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Effects of asymmetric 
nanostructures on the extinction 
difference properties of actin 
biomolecules and filaments
E. H. Khoo1, Eunice S. P. Leong2, S. J. Wu2, W. K. Phua1, Y. L. Hor1 & Y. J. Liu2

In this paper, symmetric and asymmetric tapering on the arms of the gammadion nanostructure is 
proposed to enhance both local field distribution and extinction difference (ED). The asymmetric 
tapered gammadion with tapering fraction (TF) of 0.67 is seen to have the largest ED and spatial local 
field distribution, producing a large wavelength shift of more than 50 percent as compared to the 
untapered gammadion nanostructures when immersed in a solution of actin molecules and filaments. 
The optical chirality, ζ shows that the larger local field amplitudes produced by the asymmetric 
designs increases the rate of chiral molecules excitation. This enhanced field is strongly rotating and 
highly sensitive to single molecules and larger filaments. Here, we show that the ED, optical chirality, 
sensitivity and rate of chiral molecules excitation can be improved by incorporating asymmetric designs 
into chiral gammadion nanostructures through tapering.

Many biomolecules such as amino acids, sugars and nucleic acids are chiral. This means that their molecular 
structures cannot be superimposed upon their mirror images1–3. Techniques commonly used to determine optical 
chirality include circular dichroism (CD), optical rotatory dispersion and Raman optical activity4–7. CD is the 
most popular among these methods due to its rapid speed of detection, small volume of sample required and the 
availability of cheap equipment5,6. CD refers to the differential absorption of left- and right-circularly polarized 
(LCP and RCP) light and arises from the direct interaction between chiral molecules and circularly polarized 
light. The measured CD signal is very weak (in the range of 10−6 mdeg)8,9 and poses a challenge for ultrasensitive 
detection. Several solutions exist to enhance the CD signal for sensing chiral molecules. Fluorescent or radioac-
tive tags attached to biomolecules10–12 have been proposed as a means to enhance the CD signal with polarized 
light. However, this method is not recommended due to photo-bleaching of fluorescent molecules and blocking 
of the active site of target chiral molecules.

To enhance the CD signal, researchers have used metallic nanoparticles to generate localized field reso-
nance13–16. The principle behind the generation of a localized enhanced field is due to the excitation of localized 
surface plasmon resonances. Surface plasmons are formed by the collective free electron oscillations at metal/die-
lectric interfaces17,18 upon excitation by incident lightwaves. This strongly confines the light in nanoscale dimen-
sions and greatly enhances the light field.

Nanoparticles can be placed in a helical arrangement such that they exhibit collective resonance and16 generate 
superchiral fields, prolonging and enhancing chiral interaction between molecules and lightwaves. Nanoparticles 
can also be assembled into a giant spiral filament via a molecular chiral scaffold19,20. These hybrid chiral materials 
can be tailored to be as small as clusters or as large as filaments such as DNA and protein. The nanoparticle tri-
mer21, which is a composition of nanoparticles arranged asymmetrically along the planar axis, is also shown to 
exhibit localized optical chirality and generate superchiral near fields.

While superchiral fields can be generated by an unique arrangement of nanoparticles, the generation of super-
chiral fields from chiral planar plasmonic nanostructures22–31 has attracted much attention in the development of 
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biosensors for the detection of chiral macromolecules and their hierarchical structures29,32,33. Chiral plasmonic 
nanostructures have larger surface area than nanoparticles, producing continuous superchiral fields that are of 
a wider coverage. The localized chiral fields interact distinctly with the accumulated molecules on the nanos-
tructure surface. These accumulated molecules are analogous to a thin layer of dielectric material, changing the 
environment on the nanostructure surface and produces a shift in the CD spectrum, signalling a detection of 
chiral molecules. The planar gammadion is a common design for the generation of superchiral fields because 
it has a large dissymmetric factor22,29. Other planar chiral nanostructures include the circular disk array and G 
shaped structures24,26. In addition, there are also three dimensional spiral structures34 and multilayer planar achi-
ral nanostructures23,27 that mimic the three dimensional properties of optical chirality. Superchirality can thus 
be demonstrated in many different designs of plasmonic nanostructures and metamaterials. The reported works 
are important scientific breakthrough for the purpose of enhancing chiral fields and serve as motivation for us to 
investigate factors affecting the CD spectrum of chiral plasmonics nanostructures.

