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Energy-efficient population coding 
constrains network size of a 
neuronal array system
Lianchun Yu1,2, Chi Zhang3, Liwei Liu4 & Yuguo Yu5

We consider the open issue of how the energy efficiency of the neural information transmission process, 
in a general neuronal array, constrains the network size, and how well this network size ensures the 
reliable transmission of neural information in a noisy environment. By direct mathematical analysis, we 
have obtained general solutions proving that there exists an optimal number of neurons in the network, 
where the average coding energy cost (defined as energy consumption divided by mutual information) 
per neuron passes through a global minimum for both subthreshold and superthreshold signals. With 
increases in background noise intensity, the optimal neuronal number decreases for subthreshold 
signals and increases for suprathreshold signals. The existence of an optimal number of neurons in an 
array network reveals a general rule for population coding that states that the neuronal number should 
be large enough to ensure reliable information transmission that is robust to the noisy environment but 
small enough to minimize energy cost.

Neuronal activity, related to information processing in brain circuits, is metabolically expensive1. For example, 
the metabolic cost of the human brain may rise from 20% to 40% of whole-body energy production when human 
beings switch from a resting state to a working state. Action potentials, which are electrical signals and rely on 
the potential energy stored in transmembrane ion gradients, cost a large fraction of this energy2. These metabolic 
demands could be large enough to influence the design, function and evolution of brains3–10.

Population coding11, i.e., the cooperative coding of information of input signals by a group of neurons, is a 
basic neural code strategy used in many nervous systems12. Studies have shown that neuronal activities could be 
synchronized to remain robust against noise and promote the reliable transmission of information13–15. It was 
suggested16,17 that the number of neurons involved in synchronous neuronal activities is critical for reliable infor-
mation delivery within a feed-forward multi-layer cortical network. However, for population coding in such an 
array network, the relationship between efficient energy consumption to information transmission and neuronal 
number has not been carefully considered, especially in the case of different background noise levels.

Moreover, background noise is present at all levels of the nervous system, from the microscopic level, such as 
stochastic ion channel gating in membranes and biochemical noise at synapses, to macroscopic levels18–20. The 
existence of noise may degrade the reliability of effective information transmission and requires the involvement 
of more neurons to perform an information-processing task15. Therefore, it is critical to address the issue of what 
is the proper size of a neuronal array network for reliable information transmission with minimal energy cost in 
a noisy environment.

In an earlier work, Barlow (1961)21 suggested sparseness as one of the principles that are important to sensory 
representation. Because sparse codes are defined as representations with low activity ratios—i.e., at any given time 
a small proportion of neurons are active—they are sometimes proposed as a means to help conserve metabolic 
costs. Levy and Baxter (1996)22 demonstrated that there should exist an optimal firing probability for any given 
mean firing rate in a neural network so that the capacity to represent sensory information is maximized while 
energy expenditure is minimized. Later, a quantitative measure of the metabolic cost of neural electrical signals 
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generated by retina photoreceptors3 and action potential generation in axons was estimated by experimental as 
well as computational studies5,7–10,23–25. These studies have linked the energy efficiency of spiking with the number 
of the ion channels19, as well as the ratio of sodium to potassium channel density within a single neuron5,7,9,23–25. 
However, the way limited energy constrains the size and coding efficiency of a neuronal network, in the pres-
ence of different noise levels, has not been carefully examined. In the past few decades, a number of studies of 
stochastic resonance have shown that noise plays an important role in neural information processing for sub- or 
suprathreshold signals14,26,27. In this paper we have carried out a mathematical analysis and numerical simulations 
to investigate the issue of network energy coding efficiency and its dependence on the population size, and signal 
and noise intensity. We have considered a neuronal network with a type of excitable neuronal model.

