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Simple understanding of quantum 
weak values
Lupei Qin1, Wei Feng2 & Xin-Qi Li1

In this work we revisit the important and controversial concept of quantum weak values, aiming to 
provide a simplified understanding to its associated physics and the origin of anomaly. Taking the  
Stern-Gerlach setup as a working system, we base our analysis on an exact treatment in terms of 
quantum Bayesian approach. We also make particular connection with a very recent work, where the 
anomaly of the weak values was claimed from the pure statistics in association with “disturbance” 
and “post-selection”, rather than the unique quantum nature. Our analysis resolves the related 
controversies through a clear and quantitative way.

The concept of weak values (WVs), introduced by Aharonov, Albert and Vaidman (AAV) nearly 30 years ago1,2, 
has caused continuous interests and controversies3–13. A large number of references can be found, for instance, in 
the recent review articles13–15. The simple reason for causing both interests and controversies might be seen from 
the unusual form of the AAV WV:
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where  ψi   and  ψ f  are the pre- and post-selected (PPS) states of Â. The most surprising prediction of this for-
mula is that it can drastically exceed the range of eigenvalues of the observable ^A, violating thus our common 
knowledge.

The AAV WV formula itself, i.e., Eq. (1), was obtained based on quantum mechanics. Therefore, unlike 
emphasized in refs 10,13, it seems not so surprising that there is no analogous formula based on classical princi-
ples which can display the functional feature of Eq. (1). However, as properly pointed out in refs 10,13, the appear-
ance of anomalous WV based on Eq. (1) (exceeding the range of the eigenvalues of Â) is indeed originated from 
the quantum interference10,13. In ref. 13, the anomalous WV is also related with negative quasiprobabilities, which 
highlights further the quantum nature of the AAV WV.

Moreover, in ref. 10, the quantum nature of the AAV WV has been elaborated further as follows. Consider two 
coupled systems (or the degrees of freedom of a single system), say, “A”-plus-“B” with coupling Hamiltonian 
λ^ ^AB. (In the WV studies, “B” is utilized as the meter for quantum measurements). The weak value Aw of ^A is 
defined by the PPS states of the system “A”, as given by Eq. (1). Aw plays the role of an effective parameter coupled 
to B̂ and results thus in a “pre-existing” shift in the wave function of the system “B”. This understanding has been 
highlighted in particular as10: “The weak value shifts exist if measured or not, so the weak value is not defined by 
the statistics of measurement outcomes. The statistical analysis (performed after the post-selection) can just reveal 
the pre-existing weak values.” This particular statement was mainly directed to the recent work by Ferrier and 
Combes7, in which (and in the later response article8) the anomaly of the WV was claimed from a reason of pure 
statistics associated with disturbance and post-selection, rather than the unique quantum nature.

Actually, the work by Ferrier and Combes7 is just the latest of a series of works in the past years on classical 
analogues of the WVs and associated paradoxes16 followed by appropriate clarifications17,18. Discussions on the 
classical- versus-quantum issues were also put forward in different manners, from aspects such as violation of the 
Leggett-Garg inequality19, negative quasiprobability13, contextual values (contextuality)20–23, and even the nature 
of time24.

In this work we present a simple, explicit, and quite straightforward way to understand how the AAV WV 
appears as or enters the PPS average of the measurement outcomes, and how the anomaly is caused. For the 
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whole problem, two points are essential: one is the post-selection conditioned average; the other is the super-
position principle of quantum mechanics. We will base our analysis on an exact treatment in terms of quantum 
Bayesian approach by taking the Stern-Gerlach setup as a working system. The reason of using Bayesian approach 
is twofold: (i) it enables to easily obtain the exact result (for arbitrary measurement strength) which will serve as 
the unified starting point for the whole analysis in this work; and (ii) it allows to clarify that any classical model 
under correct treatment cannot result in anomalous WVs. We notice that this second point does not arrive to full 
consensus in literature. We believe that the present work can, in a transparent and quantitative way, resolve the 
recent controversies7–13.