In this paper, we apply tapering on the gammadion nanostructure to enhance its sensitivity. The idea of taper-
ing arises from reported work35,36 that modifies the overall dissymmetric factor of nanostructures to increase the 
electric field strength for nano-focusing. We investigate the effects of tapering on the extinction difference (ED) 
and local field distribution through numerical simulations. Experiments on tapered gammadion nanostructures 
in molecular solutions are performed using broadband optical microscopy. The tapered gammadion is used to 
detect small chiral molecules and its associated chiral filaments. Wavelength shifts produced by different tapering 
designs and bio-samples of different molecular sizes are investigated to demonstrate its effects on the dissymmet-
ric factor, sensitivity and strength of the chiral fields.

The schematic layout of a left handed plasmonic gammadion nanostructure is shown in Fig. 1a. We focus on 
the left handed gammadion nanostructure to demonstrate the effectiveness of different tapering methods on 
spatial distribution and field enhancement. The right handed structure is also expected to yield similar results28,29 
[See the Supplementary Information]. The ends of the gammadion arms can be tapered via symmetric and asym-
metric means. Symmetric tapering means that the width is narrowed symmetrically along the arm axis to produce 
an enhanced localized field35,36 as shown in Fig. 1b. Asymmetric tapering means that only one side of the gamma-
dion arm is tapered and the distance between the arm and bend, known as the arm-bend gap remains constant as 
shown in Fig. 1c. By keeping the arm-bend gap constant, we can observe how field distribution between both arm 
and bend of the gammadion is affected when asymmetric tapering is introduced. Both symmetric and asymmet-
ric tapering designs are adopted due to the ease of fabrication.

The width at the tapered end is defined as w1 and w2 as shown in Fig. 1b,c respectively. A metric known as 
tapering fraction (TF) is defined as the ratio of width, w1 (or w2) to w0, where w0 is the width of the untapered 
arm. TF lower or higher than 0.6 is defined as low and high TF respectively. This means that the ends of the gam-
madion arms have wider width for high TF. The TF of 0.6 is selected as a benchmark because it is a critical value 
affecting the enhanced field distribution. In this paper, we selected TFs of 0.1, 0.25, 0.5 and 0.67 to demonstrate 
the working principles of our design in simulations and experiments. Other TFs will also be studied to investi-
gate the optimum TF for fabrication. Figure 1g shows the cross sectional schematic layout when the sample is 
immersed in water. Subsequently, the sample is immensed in G or F-actin solution when testing for biomolecules 
and filaments.

Figure 1d–f show the fabricated untapered, symmetric and asymmetric tapered gammadion structures for TF 
of 0.5 respectively. The details of the fabrication process as well as fabricated structures with TF of 0.67 and 0.25 
are shown in the supplementary information. Extinction spectra was obtained using a dark field microscope with 
a spectrometer in the range of 400− 850 nm [See the Supplementary Information]. Consisting of both absorption 
and scattering of light, extinction37 has similar line shapes as absorption, thereby allowing extinction difference 
(ED)19 to be used as a substitute for CD38.

ED can be defined as

= − ( )ED Extinction Extinction 1LCP RCP

The ED spectrum for the untapered gammadion is shown in Fig. 2. We can observe three distinctive modes 
marked m1, m2 and m3 in the ED spectrum. Mode m1 is known as the Bloch periodic mode while modes m2 and 
m3 are known as the hybrid plasmonics modes39. Figures 3d and 4d show experimental ED spectra [See Methods] 
for the symmetric and asymmetric designs at different TFs respectively.