We proceeded by first solving a stochastic one-dimensional bistable Langevin equation, which mimics action 
potential generation with a particle crossing the barrier of a double well, to obtain an analytical solution for the 
pulse signal detection rate and spontaneous firing rate28. Coincidence detector (CD)29–32 in the context of neu-
robiology is a process by which a neuron or a neural circuit can encode information by detecting the occurrence 
of temporally close but spatially distributed input signals from presynaptic neurons of a network. A number of 
reports31–33 have suggested that neuronal network with postsynaptic CD might be commonly used in different 
cortical areas to read synchronous activities against a noisy background. Here, we have constructed an array 
network model with N bistable neurons and a CD neuron to pool the network information, and calculated the 
mutual information and energy cost of the network.

Results
The bistable neuron model used here can be described with the following equation:

= − ′( ) + Γ( ) ( )v U v t 1

where v is the membrane potential, and U is a double well potential, defined as:
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Note that U has two minima at = −v as1 , =v as2  and a saddle point at =µv 0. In the following calcula-
tion, =a 1 by default. Γ( )t  is a Gaussian white noise, with
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and D the noise intensity. We assume the neuron to be in its resting state when the particle is in the left well and in 
the excited when the particle has crossed the barrier to the right well, due to noise or signal stimulation.

It is assumed that a force of short time duration moves the particle horizontally from the resting state to v′  
in the region of the saddle point. When the force disappears, the particle drifts up to the region of the saddle 
point. Near the saddle point, the phase trajectories are repelled, causing the particle to accelerate away from the 
saddle-point region towards one of the two minima. According to Lecar and Nossal’s approach of linearizing 
around the saddle point, we can obtain the probability of finding the particle in the right well after a long enough 
time, i.e., the probability that a pulse input signal is detected by the neuron20,34,
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function. With no input signal, neurons fire spikes spontaneously under perturbation by noise. The spontaneous 
firing rate of a bistable neuron is derived by Kramers’ formula35:
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Figure 1(a) shows the firing probability of the neuron as a function of input pulse strength Δ v with different 
noise intensities D, described by Eq.4. It is clear that the firing threshold fluctuates depending on the strength of 
noise perturbation. The neuron fires in response to subthreshold inputs (Δ v <  0) with the assistance of noise, 
which is well known as stochastic resonance28. The detection rate increases as the noise intensity increases. 
However, the noise sabotages the neuron’s reliability for suprathreshold inputs (Δ v >  0), and the detection rate 
decreases as the noise intensity increases. For threshold inputs (Δ v =  0), the detection rate is 50%, independent 
of noise intensity. Our results are consistent with previous simulation results for a Hodgkin-Huxley (HH) system 
(for example, see reference36 where the inputs are in the form of voltage pulses). Figure 1(b) shows that the spon-
taneous firing rate increases as a function of noise intensity. The same result was obtained by Zeng et al. with the 
stochastic simulation of the HH neuron37.

Next we consider the information capacity and energy cost of an array of N bistable neurons with a pulse sig-
nal as input whose intensity is distributed uniformly over the interval ∆ , ∆v v[ ]min max , with the probability den-

sity function (∆ ) =
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information in the synchronous firings of this N neuron array is pulled together by a CD neuron, see Fig. 1(c). The 
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CD neuron receives the outputs of the N bistable neuron array and is excited if n (θ ≤ ≤n N ) inputs arrive 
simultaneously, where θ is the threshold of the CD neuron. In response to pulse inputs, this network has two 
output values, i.e., R =  {r| r =  1 if CD neuron fires, or = 0 if CD neuron fails to fire}. The conditional probability 
( = ∆ )q r v1  that the CD neuron fires when the input is ∆v is given by a cumulative binomial distribution

( )∑( = ∆ ) = ( (∆ )) ⋅ ( − (∆ )) ,
( )θ=

−q r v N
k

P v P v1 1
6k

N

c
k

c
N k

where ( )N
K

 is a binomial coefficient, and (∆ )P vc  is the detection rate of the bistable neuron for pulse input with 

strength ∆v, determined by Eq. 4. The conditional probability that the CD neuron does not fire when the input is 
∆v is given by

