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On Wiener polarity index of bicyclic 
networks
Jing Ma1, Yongtang Shi1, Zhen Wang2 & Jun Yue3

Complex networks are ubiquitous in biological, physical and social sciences. Network robustness 
research aims at finding a measure to quantify network robustness. A number of Wiener type indices 
have recently been incorporated as distance-based descriptors of complex networks. Wiener type 
indices are known to depend both on the network’s number of nodes and topology. The Wiener 
polarity index is also related to the cluster coefficient of networks. In this paper, based on some graph 
transformations, we determine the sharp upper bound of the Wiener polarity index among all bicyclic 
networks. These bounds help to understand the underlying quantitative graph measures in depth.

In order to decide whether a given network is robust, a way to quantitatively measure network robustness is 
needed. Intuitively robustness is all about back-up possibilities, or alternative paths, but it is a challenge to cap-
ture these concepts in a mathematical formula. During the past years a lot of robustness measures have been 
proposed1. Network robustness research is carried out by scientists with different backgrounds, like mathematics, 
physics, computer science and biology. As a result, quite a lot of different approaches to capture the robustness 
properties of a network have been undertaken. All of these approached are based on the analysis of the underlying 
graph—consisting of a set of vertices connected by edges of a network1–6.

One such category is the distance-based descriptors which include Wiener index, Harary index, etc. The use 
of Wiener index and related type of indices dates back to the seminal work of Wiener in 19477. Wiener intro-
duced his celebrated index to predict the physical properties, such as boiling point, heats of isomerization and 
differences in heats of vaporization, of isomers of paraffin by their chemical structures. Wiener index has since 
inspired many distance-based descriptors in Chemometrics. These include Harary index8, hyper Wiener index9,10, 
Wiener polynomial11, Balaban index12, Wiener polarity index7 and information indices13–15. These indices, or 
commonly called descriptors, play significant roles in quantitative structure-activity relationship/quantitative 
structure-property relationship (QSAR/QSPR) models. It is known that the Wiener type indices depend both on 
a network’s number of nodes and its topology. For more results, we refer to16,17.

Let G =  (V, E) be a connected simple graph. The distance between two vertices u and v in G, denoted by 
dG(u, v), is the length of a shortest path between u and v in G. The Wiener polarity index of a graph G =  (V, E), 
denoted by Wp(G), is the number of unordered pairs of vertices {u, v} of G such that dG(u, v) =  3, i.e.,

( ) = , ( , ) = , , ∈ ( ) . ( )W G u v d u v u v V G: {{ } 3 } 1p

The name “Wiener polarity index” is introduced by Harold Wiener7 in 1947. Wiener himself conceived the 
index only for acyclic molecules and defined it in a slightly different – yet equivalent – manner. In the same paper, 
Wiener also introduced another index for acyclic molecules, called Wiener index or Wiener distance index and 
defined by ( ) = ∑ ( , )., ⊆W G d u v: u v V G{ }  Wiener7 used a liner formula of W and WP to calculate the boiling points 
tB of the paraffins, i.e., = + + ,t aW bW cB p  where a, b and c are constants for a given isomeric group. The 
Wiener index W(G) is popular in chemical literatures. For more results on Wiener index, we refer to the survey 
paper18 written by Dobrynin, Entringer and Gutman, and some recent papers19–23.

The Wiener polarity index is used to demonstrate quantitative structure-property relationships in a series 
of acyclic and cycle-containing hydrocarbons by Lukovits and Linert24. Hosoya in25 found a physical-chemical 
interpretation of Wp(G). Du, Li and Shi26 described a linear time algorithm APT for computing the Wiener polar-
ity index of trees, and characterized the trees maximizing the Wiener polarity index among all trees of given 
order. From then on, the Wiener polarity index started to attract the attention of a remarkably large number of 
mathematicians and so many results appeared. The extremal Wiener polarity index of (chemical) trees with given 
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different parameters (e.g. order, diameter, maximum degree, the number of pendants, etc.) were studied, see27–33. 
Moreover, the unicyclic graphs minimizing (resp. maximizing) the Wiener polarity index among all unicyclic 
graphs of order n were given in34. There are also extremal results on some other graphs, such as fullerenes, hex-
agonal systems and cactus graph classes, we refer to35–37. Observe that the Wiener polarity index is also related to 
the cluster coefficient of networks.

Results
The main contributions of this paper can be summarized as follows:

•	 We provide a formula of the Wiener polarity index of bicyclic networks, from which the value of the index 
can be computed easily.