Simulations carried out for the observed experimental results are shown in Figs. 3a and 4a. The refractive 
indices of water and glass substrate are obtained from the Palik optical handbook40 while the simulated spectra is 
obtained by measuring the extinction of nanostructures under left and right circularly polarized light. This pro-
vides a valid and fair comparison with the experimental results obtained using the bright/dark field microscope. 
Figure 3a shows the simulated ED spectra for the symmetric tapered gammadion at different TFs. Figures 3b and 
c show the Ey field distributions of the symmetric tapered gammadion obtained at TFs of 0.67 and 0.1 respec-
tively. In Fig. 3a, we observed that the simulated ED spectra exhibit similar trend as the experimental results in 
Fig. 3d. From Figs. 3a and d, the ED spectra for mode m1 of the symmetric gammadion are found to be weaker 
than the untapered gammadion. This implies that the absorption difference is weaker for the symmetric gamma-
dion. Mode m3 red shifts to longer wavelength, while mode m2 becomes weaker and disappears as TF decreases. 
Finally, at TF of 0.1, only mode m1 and m3 remains. From Fig. 3c, the enhanced localized field at the lower part 
of the arm and its opposing bend becomes weaker and less distributed for TF of 0.1. This localized field can also 
be known as the gap fields. Tapering of the gammadion arms increases the gap distance between the arm and 
bend and makes the arm narrower. Coupling of localized fields between the arm and bend decreases for larger 
gap distance, resulting in weaker and less spatially distributed fields for smaller TF in mode m1. Modes m2 and 
m3 are due to mode hybridization39 in the gap between the arm and bend of the gammadion. With larger gap 
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distance, coupling between hybridized modes weakens and mode m3 red shifts. Mode m2 become weaker and 
disappears at TF of 0.1.

Figure 4a shows the corresponding simulated ED spectra for the asymmetric tapered designs at different TFs. 
Simulations and experimental results agree very well with each other. For mode m1, ED is larger for the asym-
metric tapered gammadion at TF of 0.67 and 0.5 as compared to the untapered gammadion. Figures 4b and c 
show the Ey field distributions of the asymmetric tapered gammadion obtained at different TFs for mode m1. In 
Fig. 4b, the local field distribution spreads over a larger part of the asymmetric tapered gammadion as compared 
to Fig. 3b. The gap field does not weaken because the gap distance between the arm and bend remains unchanged. 
Contrary to Fig. 3d, the ED spectra in Fig. 4d show stronger ED at TFs of 0.67 and 0.5 for modes m1, m2 and m3.

In order to correlate TF and the field distribution spread in ED, a parameter known as the surface enhanced 
field ratio (SEFR) is defined as

=
( = , ≥ )

( = ) ( )
SEFR
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where the surface perimeter, P represents the length along the gammadion edge at z =  50 nm above the sub-
strate with enhancement five times more than the incident field. Ptotal represents the total surface perimeter of 

Figure 1.  Schematic layout for designs of left handed gammadion (a) Untapered, (b) Symmetric tapered,  
(c) Asymmetric tapered. Symmetric tapering ensures symmetry along the horizontal axis while asymmetric 
tapering only performs tapering on one side, keeping the gap between the arm and bend constant.(d–f) Scanning 
electron microscopy (SEM) images of the different gammadion designs at TF of 0.5. The gammadions are 
fabricated using electron beam lithography and photo-resin lift-off. (d) Untapered gammadion, (e) Symmetric 
tapered gammadion, (f) Asymmetric tapered gammadion. (g) Cross sectional schematic layout of the gammadion 
designs. The gammadion is fabricated on glass slides with thickness of 1.5 mm. The SEM image of the fabricated 
designs at other TFs is shown in the supplementary information.
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gammadion respectively at z =  50 nm above the substrate. The parameter z is the vertical position of the gamma-
dion. A larger SEFR indicates stronger field absorption and resonance, which in turn indicates greater circularly 
polarized light absorption difference or ED15.

Figures 5a and b show the SEFR of modes m1 and m3 for symmetric and asymmetric tapered gammadions at 
different TFs respectively. In Fig. 5a, it is observed that SEFR decreases after tapering is introduced for symmetric 
tapered gammadion. This is due to the loss of the high field region at lower TF. At TF lower than 0.6, the field at 
the top and bottom of the gammadion arm merges together. This resulted in weaker gap fields and smaller field 
distribution, indicating weaker absorption. For mode m3, the ED increases slightly before decreasing.