( = ∆ ) = − ( = ∆ ). ( )q r v q r v0 1 1 7

According to Bayes formula, the probability that the output is r can be obtained by
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According to Shannon information theory38, the information between input S and output R is defined as
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In our case, the input is continuous and the output is discrete, and thus, the summation must be rewritten as 
follows:
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Finally, we obtain the following description of the mutual information for the CD neuron:
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Figure 2(b) shows that = /I I NMsingle , the average mutual information per single neuron can reach a global 
maximum when the network contains an optimal number of neurons for subthreshold signals (e.g., 
∆vsub =  − 0.1). The optimal neuronal number becomes smaller when the noise intensity increases. For super-
threshold signals (e.g., ∆vsub =  0.1), the average mutual information per single neuron can also be maximized by 

Figure 1. (a) The detection rate of the bistable neuron model as a function of input pulse strength for different 
noise intensities. (b) The bistable neuron model’s spontaneous firing rate as a function of noise intensity (b). (c) 
The network model with an array of N neurons and a coincidence detector (CD) neuron with a spiking 
threshold θ = 10.
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an optimal neuronal number. However, when the noise intensity decreases, the optimal neuronal number also 
decreases (see Fig. 2(b)). From Fig. 1(a), we see that for both subthreshold and superthreshold signals, Pc con-
verges to 0.5 as the noise intensity increases. As a result, in Fig. 2(a,b), the optimal neuronal number moves to 20 
with the CD threshold set to 10(results not shown). In contrast, with decreasing noise, to re-establish a maximum, 
the subthreshold signals require an increased number of neurons to compensate for the loss due to decreased Pc, 
whereas the suprathreshold signals must decrease the number of neurons to limit the excess due to decreased Pc. 
For both the subthreshold and superthreshold signals, the average mutual information per neuron can be maxi-
mized by an optimal noise intensity, displaying a classic subthreshold stochastic resonance phenomenon (see 
Fig. 2(c)) and suprathreshold stochastic resonance phenomenon (see Fig. 2(d))39.

For an N neuron array system, the total network energy expenditure in an action potential onset time interval 
Δ t can be written as

∫= ( )∆ + (∆ ) (∆ ) ( , ), ( )∆ ∆E E N t d v p v E N t 12t s
S

v

where ( )E Ns  and ( , )∆E N tv  are the energy costs related to action potential generation. For simplicity, we assume 
the energy cost of one action potential to be 1. ( )E Ns  is the energy cost of the spontaneous firings in unit time, and 
( ) =E N N Ps s. ( , )∆E N tv  is the energy cost of the action potentials in response to input pulses with strength ∆v, 

and ( , ) = (∆ )∆E N t N P vv c  if the inputs are applied at the beginning of this time interval and zero otherwise. 
Therefore, ∫ (∆ ) (∆ ) ( , )∆d v p v E N tS v  is the average energy cost of action potentials in response to an input pulse 
with distribution p(∆v). Fig. 3(a) shows the dependence of = /∆∆E E tNtsingle , the average energy cost of each 
neuron in unit time, as a function of input pulse strength ∆v for different noise intensities. Note that when the 
noise is weak, as the spikes are mostly induced by the signals, the −E vsingle  curves have similar behavior to the 
−P vc  curves shown in Fig. 1(a). Interestingly, for subthreshold signals, e.g., ∆vsub =  − 0.1, Esingle increases as 

noise intensity D increases, while for superthreshold signals, e.g., ∆vsupra =  0.1, Esingle first decreases and then 
increases slightly as noise intensity D increases (see Fig. 3(b)). For subthreshold signals, e.g., ∆vsub =  − 0.1, 

= /∆∆E E ttsystem , the energy consumption of the whole system in unit time, increases monotonously with both 
noise intensity and neuronal number; see Fig. 3(c). For superthreshold signals, e.g., ∆vsupra =  0.1, Esystem also 
increases with neuronal number. However, Esystem is large for weak noise intensity and becomes small for high 
noise intensity, see Fig. 3(d).