•	 We introduce three graph transformations, which can be used to increase the values of Wiener polarity index. 
These transformations can help to find more extremal values for other classes of molecular networks.

•	 We determine the maximum value of the Wiener polarity index of bicyclic networks and characterize the 
corresponding extremal graphs.

Now let us introduce some notations. Let NG(v) be the neighborhood of v, and ( ) = ( )d v N vG G  denote the 
degree of vertex v. For = , ,…i 2 3 , we call ( ) = ∈ ( ) ( , ) =N v u V G d u v i{ }G

i  the ith neighborhood of v. If 
dG(v) =  1, then we call v a pendant vertex of G. Let g(Cx) be the length of cycle Cx in graph G, Pi denote a path with 
length i. For all other notations and terminology, not given here, see e.g.38.

Let B be a bicyclic graph. Suppose = …C v v v vp p1 2 1 and = …C u u u uq q1 2 1 are two cycles in B with l (l ≥  0) 
common vertices. Without loss of generality, we label the vertices of Cp in the clockwise direction, and the vertices 
of Cq in the inverse clockwise direction. If l =  0, then there is one unique path P connecting Cp and Cq, which 
starts with v1 and ends with u1. We call this kind of bicyclic graph type I (see Fig. 1). If l =  1, then Cp and Cq have 
exactly one common vertex v1(u1). We call this kind of bicyclic graphs type II (see Fig. 1). If l  ≥  2, then B contains 
exactly three cycles. The third cycle is denoted by Cz, where z =  p +  q −  2l +  2. Without loss of generality, assume 
that p ≤  q ≤  z and l −  2 ≤  p −  2 ≤  q −  2. The two cycles Cp and Cq have more than one common vertex 
( ), …, ( )v u v ul l1 1 . We call this kind of bicyclic graphs type III (see Fig. 1). In the following section, we use B, Cp, 

Cq, vi (1 ≤  i ≤  p), uj (1 ≤  j ≤  q), l as defined above, except as noted.
L e t  ′ ( , , , , ),C s s s t t t;3 3 1 2 3 1 2 3  b e  t h e  b i c y c l i c  g r a p h  o f  t y p e  I ,  w h e r e  P  =   v 1 u 1  a n d 
+ + + + + = −s s s t t t n 61 2 3 1 2 3 . Especially, we denote this kind of graphs by ,

⁎C3 3, if = = =t t t 01 2 3 , 
≤ − ≤s s0 2i1  (i =  2, 3), − ≤s s 12 3 . For a graph G =  (V, E) and = … +P v v vl l1 2 1, we can construct a new 

graph H by identifying v1 with ∈v G, denoted by = +H G P: l, and we say Pl is incident to vertex v.
Theorem 0.1. Let B1 be a bicyclic graph in type I and ( ) = (≥ )V B n 61 , ⁎B1  be the desired graph attaining the 

maximum Wiener polarity index.

(1)	 If n =  6, then = ′ ( , , , , ),
⁎B C 0 0 0;0 0 01 3 3 , and ( ) = ( ) =⁎W B W B 4p p1 1 ;

(2)	 If n =  7, then ≅ ′ ( , , , , ),
⁎B C 1 0 0;0 0 01 3 3 , and ( ) ≤ ( ) =⁎W B W B 6p p1 1 ;

(3)	 If n =  8, then ≅ ′ ( , , , , ),
⁎B C 1 0 0;1 0 01 3 3 , ′ ( , , , , ) +,C P1 0 0;0 0 03 3 1, where P1 is incident to the pendant vertex of v1, 

and ( ) ≤ ( ) =⁎W B W B 9p p1 1 ;
(4)	 If n =  9, then ≅ ′ ( , , , , ),

⁎B C 2 0 0;1 0 01 3 3 , ′ ( , , , , ) +,C P1 0 0;1 0 03 3 1, where the path P1 is incident to the pendant ver-
tex of v1, ′ ( , , , , ) +,C P2 0 0;0 0 03 3 1,  where the path P1 is incident to one pendant vertex of v1, 
′ ( , , , , ) + +,C P P1 0 0;0 0 03 3 1 1, where the two paths P1 are incident to the pendant vertex of v1, and 
( ) ≤ ( ) =⁎W B W B 12p p1 1 ;