Results
AAV’s Weak Values.  For the sake of completeness let us briefly review the AAV’s treatment of weak values, 
by taking the Stern-Gerlach setup as a specific working system, as schematically shown in Fig. 1. In this setup the 
electron’s trajectory is deflected when it passing through inhomogeneous magnetic field. Corresponding to  
“λ^ ^AB”, now the interaction Hamiltonian between the “system” and the “meter” reads λ′ = ^^H Ap. That is, the spin 
degree of freedom of the electron is the system and the spatial ones (momentum and coordinate) are the meter. In 
this work we use Â for the spin operator. Let us consider the system and meter starting the evolution with ψ Φ  
where  ψ   and  Φ  are, respectively, the system and meter states. For the meter state, i.e., the transverse wavefunc-
tion (wavepacket) of the electron, we assume a Gaussian form πΦ( ) = ( ) − /( )− /x D x D2 exp[ 4 ]1 4 2 , with  D  the 
width of the wavepacket. In weak coupling limit, which is properly characterized by λ ≡ t x Dm 0  where tm is 
the interaction time, short algebra yields1
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A  is the AAV WV. We see that, indeed, the AAV WV manifests itself as a shift of the wavefunc-
tion. It seems that it is largely because of this feature that in ref. 10 the weak value shifts are emphasized as 
pre-existing. Or, the AAV WV is an effective coupling parameter to the meter system, e.g., via λ ^A pw

10. However, 
noting the ensemble-statistical interpretation of the quantum wavefunction, we find that this statement is not so 
different from the opinion by regarding the WV as the statistical average of measurement outcomes. Actually, if 
we measure the wavefunction in coordinate representation, the measurement outcomes satisfy the statistics with 
probability  Φ( − ) ∼ −( − ) /x x A x x A Dexp[ Re 4 ]w w0

2
0

2 . In the following, we will see that ReAw is the 
lowest-order approximation of the conditional average of the measurement outcomes associated with the PPS 
statistics.

Bayesian Treatment.  To generalize the above analysis from weak coupling limit to finite strength inter-
action, the best way might be using the quantum Bayesian approach to calculate the PPS conditional average. 
In ref. 19 this kind of calculation was performed for a solid state qubit measured by quantum-point-contact25. 
Similarly, applying the quantum Bayesian rule for circuit-QED architecture26,27, the general expression of the 
associated weak values has been obtained28.

For the Stern-Gerlach setup, the transverse spatial coordinate of the electron plays the role of a meter which 
is further collapsed (measured) by an outside classical detector. The probability distribution of the measurement 
outcomes (the collapsed positions on the screen) is simply given by
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Figure 1.  Schematic plot of the Stern-Gerlach setup utilized for studies of weak measurement and 
quantum weak values. 
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where σ = (↑, ↓), and = + (−)↑(↓)x x0 are the distribution centers associated with the states of spin-up ↑  and 
spin-down ↓ .

If ( )↑P x  and ( )↓P x  are strongly overlapped, the measurement (with outcomes of “x”) falls into the category of 
quantum weak measurement. In this case, the quantum Bayesian approach is also a perfect tool for the 
Stern-Gerlach setup. Originally proposed by Korotkov25, the quantum Bayesian approach is largely based on the 
well-known Bayes formula in Probability Theory together with a quantum purity consideration. The former is 
utilized to determine the diagonal elements while the latter is for determination of the off-diagonal ones. In quite 
compact form, one can use the quantum Bayesian rule to update the spin state from ρ to ρ


 as follows:
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where  ρ ρ( ) = ( ) + ( )↑↑ ↑ ↓↓ ↓x P x P x  is a normalization factor. Note that the last equality (for the off-diagonal 
element) stems from the purity consideration25.