We now define a new measurement to quantify how efficiently the system utilizes a certain amount of energy 
in a certain amount of information transmission, i.e., energy cost per unit information transmission or coding 
energy cost:η = E

I
, where E is the average energy consumption in unit time per neuron, and I is the average 

mutual information between the inputs and outputs of the neuron array in unit time per neuron. Now, we have

Figure 2. The average mutual information per neuron Isingle as a function of array size N for subthreshold 
signal Δvsub = −0.1 (a) and for suprathreshold signal ∆vsupra =  0.1 (b). (c) I single vs. noise intensity D for 
neuronal numbers N =  20, 30, and 40. (d)I single vs.D for N =  10, 15, and 20.
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Laughlin et al. found that in noise-limited signaling systems, a low capacity weak pathway transmits informa-
tion more economically, which promotes the idea of distributed information coding among multiple pathways3. 
The analysis result for the array network supports this idea. Fig. 4(a) shows that for subthreshold signals, though 
the network detection rate for a single neuron is low, it yields a low coding energy cost in the information coding 
process for weak noise intensity. Moreover, our results show that the coding energy cost passes through a global 
minimum as a function of neuronal number within the network for different noise intensities. The optimal neu-
ronal number Nopt, corresponding to the minimum coding energy cost ηopt, shifts to the smaller number as noise 
intensity increases. For a suprathreshold stimulus, the coding energy cost also passes through a global minimum 
as a function of neuronal number. However, the optimal neuronal number corresponding to the minimum cod-
ing energy cost shifts to the larger number side as noise intensity increases (see Fig. 4(b)). Interestingly, as the 
noise intensity increases, the optimal neuronal number Nopt for both sub- and suprathreshold signals converges 
to a small range between N =  15 and 25 (see Fig. 4(c)). This convergence occurs because the optimal neuronal 
number for maximal mutual information, as we discussed above (Fig. 2(a,b)), will converge from the opposite 
direction to 20 in the case of the large noise limit, recalling that the energy cost does not change greatly for differ-
ent noise intensities. Moreover, we found that for a given noise intensity (e.g., D =  0.5), the maximal input pulse 
frequency that the bistable neurons can receive, which is the inverse of the action potential onset time ∆t, can 
significantly modulate the values of either Nopt or ηopt for different input pulse intensities, suggesting an energy 
saving mechanism for information coding in higher frequency bands, as observed in recent experimental 
findings25.

Discussion
Consuming only several watts of energy, mammalian brains are able to carry out 1000 trillion operations per 
second40. The biophysical mechanism of this extremely efficient energy expenditure is still not fully known. In 
a real living brain circuit, background noise is present at all levels of the nervous system, from the microscopic 
level, such as channel noise in membranes and biochemical noise at synapses, to macroscopic levels, such as 
a small neuronal circuit composed of several to tens of neurons. The existence of noise may degrade the reli-
ability of effective information transmission and requires the involvement of more neurons to perform an 
information-processing task15. For example, small neurons will cost less energy because fewer ion channels are 
involved, thus requiring less ion exchange through the ion pumps that drive ATPase Na +  /K +  exchanges after 

Figure 3. (a) The average energy cost per neuron Esingle as a function of input pulse intensity ∆v for different 
noise intensities D. (b) Esingle as a function of D for ∆vsub =  − 0.1 and ∆vsupra =  0.1, respectively. (c) The total 
network energy consumption Esystem as a function of neuronal number N for ∆vsub =  − 0.1. (d) Esystem as a 
function of neuronal number N for ∆vsupra =  0.1.
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action potentials9. However, the stochastic nature of ion channel gating will not only produce variability in the 
response of neuron to external stimuli but also cause spontaneous action potentials, damaging the reliability 
of signal processing18. In this case, trade-offs between information transfer and energy cost may constrain the 
proper number of ionic channels in individual neurons19,20 as well as the proper size of neuronal number in a 
neuronal network. There should exist a general rule for energy consumption, neural information transmission 
and network size.