In the case of the asymmetric tapered gammadion, we observed that SEFR increases as TF decreases from 1 
to 0.5 as shown in Fig. 5a for mode m1. This is due to the increase in amplitude and distribution of the gap fields 
between arm and bend for TFs ranging between 1 and 0.5. At TF lower than 0.5, the SEFR drops significantly 
as the loss in enhanced field region at the tapered arm is larger than the field at the arm-bend gap as shown in 
Fig. 4c. The results in Fig. 5b show a comparison of SEFR for mode m3 at various TFs, indicating a similar trend. 
In Fig. 5c, we compared SEFR at the gap for both symmetric and asymmetric tapered gammadion. For the asym-
metric tapered gammadion, the field at the arm-bend gap increases as the lower part of arm has an increased 
field distribution and amplitude due to tapering in Fig. 4b but not Fig. 4c. Hence, tapering the arm to a smaller 
width (when the TF becomes small) is a disadvantage even though the field density per unit area is increased at 
the tapered end.

Having seen the effects of tapering on ED and the relevance of SEFR on quantifying effects of TFs on field 
distribution spread in ED, we investigate the sensitivity of symmetric and asymmetric tapered gammadion nano-
structures on actin biomolecules. Actin41–44 is a multi-functional protein that is found in almost all eukaryotic 
cells. It is an important protein which takes part in many important biological processes such as muscle con-
traction, cell division and cytokinesis45. Actin exists as a free monomer is known as G-actin (globular) as shown 
in Fig. 6a. G-actin has a α -helix fold which is asymmetric. In the presence of ATP, G-actin can polymerize with 
other actin monomers to form actin filament, known as F-actin as shown in Fig. 6a. F-actin is a unique right 
handed dissymmetric single-stranded helix filament. The ED response of the G and F-actin are presented in the 
supplementary information. The biosamples are tested with both left and right handed gammadion nanostruc-
tures and the wavelength shift produced in the ED spectrum are calculated and averaged29. This wavelength shift 
is mainly attributed by the adsorption of molecules in the high field region29,46–48. The adsorbed G and F-actin 
contains tryptophan, whose carboxyl group allows binding of the actin molecules to the surface of the gamma-
dion nanostructures and form a single flat chiral layer46,49. G and F-actin adopt geometries with a well-defined 
orientation axis with respect to the surface of the gammadion, and becomes randomly oriented in the plane par-
allel to the surface of gammadion upon adsorption.

The gammadion nanostructures of varying tapering designs are placed in a solution of different actin biosam-
ples. The G-actin samples are prepared and stirred so that it does not polymerize to F-actin. Figure 6b shows the 
ED spectra for the symmetric and asymmetric tapered gammadion nanostructures immersed in a solution of 
G-actin molecules. We observed a larger wavelength shift for the asymmetric tapered gammadion, indicating 
greater sensitivity to G-actin monomers. For the symmetric tapered gammadion, the average wavelength shift 
is very small and is almost similar to the untapered gammadion in water. Figures 6c and d shows a comparison 
between the average wavelength shifts for different TFs. Mode m3 shows larger wavelength shifts than mode m1 
because mode m3 is at shorter wavelength. On the molecular level, G-actin molecules have absorption energies 
closer to mode m342. Although mode m1 has larger SEFR, it’s ED wavelength does not match the energy level of 
G-actin. Hence, this explains the larger wavelength shift for mode m3 compared to mode m1. We also observed 
that the largest wavelength shift occurs at TF of 0.67 and 0.5. As observed in Figs. 5a and b, lower TF results in 

Figure 2.  Experimental ED spectrum for untapered gammadion. We observed that there are three distinctive 
ED modes in the spectrum. We label these modes as m1, m2 and m3. Mode m1 is the Bloch mode due to the 
gammadion array, while modes m2 and m3 are hybridized modes due to coupling between the arm and bend.
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smaller SEFR and hence, smaller wavelength shift. The results in Figs. 6c and d, and the SEFR results in Figs. 5a 
and b show a correlation between SEFR and the sensitivity of chiral biomolecules detection.