Precisely in parallel to the AAV’s treatment, let us consider the PPS states ψ  and φ , or in terms of the density 
matrices ρ ψ ψ=  and ρ φ φ=φ . We will explicitly employ the PPS average of the measurement outcomes as 
the practical definition of weak values, which is actually in the same spirit of achieving the AAV WV and 
reads19–21,28
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where ( )ψP x  is the distribution probability of the measurement outcomes with the pre-selected state ψ before the 
post-selection. Note that, actually, ( ) = ( )ψP x N x . φ( )Px  is the post-selection probability which can be obtained via 
φ ρ ρ( ) = 


( )
φ ˜P xTrx , by applying the quantum Bayesian rule Eq. (4), to update state from ρ to ρ( )˜ x  based on the 

outcome x. Obviously, φ( ) ( )ψP x Px  plays the role of the joint PPS probability of getting “x”, while having the 
denominator M2 as its normalization factor. Straightforwardly, by completing a couple of Gaussian integrals, the 
weak value defined by Eq. (5) is given by
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Where ρσσ′ and ρφσσ′ are the elements of the density matrices ρ and ρφ, respectively.
To establish an explicit connection of the above generalized result with the AAV WV, we need to reexpress the 

result of Eq. (6). Without loss of generality, let us assume = ±↑,↓x x0. By expressing the AAV WV 
φ ψ φ ψ= /^A Aw  in terms of the density matrix elements of ρ and ρφ, after some simple algebra we obtain
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In this elegant result, we have introduced = ( − )/−G e1 2g2  and = ( − ) /( )↑ ↓g x x D162 .
We see that in the weak measurement limit (small g) and with modest  Aw  (not “strange” enough), Eq. (7) 

returns to the AAV’s result. This shows that the AAV’s WV (more precisely the real part of it) is indeed the PPS 
average of the measurement outcomes. Another important feature in the result of Eq. (7) is the second (correc-
tion) term in the denominator. It will make the PPS average considerably deviate from the AAV WV for finite 
strength measurement or with very “strange”  Aw . This feature should be kept in mind when one attempts to 
extract the AAV WV from the PPS average. Similar result as generalization of the AAV WV has been found as 
well for qubit measurements by quantum point contact19 and in the circuit-QED system28, and has been con-
nected with the more general formulation of contextual values20,21.

In general, the AAV WV is a complex number. While Eq. (7) relates the PPS average with the real part of 
the AAV WV, how to relate it with the imaginary part of the AAV WV is of interest. In the context of optical 
(laser-beam) setup, it was shown in ref. 15 that one can “cleverly” post-select a specific transverse state corre-
sponding to a specific position/momentum of the laser beam, in order to measure the real/imaginary part of the 
polarization WV. In ref. 29 the meaning and significance of the imaginary part of the AAV WV has been further 
exploited.

For the Stern-Gerlach setup, if one is able to introduce the “ x̂A” -type interaction in the system-meter coupling 
Hamiltonian, i.e., λ λ′ = +

 ^H pA xA1 2 , then the imaginary part of Aw can appear as well in the numerator of 
Eq. (7). To be specific, let us assume that the system-meter-coupling is switched on for a time interval tm. Then, x0 
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in the above = ±↑,↓x x0 is given by λ= ≡x tm0 1 1 . Moreover, when applying the quantum Bayesian rule Eq. (4), 
a phase factor −e i x2  should be attached to ρ

12 in the third equality, where  λ= tm2 2 . Inserting these accounts into 
the WV calculations, we obtain

ε ε
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However, for the Stern-Gerlach setup, it seems unclear how to realize the above dual coupling Hamiltonian. 
Alternately, for the circuit-QED system as analyzed in ref. 28, it is indeed possible to obtain the WV expression as 
Eq. (8). There, even better, one can make either = 01  or  = 02  by tuning the local oscillator’s phase in the homo-
dyne measurement of the cavity field.

Origin of Anomalies.  Following the standard and practical way of experimentally measuring the quantum 
average of a physical observable ( )Â , the above analysis established a general connection (for finite strength meas-
urement) between the PPS average and the quantum AAV WV. From Eq. (7), we see that the extent of anomaly of 
the PPS average largely depends on Aw. Actually, in the weak measurement limit, if we neglect the back-action 
(“disturbance”) effect of the measurement on the measured state, the rescaled PPS average /

ψφ x x0 is precisely 
the AAV WV.