Earlier theoretical studies21,22 suggested that an energy efficient coding of a neuronal network should be one 
where a small fraction of neurons use low firing rates to encode each component of input signal, leading to the 
concept of sparse coding. However, our theoretical analysis suggests that involvement of background noise at 
different intensities should justify this sparse coding theory. Noise brings two things to the neural population 
coding. First, a low level of noise may deliver energy to neurons within networks to fire more electronic signals in 
response to input. Second, increased noise may degrade reliability of a population response in coding the input 
signal, thus requiring more recruited neurons to ensure reliable response against noise distortion. The trade-offs 
between a reliable neural code and limited available energy result in an optimal number of neurons in maximal 
information transmission and minimal energy cost for a given noise level. Here, introducing the bistable model 
makes it feasible to analyze directly the input-output response function to the signals in noise environment, 
and provide a general solution for the energy-constrained efficient information transmission process. Since the 
bistable state describes the action potential initiation process in HH systems, the results presented here can be 
applied to all types of excitable neuronal models and real neurons. In addition, although our work focused on the 
effects of system size on energy efficiency, it could be extended to include the effects of spike correlation, stimulus 
and noise distribution on the energy efficiency, based on the recent progress on suprathreshold stochastic reso-
nance14,27,41. Our analysis considered in detail the contribution of noise to information transmission regarding 
sub- and super-threshold stochastic resonance, while this could not have been derived from pure binary neurons 
in previous studies22.

The model presented is not complex enough to include details of ionic channel properties contributing to 
an energy efficient spiking process. Other recent research has focused on this issue and found5,7-9,23,25 that there 
may exist an optimal number of ionic channels19 or an appropriate ratio of sodium to potassium channel density 
to generate energy efficient action potentials5,9,23,25. Therefore, for mature neurons with stabilized ionic channel 
densities and kinetics, in stable environmental conditions, our model rather considered a more general situation 
of a network case in the presence of noise, and proved that the coding energy cost per unit information goes 
through a global minimum with an optimal neuronal number depending on given noise intensity. In addition, 
the implications of achieved results with the dynamical model used here may be limited by it having fixed unit 
energy per spike. There is an additional possibility as reported by a few experimental and computational reports 

Figure 4. (a) Coding energy cost η  as a function of N for ∆vsub =  − 0.1 in the cases of different noise intensities. 
(b) η  vs. N for ∆vsupra =  0.1 in the cases of different noise intensities. (c) The optimal neuronal number Nopt vs. 
noise intensity D for different input signal intensities ∆v. (d) The minimum coding energy cost ηopt vs. the 
optimal neuronal number Nopt for different signal intensities ∆v in the case of different input pulse frequencies.
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that the energy efficiency per spike may vary with stimuli conditions, which may add additional capacity of neural 
coding efficiency42–44. This would be worth further examination with a more realistic Hodgkin-Huxley neuronal 
model with proper ionic channels.

To summarize, in this paper, we examined the energy efficiency of an information coding process based on a 
neuronal array network composed of N simple bistable neurons and a CD detector neuron. We have provided an 
analytical solution that quantifies the relationships among the energy cost per neuron, mutual information, noise 
intensity, signal intensity and frequency, and neuronal number required in the circuit for effective information 
transmission. The novel result obtained here reveals a general rule of energetics related to population coding 
that there exists an optimal number of neurons in the network necessary for maximal information coding with 
minimal energy cost, and the optimum depends on the noise intensity, input pulse strength and frequency. The 
results reflect general mechanisms for sensory coding processes, which may give insight into energy efficient 
brain communication and neural coding.
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