We take a solution of G-actin and add KCl to the final concentration of 100 mM. The resultant solution is left 
overnight to be polymerized into F-actin. To prevent F-actin from dissociating back into G-actin, we stir the solu-
tion for only 2-3 minutes to ensure homogeneity in the solution. Figures 7a and b show the average wavelength 
shift produced by polymerizing G-actin to F-actin. Unlike Fig. 6c, we observed a larger average wavelength shift 
for mode m1 in Fig. 7a. This is due to the larger size of the F-actin, which has a length of 700 nm (20 ×  pitch, 
where pitch =  35 nm). To further demonstrate the effects of F-actin on m1, we fabricated another sample with 
similar gammadion size and height but a period of 650 nm. With a different period, we hypothesize that the 
wavelength shift will be different from the gammadion sample with period of 800 nm. Figures 7c and d supports 
the hypothesis and show the wavelength shift produced by the symmetric tapered and asymmetric tapered gam-
madion for m1 and m3 at TF of 0.67. The wavelength shift reduced by approximately 12% for TF of 0.67 for mode 
m1. However, for mode m3, the change in period does not affect the wavelength shift much.

The above results stressed the importance of local field enhancement and its spatial distribution generated 
by different gammadion designs. These findings were applied to a solution of chiral molecules. However, a theo-
retical explanation on the improved sensitivity by using the concept of optical chirality will further demonstrate 

Figure 3.  (a) Simulation results of the symmetric tapered gammadion. It is observed that symmetric tapering 
makes the ED of mode m1 weaker and causes mode m2 to disappear. The field distribution of mode m1 in the 
symmetric tapered gammadion is shown in (b,c), at TF of 0.67 and 0.1 respectively. From the field distribution, 
it is observed that the enhanced field amplitude at the end of the arm increases as TF decreases. Tapering 
results in an increase in field density per unit volume. However, it is also observed that the enhanced field is 
less distributed and only localized around the sharp edge of the symmetric tapered gammadion at TF of 0.1. 
The local field distribution in (c) becomes smaller due to tapering of the arms and increasing gap distance. 
Hence, we can relate the decrease in ED of mode m1 to a lesser enhanced field distribution on the surface of the 
gammadion. (d) Experimental results of the ED spectrum for the symmetric tapered gammadion. It agrees well 
with the simulation results shown in Fig. 3(a). The experimental results are obtained using microscopy to probe 
the absorption difference when incident with left and right handed circularly polarized light. The ED spectra 
for the symmetric tapered gammadion structures show values which are lower than the untapered gammadion 
nanostructures.
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the importance of superchiral field interaction with chiral molecules. The optical chirality, proposed by Lipkin is 
given by50

ζ
ε

µ
= ⋅ ∇ × + ⋅ ∇ ×

( )
E E B B
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0

where ε 0 and μ 0 are the permittivity and permeability of the free space, respectively. The fields, E and B are the 
time-dependent electric and magnetic fields. In general, the chiral dissymmetry is proportional to optical chiral-
ity, ζ  and inversely proportional to Ue, the time-averaged electric energy51. This implies that chiral dissymmetry 
increases the rate of excitation of chiral molecules with enhanced electric field. It is deduced from Eq. 2 that SEFR 
is directly proportional to the rate of excitation of chiral molecules. This supports the previous results, where the 
enhanced field from the tapered gammadion increases the rate of chiral molecules excitation and enhanced the 
observed wavelength shift. This shows that tapering improves the sensitivity of the gammadion.

With incident circularly polarized light, the optical chirality, ζ  can be simplified as51