As a preliminary and most straightforward illustration, let us first inspect the origin of anomaly of the AAV 
WV which may be rewritten as
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To be specific, consider the measurement of the real part of Aw. We have ρ ρ ρ ρ( ) = −φ φ↑↑ ↑↑ ↓↓ ↓↓MRe 1  and 
φ ψ=M2

2. Let us also specify the PPS states as

ψ α β
φ
= ↑ + ↓ ,
= ↑ + ↓ , ( )a b 10

and assume that all the superposition coefficients (α, β) and (a, b) are real. Then we obtain α β= −M a b1
2 2 2 2 

and α β= ( + )M a b2
2, and achieve the divergence condition α β+ →a b 0, which corresponds to an ultra-small 

post-selection probability. In this case we also have →M 01  which, however, is a first-order small quantity while 
M2 is of the second order. This is essentially equivalent to the divergence feature of the AAV weak value Aw, i.e., 

≠φ ψÂ 0 when  φ ψ → 0.
Then, we see that it is right the quantum interference that possibly makes α β+ →a b 02 , while 

≠α β+a b 02 2 2 2 . In classical case, the superposed amplitudes in the quantum states  ψ  and  φ  should be 
replaced by probabilities (modulus squares of the amplitudes). This would result in the joint PPS probability given 
by α β= +M a b2

2 2 2 2. Therefore, we can definitely conclude that in classical case, the PPS average of Â is 
impossible to exceed the normal bounds of − ,[ 1 1], i.e., there is no anomalous classical weak values.

Now consider the finite strength measurement. Let us rewrite the joint PPS probability M2 in Eq. (6) as 
φ ψ δ= +M M2

2
2, where

( )δ ρ ρ= − . ( )φ↑↓ ↑↓
−( − ) /↑ ↓⁎M e2 Re [ 1] 11

x x D
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This “correction” (to the probability  φ ψ 2) is originated from the “disturbance” (back-action) of the quan-
tum measurement on the pre-selected state  ψ , which alters the PPS probability by the amount of δM2. Notably, 
in a sharp contrast to the classical model to be discussed in the following, this “disturbance” is not at all the origin 
of causing anomalous weak values. Actually, owing to the presence of δM2, the PPS probability cannot approach 
zero. This implies that the WV is not to be divergent when  φ ψ → 02 . In contrast, noting that ( ) →MRe 01  in 
this case, the presence of the nonzero δM2 will result in a vanishing WV28. The reason is that the “disturbance” can 
result in successful post-selection while it is impossible (owing to destructive quantum interference) if there is no 
disturbance. Finally we point out that, for finite strength measurement (in the presence of δM2, there still exists a 
window of post-selection and measurement strength for the appearance of anomalous WVs.

Classical Coin-Toss Model.  In the recent articles by Ferrier and Combes7,8, it was claimed that the anom-
alous weak values are not uniquely relate to quantum nature, but rather a purely statistical feature of pre- and 
post-selection with “disturbance”. Below we briefly revisit the classical coin-toss model analyzed in refs 7,8, in 
attempt to provide a simple view for the origin of the “anomaly” displayed there.

The coin-toss model, which was originally analyzed in ref. 7, is actually a coarse-grained version of the 
Stern-Gerlach setup which we have discussed above. The probability of the coarse-grained outcome distribution 
of the “weak” measurements was proposed as7
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λ( ) = ( + ), ( )ψ ψ
¯P s s A1

2
1 12

where ψ ψ=ψĀ A  and s =  ± 1. Here, the coarse-grained variable “s =  ± 1” correspond to the integrated out-
comes of ∈ ( , ± ∞)x 0 . Note that in ref. 7, this coarse-grained variable was used in certain confusing manner 
together with the “Heads” and “Tails” in the coin-toss model, which hides then the serious artificial feature of 
post-selection rule assumed there. Below, to avoid such type of ambiguity, we use the terms of “spin-up” and 
“spin-down” for the “Heads” and “Tails”, i.e., the intrinsic coin states, while emphasizing s =  ± 1 for the meter’s 
coarse-grained outputs, as particularly shown by the plot of Fig. 2.