(5)	 If n =  10, then ≅ ′ ( , , , , ),
⁎B C 2 0 0;2 0 01 3 3 , ′ ( , , , , ) +,C P2 0 0;1 0 03 3 1, where the path P1 is incident to one pendant 

vertex of v1, ′ ( , , , , ) + +,C P P2 0 0;0 0 03 3 1 1, where the two paths P1 are incident to the pendant vertices of v1, and 
( ) ≤ ( ) =⁎W B W B 16p p1 1 ;

(6)	 If n =  11, then ≅ ′ ( , , , , ),
⁎B C 3 0 0;2 0 01 3 3 , ′ ( , , , , ) +,C P2 0 0;2 0 03 3 1, where the path P1 is incident to one pendant 

vertex of v1, ′ ( , , , , ) + +,C P P2 0 0;1 0 03 3 1 1, where the two paths P1 are incident to the pendant vertices of v1, 
′ ( , , , , ) + + +,C P P P2 0 0;0 0 03 3 1 1 1, where the three paths P1 are incident to the pendant vertices of v1, and 
( ) ≤ ( ) =⁎W B W B 20p p1 1 ;

(7)	 If n =  12, then ≅ ′ ( , , , , ),
⁎B C 3 0 0;3 0 01 3 3 , ′ ( , , , , ) +,C P3 0 0;2 0 03 3 1, where P1 is incident to one pendant vertex of v1, 

′ ( , , , , ) + +,C P P3 0 0;1 0 03 3 1 1, where the two paths P1 are incident to the pendant vertices of v1, 
′ ( , , , , ) + + +,C P P P3 0 0;0 0 03 3 1 1 1, where the three paths P1 are incident to the pendant vertices of v1, and 
( ) ≤ ( ) =⁎W B W B 25p p1 1 ;

Figure 1.  The three types of bicyclic graphs. 
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(8)	   �If n =  13, then ≅ ,
⁎ ⁎B C1 3 3, ′ ( , , , , ),C 4 0 0;3 0 03 3 , ′ ( , , , , ) +,C P3 0 0;3 0 03 3 1, where P1 is incident to one pendent vertex 

of v1, ′ ( , , , , ) +,C P4 0 0;2 0 03 3 1, where P1 is incident to one pendant vertex of v1, ′ ( , , , , ) + +,C P P4 0 0;1 0 03 3 1 1, 
where the two paths P1 are incident to the pendant vertices of v1, ′ ( , , , , ) + +,C P P3 0 0;2 0 03 3 1 1, where the two 
paths P1 are incident to the pendant vertices of v1, ′ ( , , , , ) + + +,C P P P4 0 0;0 0 03 3 1 1 1, where the three paths P1 
are incident to the pendant vertices of v1, ′ ( , , , , ) + + +,C P P P3 0 0;1 0 03 3 1 1 1, where the three paths P1 are inci-
dent to the pendant vertices of v1, ′ ( , , , , ) + + + +,C P P P P4 0 0;0 0 03 3 1 1 1 1, where the four paths P1 are incident 
to the pendant vertices of v1, and ( ) ≤ ( ) =⁎W B W B 30p p1 1 ;

(9)	   �If n =  14, then ≅ ,
⁎ ⁎B C1 3 3, ′ ( , , , , ),C 4 0 0;4 0 03 3 , ′ ( , , , , ) +,C P4 0 0;3 0 03 3 1, where P1 is incident to one pendent vertex 

of v1, ′ ( , , , , ) + +,C P P4 0 0;2 0 03 3 1 1, where the two paths P1 are incident to the pendant vertices of v1, 
′ ( , , , , ) + + +,C P P P4 0 0;1 0 03 3 1 1 1, where the three paths P1 are incident to the pendant vertices of v1, 
′ ( , , , , ) + + + +,C P P P P4 0 0;0 0 03 3 1 1 1 1, where the four paths P1 are incident to the pendant vertices of v1, and 
( ) ≤ ( ) =⁎W B W B 36p p1 1 ;

(10)  �If n ≥  15, then ≅ ,
⁎ ⁎B C1 3 3, and ( ) ≤ ( )⁎W B W Bp p1 1 . □ 

Let ″ ( , , , , ),C s s s t t t;3 3 1 2 3 1 2 3  be the bicyclic graph in type II, where + + + + + = −s s s t t t n 51 2 3 1 2 3 , and 
s1 =  t1. When n is large enough, it can be easily checked that the graph maximizing the Wiener polarity index is 
= ″ ( , , , , ),

⁎B C s s s s; 0 02 3 3 1 2 3 1  (see support information).
Theorem 0.2. Let B2 be a bicyclic graph in type II and ( ) = (≥ )V B n 52 , ⁎B2  be the desired graph attaining the 

maximum Wiener polarity index.