ζ
ω

= ± ( )
U
c
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e

Figure 4.  (a) Simulation results of the asymmetric tapered gammadion. Contrary to the symmetric 
tapered gammadion, the ED of mode m1 in asymmetric tapered gammadion is stronger than the untapered 
gammadion. The plasmonic modes m2 and m3 begin to merge as TF decreases. The field distribution of the 
asymmetric tapered gammadion is shown in (b,c), where the TF is 0.67 and 0.1 respectively. From the field 
distribution, it is observed that the field amplitude at the end of the arm increases as the TF decreases. We also 
observed that the enhanced field is more spatially distributed around the asymmetric tapered gammadion. 
This increase in field distribution occurs until TF of 0.5. The gap field also increases with tapering as shown 
in (b). (d) Experimental results of the ED spectrum for asymmetric tapered gammadion. It agrees well with 
the simulation results shown in Fig. 4(a). The experimental results are obtained using microscopy to probe 
the absorption difference when incident with left and right handed circularly polarized light. The asymmetric 
tapered gammadion shows ED improvement at TF of 0.67 and 0.5.
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where c and ω represent the speed of light and angular velocity of rotation in free space. The “+ ” and “−” sign 
represent left and right handed circularly polarized light respectively. The time-average electric energy Ue can be 
expressed as51

ε
= ( )U E

4 5e
0 2

We used Eq. 5 to evaluate the optical chirality of the near field generated by the asymmetric tapered gammadion 
nanostructures. Figures 8a–c show the local optical chirality for asymmetric tapered gammadion at TF of 1, 0.67 
and 0.1 for mode m1. We observed that the optical chirality for the asymmetric tapered gammadion at TF of 0.67 
is the strongest. It’s local optical chirality spreads over a larger area compared to the untapered gammadion and 
asymmetric tapered gammadion at TF of 0.1. This is because tapering allows the high field region and hence the 
optical chiral fields to spread over a larger area as shown in Figs. 6b and c. From Fig. 8c, we also observed that the 
optical chirality of the asymmetric tapered gammadion is continuous as compared to the untapered gammadion. 
We can also relate SEFR to optical chirality, ζ . When the SEFR is large, the localized field amplitude is very strong 
and the distribution is large. This results in large optical chirality as ζ  is directly proportional to the modulus of 
the electric field. A large ζ  also indicates higher field rotation amplitude, as described in Eq. 2. The higher field 

Figure 5.  SEFR of the different gammadions for (a) mode m1, (b) mode m3 and (c) gap field. We observed 
a higher SEFR for mode m1 than mode m3. This is expected as the fields are more distributed for mode m1 
than m3. It is also shown that the SEFR of asymmetric tapered gammadion is stronger than the symmetric 
tapered gammadion. SEFR for the symmetric tapered gammadion is seen to decrease after tapering for mode 
m1. For the asymmetric tapered gammadion, SEFR increases until TF of 0.67 and decreases. For mode m3, the 
symmetric and asymmetric tapered gammadion shows similar trend. This is because mode m3 is a plasmon 
resonance mode and is less affected by the initial tapering. For the gap field, it is observed that SEFR for 
symmetric tapered gammadion decreases from the start of tapering. For the asymmetric tapered gammadion, 
the SEFR increase until a TF of 0.67.
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rotation amplitude results in strong chiral field generation, creating a larger wavelength shift and improves the 
sensitivity of molecular detection. The optical chirality, ζ  also affects the rate of excitation of chiral molecules 
according to the TF. As observed from Figs. 6 and 7, the rate of excitation improves for TFs ranging between 0.5 
and 0.75. This range of TF produces large ζ  to excite many chiral molecules, resulting in a larger change in index 
locally around the nanostructures. There is larger wavelength shift and improved sensitivity. A parameter called 
the angular velocity of rotation, ω is given by the equation52

ω π= ( )f2 6

where f is the frequency of light. In this equation, it is observed that higher frequency results in higher angular 
velocity of light rotation. This rotation rate further increases the rate of excitation of the chiral molecules. Hence, 
we observed in Fig. 7 that the wavelength shift for mode m3 is larger as it occurred at shorter wavelength/higher 
frequency for G-actin molecules. However, for larger F-actin molecules, larger wavelength shift is seen for mode 
m1.