Now, more specifically, for the “spin-up” and “spin-down” coins, the coarse-grained locations obey the inte-
grated probabilities in the two regions given by, respectively,

λ( ) = ( + )/ , ( )↑P s s1 2 13a

λ( ) = ( − )/ . ( )↓P s s1 2 13b

From these, one may clearly keep in mind that the “spin-up” and “spin-down” coins would locate in the 
“s =  + 1” and “s =  − 1” regions with different probabilities. One can easily check  λ= ∑ ( ) =ψ ψ=± ¯s sP s As 1 . This 
implies that λ is the scaling parameter between the quantum expectation of Â and the data average of meter’s 
outcomes. One can thus reasonably regard it as the measurement strength.

The key step in the WV analysis of the coin-toss model is to introduce a “disturbance” (bit-flip channel), which 
is modeled by

↑ ↑ ( − ) ↑ ↑ + ↓ ↓ ( )↑ ↑ P P1 14as s

↓ ↓ ( − ) ↑ ↑ + ↓ ↓ ( )↓ ↓ P P1 14bs s

where

δ
λ

φ= −
±

≡ ( ). ( )↑(↓) ↑ (↓)P
s

P1
1 15s s

Note that in ref. 7 only the first process was explicitly displayed, because of ψ = ↑  considered there. 
Obviously, δ characterizes the amount of disturbance and ↑ (↓)P s corresponds to the post-selection probability of 
φ = ↓  (hereafter we assume the post-selection state of φ = ↓ , as the same in ref. 7).

To uncover the underlying problem more transparently, we would like to present a slightly generalized treat-
ment by considering a superposition pre-selected state ψ = ↑ + ↓↑ ↓c c , instead of ψ = ↑  as in7. Now, 
applying the PPS average scheme

Figure 2.  The coarse-grained version of the Stern-Gerlach setup which corresponds to the coin-toss model 
discussed in ref. 7, by regarding all the outcomes ∈ , ± ∞( )x 0  as s = ±1. ( )↑(↓)P s  is the “coarse-grained” 
spatial distribution probability of the “spin-up(down)” state, while φ( )↑(↓)P s  is its subsequent post-selection 
probability (note that it has an unusual/artificial feature of being s-dependent). φ is the post-selection state 
which was chosen as φ = ↓  in ref. 7 (and in the present work), but in general which can be a classical mixture 
of  ↑  and ↓ .
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where ( ) = ( )ψ σ σ σ,P s c P s2 , after simple algebra we obtain the same result of weak value as derived in ref. 7:

λ δ
= =

−
. ( )

ψφ ψ
¯

A
s A

1 17w

Remarkably, this classical WV can become “anomalous” and even be very “strange” by altering the parameter δ.  
This is the key result of ref. 7.

Comparative Analysis.  Based on the Bayesian treatment, we can convert the quantum result to its classical 
counterpart by simply dropping the off-diagonal terms in M1 and M2 in Eq. (6):

∫ ρ ρ ρ ρ= 


( ) + ( ) 

, ( )φ φ↑↑ ↑ ↑↑ ↓↓ ↓ ↓↓M dx x P x P x 18a1

∫ ρ ρ ρ ρ= 


( ) + ( ) 

. ( )φ φ↑↑ ↑ ↑↑ ↓↓ ↓ ↓↓M dx P x P x 18b2

Accordingly, we obtain ρ ρ ρ ρ λ= ( − )φ φ↑↑ ↑↑ ↓↓ ↓↓M1  and ρ ρ ρ ρ= +φ φ↑↑ ↑↑ ↓↓ ↓↓M2 . We see then that in classical 
case the PPS average cannot become anomalous since we always have λ/ ≤M M1 2 .

Now let us reformulate the coin-toss model via

∑ ρ ρ ρ ρ= 
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( ) + ( ) 
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In the classical coin-toss analysis7, the most problematic procedure is the “insertion” of the following 
post-selection rule (the so-called “noisy channel” or “disturbance”):

ρ δ
λ
ρ

δ
λ

= −
+

, = −
−

.
( )φ φ↑↑ ↓↓s s

1
1

1
1 20s s

Accordingly, one gets λρ λ ρ λ= + (− ) = ψ↑↑ ↓↓
¯M A1  and ( )δ ρ ρ δ= ( − ) + = −↑↑ ↓↓M 1 12 . Then, by 

means of this procedure, one obtains anomalous WV since the scaled PPS average “ λ/M
M

