artefacts were observed 
within the cell structure.

In Table 5, the computational cost of each algorithm is summarised. The SRF algorithm does take longer to 
process each image relative to the state of art, but only half as long as MSVST. In the other metrics, it is seen that 
SRF, while taking half as long, can still perform comparably to MSVST.

Empirical Results. Figure 11 shows the results of experiment 80, with Fig. 12 magnifying a group of cells 
for observation. Figure 13 shows the results of experiment 165099, with Fig. 14 magnifying a group of cells for 
observation. The noise reduction results on the empirical images are presented in their merged representation 
where the colour of the emission wavelengths are merged into a full colour representation (ie. the red channel is 
represented by the colour red in this representation and similarly for the blue and green channel, if they exist). 
SNR and CNR results are presented in Table 6 and 7. Simlar to the synthetic testing, due to the stochastic nature 
of the algorithm, SRF was run 30 times and the average SNR and CNR results were measured.

The proposed algorithm achieves SNR values competitive to the next highest performing method, NCDF. 
SRF produced the highest SNR in the red channel of experiment 80 while producing the second highest in the 
green channel of experiment 80. The CNR performance of SRF shows to be the highest across both channels in 
experiment 80. Looking at the results of experiment 80 in Fig. 12, maintaining the structure of the cell and pre-
serving fine features while reducing noise is not something all the algorithms were capable of. MSVST and NCDF 
reduced noise but sacrificed the detail of the bright fluorescent features. VWNF was able to preserve the edge 
structure and was able to reduce noise but produced wavelet artefacts. SRF was able to reduce background and 
intra-cellular noise while maintaining structure and fine details.

In experiment 165099, SRF produces competitive SNR and CNR results against the higher performing algo-
rithms by achieving the next highest results. In Fig. 14, the groups of cells are not entirely above the noise-floor 
and most algorithms found it difficult to recover a noise-free image while being able to maintain the separability 
of the cells and their internal structure while reducing noise, simultaneously. VWNF and Molecular was able to 
do this quite well; Molecular did it too, but at the risk of heavy quantization. DiffusionO was able to maintain 
internal cellular structure, at the risk of presuming structure where none presumably exist. SRF provided noise 
reduction while maintaining separability in the cells and preserving the edge structure of the cell in the bottom 
right corner.

Discussion
Fluorescence microscopy is a useful tool in a biologist’s toolkit and through the use of the proposed SRF algo-
rithm, we have demonstrated that improvements to SNR and CNR can be made. This improved clarity aids in 
observing cellular structure and inter and intra-cellular dynamics.

The capabilities of the SRF algorithm were demonstrated in this paper against other tested methods for flu-
orescence microscopy noise reduction using synthetic and empirical datasets. Empirical studies quantitatively 
demonstrated SRF’s competitiveness using SNR and CNR metrics, and synthetic tests showed similar results 
using the SNR, ISNR, and PSNR metric. A key contributing factor to SRF’s performance in noise reduction in 
the common photon starved cases is that, by combining random graph and field theory into a unified random 
field modelling framework, the proposed SRF algorithm can better account for abrupt data uncertainties in the 
common photon starved cases while preserving cellular structures in the noise reduction process. However, the 
SRF algorithm shows limitations when dealing with highly photon starved cases (see Fig. 10) where some loss in 
smaller details is noticeable and is noteworthy as an area to improve in future work.
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An interesting area worth exploring in the future is in the way the stochastic edge connectivity is established in 
the SRF model. In the current realization of the SRF model, the stochastic edges aim to establish weights within a 
local neighborhood surrounding a pixel region in the random field, under an assumption of local spatial-feature 
smoothness, for noise reduction. However, in fluorescence microscopy, many cells can be imaged at the same time 
to study multiple fluorophore responses, but the cells are usually sparsely distributed across the entire image. As 
such, a shortcoming of the current realization of the SRF model is that it is limited in making use of the additional 
information contained by sparsely distributed cells beyond the local neighborhood, thereby potentially limiting 
noise reduction performance. One can potentially take advantage of the similar fluorophore responses of such 
sparsely distributed cells, for the purpose of noise reduction, in a manner that is similar to non-local noise reduc-
tion methods16,17. As such, we aim to extend the SRF model by exploring new strategies to better incorporate 
long-range stochastic edge connectivity into the model while maintaining computational efficiency. Another 
research direction that is worth investigating is the extension of the proposed method to take into account the 
point spread function (PSF) of the microscope to provide simultaneous noise reduction and deconvolution, 
which can have significant benefits in improving image quality for fluorescence microscopy.
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