In conclusion, we demonstrated a new approach for enhancing ED by asymmetrically tapering the arms of 
the gammadion nanostructures to enhance local field strength and increase spatial distribution. Experimental 
results are in agreement with simulations, demonstrating that the asymmetric tapered gammadion has the high-
est ED and local electric field distributions at TF of 0.67. This observation is reaffirmed by the parameter, SEFR. 
Subsequently, the asymmetric tapered gammadion is immersed in solutions containing actin molecules and 

Figure 6.  (a) Schematic representation of G-actin monomer and F-actin filament. The polymerization of 
G-actin monomer forms F-actin which is a double helix right handed filament. (b) ED spectra of the left 
handed gammadion designs after submerged in a solution of G-actin. The symmetric and asymmetric tapered 
gammadion designs are obtained at TF of 0.67. It is observed that the shift of mode m1 is less significant for 
G-actin. Mode m3′ s wavelength shift is larger, indicating the properties of enhanced plasmonic mode in the 
gammadion. Figures (c,d) show the average wavelength shift for mode m1 and m3 respectively with G-actin. 
The average wavelength shift for mode m1 is shorter than mode m3. This is because of the different nature of 
the modes. Mode m1 is due to the periodicity of the array while mode m3 is due to the plasmonic resonance of 
the gammadion. Also, mode m3 lies at shorter wavelength and is closer to the absorption frequency of G-actin. 
Hence, more G-actin is absorbed for mode m3 and this explains the larger wavelength shift.
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filaments. The largest average wavelength shift occurs at TF of 0.67, and it is almost double that of untapered 
gammadion nanostructures. We calculate the optical chirality of the tapered gammadion and explain that the 
asymmetric tapered gammadion nanostructures have larger spatial superchiral field distribution. The higher field 
enhancement can be attributed to the resulting optical chirality, ζ  which increases the rate of excitation of chiral 
molecules and influences the rotating properties of localized field in the asymmetric gammadion structures, 
resulting in the larger average wavelength shift observed.

Methods
Experimental setup.  Each fabricated sample (regardless of tapering fraction or period) has a total of 
approximately 4.2 × 107 gammadions. The actin solution with volume of 10 μ l was cast drop on top of the fabri-
cated sample using a micro-pipette. A cover slide was then put on the top of the solution to form a uniform liquid 
layer with thickness of ~100 μ m. All ED spectra were collected using a dark-field optical microscope (Olympus IX 
71) equipped with a spectrometer (Acton SP-2357 Monochromator, Princeton Instruments). Left/Right circularly 
polarized light from a halogen lamp was incident from the top with the gold layer facing upward. We combined 
a linear polarizer and a quarter wave plate to generate either left or right circular polarization states. Light was 
then focused onto the substrate with the chiral nanostructures through a dry dark-field condenser and the light 
extinction signal was then collected with a 20× objective and directed to the spectrometer and CCD for spectra 
recording and image analysis respectively. ED spectra are obtained from the experiment. For accurate and mean-
ingful comparison, we also plotted the ED obtained from simulation.

Figure 7.  Wavelength shift of the symmetric and asymmetric tapered gammadion for modes (a) m1 and (b) 
m2 using F-actin filaments. We observed that the wavelength shift pattern is different from Figs. 6(c,d). Mode 
m1 has longer wavelength shift than m3. This is because the longer F-actin filaments are more sensitive to the 
periodic mode of m1. Hence, we can deduce that the longer filament is more sensitive to the ED of mode m1 
at longer wavelength, while the smaller G-actin molecules are more sensitive to the ED of mode m3 at shorter 
wavelength. Figures 7(c,d) shows the response of F-actin on the different gammadion structures with different 
periods. We see that m3 is not affected much by the different periods, while mode m1′ s average wavelength shift 
reduces when the period changed to 600 nm.
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Solution of the actin.  G and F-actin solutions have a concentration of 4 mg ml−1. Further details of the actin 
preparation are given in the supplementary information.

Plasmonics field simulations.  Numerical simulations of the electromagnetic fields were performed using 
in-house finite-difference time-domain codes with mesh size of 2 nm. A nonuniform mesh is used because of 
the tapering design to ensure accurate simulation results. Permittivity for gold is taken from the Palik optical 
handbook40. Left and right circularly polarized light is normally incident onto the tapered nanostructures and 
monitors were placed at all faces of the simulation boundary to obtain the scattering, reflection and transmission 
spectra of the gammadion nanostructures. We then obtain the extinction spectra for the left (LCP) and right 
circularly polarized (RCP) light. The differences between the extinction spectra for the different tapered design at 
different tapering fractions gave the ED spectra.
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