1

2
” can drastically exceed 

ψĀ .
Some remarks on the above post-selection “rule” are in order as follows. (i) Indeed, the overall post-selection 

probability  φ ρ φ( )


x  depends on the outcome “x” (or the coarse-grained location “s”). However, in either quan-
tum or classical weak (“noisy”) measurement, this dependence has been fully accounted for by the Bayesian rule, 
via updating the state from ρ to ρ( )


x . Then the post-selection probabilities from the component (basis) states ↑  

and ↓ , say, φ ↑ 2 and φ ↓ 2, should no longer depend on “x” or “s”. In contrast, the post-selection probabil-
ities given by Eq. (20) depend on s =  + 1 or s =  − 1. This is a misleading procedure to “generate” the anomalous 
classical WV. The “rule” of Eq. (20), or any other “s-dependent rule”, is an artifact, which simply means keeping or 
discarding the stochastic events (s =  ± 1) according to our willing, then re-calculating the average of s and extract-
ing the weak values as λ/

ψφ s . Obviously, it does not make sense by comparing this type of PPS average with the 
quantum WV. (ii) So we should obey the convention that the post-selection probabilities  φ ↑ 2 and  φ ↓ 2 do 
not depend on “x” or “s”. Under this requirement, as proved below Eq. (18), we conclude that it is impossible to 
generate anomalous WV in any classical contexts. (iii) In order to get anomalous WV, the only way is adding the 
interference terms into M2 [c.f. Eqs. (6) and (18)], to make  λ/ <M M1 2 . This is possible only in quantum case. 
So the anomalous WV is indeed a unique quantum phenomenon, which deeply originates from quantum inter-
ference, or the most fundamental quantum superposition principle. Actually, it was proved in ref. 19 that the 
anomalous WV is equivalent to the violation of the Leggett-Garg inequality, which is also a direct consequence of 
the quantum superposition principle. (iv) The anomalous WV is owing to the distortion of the joint PPS proba-
bility distribution, which is caused by quantum interference in quantum system but in the classical coin-toss 
model by an artificial procedure. In ref. 7 the “post-selection” was termed as “disturbance” (or “noisy channel”). 
However, for the problem under consideration, the only acceptable “disturbance” is the measurement (or 
information-gain) backaction, which has been fully accounted for by the Bayesian rule, for both the quantum and 
classical measurements. As clearly seen in the quantum WV analysis in this work, this type of “disturbance” would 
reduce the “anomaly” amount, which is in sharp contrast with the coin-toss model where the extra “disturbance” 
is the key reason of generating the “anomaly”.
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Discussion
To summarize, we have presented a simple and direct method to revisit the concept of quantum weak values. The 
Bayesian treatment associated analysis in comparison with a controversial classical model supports the assertion 
that the anomalous weak values are purely quantum mechanical, having no classical analogue. That is, in addition 
to the argument of functional dependence10,13, we arrive to a stronger conclusion: the anomalous WVs cannot be 
reproduced by any correctly treated classical model.

This conclusion is in full agreement with the finding uncovered in ref. 19, where the equivalence proof 
between the anomalous WV and the violation of Leggett-Garg inequality implies that the anomalous WVs rule 
out any classical (hidden-variable) interpretation. Therefore, an insistence that disallows adding extra disturbance 
is to make the classical-quantum comparison at equal foot. The reason is just like the following: if one introduces 
“extra procedures” in the (classical) hidden-variable treatment, it would destroy the meaning of violation of the 
Bell-Leggett-Garg inequalities.

In quantum mechanics, the wave function is actually a “knowledge” which is to be altered after measurement. 
This is the so-called backaction or disturbance of quantum measurement. For the noisy measurement in the 
classical coin-toss model, the measurement outcome will also change the prior probability (“knowledge”) known 
before the measurement. So in this sense a noisy classical measurement resembles the quantum measurement — 
both obey the Bayesian rule. This explains further that in any classical model, a correct treatment should disallow 
adding extra “disturbance”, since the classical “information-gain backaction”, which corresponds to the quantum 
measurement backaction, has been accounted for by the Bayesian rule, as clearly analyzed in our work by Eqs. 
(18) and (19).
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