(1)	 If n =  5, then = = ″ ( , , , , ),
⁎B B C 0 0 0;0 0 02 2 3 3 , and Wp(B2) =  0;

(2)	 If n =  6, then ≅ ″ ( , , , , ),
⁎B C 0 1 0;0 0 02 3 3 , ″ ( , , , , , ),C 0 0 0;0 0 0 03 4 , and ( ) ≤ ( ) =⁎W B W B 2p p2 2 ;

(3)	 If n =  7, then ≅ ″ ( , , , , ),
⁎B C 0 1 1;0 0 02 3 3 , ″ ( , , , , , ),C 0 0 0;0 1 0 03 4 , and ( ) ≤ ( ) =⁎W B W B 5p p2 2 ;

(4)	 If n =  8, then ≅ ″ ( , , , , ),
⁎B C 0 1 2;0 0 02 3 3 , ″ ( , , , , , ),C 0 0 0;0 1 0 13 4 , and ( ) ≤ ( ) =⁎W B W B 8p p2 2 ;

(5)	 For n ≥  9, let + + = +s s s k r31 2 3  ( ∈ , , )r {0 1 2} .

I f  r  =   0 ,  t h e n  ≅ ″ ( − , + , + − , , ),
⁎B C k k k k2 1 1; 2 0 02 3 3 , ″ ( − , , + − , , ),C k k k k1 1; 1 0 03 3 ,  a n d 

( ) ≤ ( ) = + +⁎W B W B k k3 4 1p p2 2
2 ;

If r =  1, then ≅ ″ ( − , + , + − , , ),
⁎B C k k k k1 1 1; 1 0 02 3 3 , and ( ) ≤ ( ) = + +⁎W B W B k k3 6 3p p2 2

2 ;
If r =  2, then ≅ ″ ( − , + , + − , , ),

⁎B C k k k k1 1 2; 1 0 02 3 3 , and ( ) ≤ ( ) = + +⁎W B W B k k3 8 5p p2 2
2 .□ 

Let ( , , , , ),‴C s s s t t t;3 3 1 2 3 1 2 3  be the bicyclic graph in type III, where + + + + + = −s s s t t t n 41 2 3 1 2 3 , 
s1 =   t1, s2 =   t1 and l  =   1. Let ″ ( , , , , , ),

′C s s s t t t t;3 4 1 2 3 1 2 3 4  be the bicyclic graph in type III ,  where 
+ + + + + + = −s s s t t t t n 51 2 3 1 2 3 4 , s1 =  t1, s2 =  t1 and l =  1. When n is large enough, it can be checked that 

the graph maximizing the Wiener polarity index is = ″ ( , , , , , ),
′⁎B C s s s s s; 0 03 3 4 1 2 3 1 2 .

Theorem 0.3. Let B3 be a bicyclic graph in type III and  ( ) = (≥ )V B n 43 , ⁎B3  be the desired graph attaining the 
maximum Wiener polarity index.

(1)	 If n =  4, then = = ( , , , , ),‴
⁎B B C 0 0 0;0 0 03 3 3 3 , and Wp(B3) =  0;

(2)	 If n =  5, then ≅ ( , , , , ),‴
⁎B C 0 0 1;0 0 03 3 3 , and ( ) ≤ ( ) =⁎W B W B 1p p3 3 ;

(3)	 If n =  6, then ≅ ( , , , , ) +,‴
⁎B C P0 0 0;0 0 03 3 3 2, where P2 is incident to vertex v1 or v3, and ( ) ≤ ( ) =⁎W B W B 3p p3 3 ;

(4)	 If n =  7, then ≅ ( , , , , ) + +,‴
⁎B C P P1 0 0;1 0 03 3 3 1 1, where the two paths P1 are incident to the pendant vertex of v1, 

and ( ) ≤ ( ) =⁎W B W B 6p p3 3 ;
(5)	 If n =  8, then ≅ ( , , , , ) + + +,‴

⁎B C P P P1 0 0;1 0 03 3 3 1 1 1, where the three paths P1 are incident to the pendant 
vertex of v1, and ( ) ≤ ( ) =⁎W B W B 9p p3 3 ;

(6)	 If n =  9, then ≅ ( , , , , ) + + + +,‴
⁎B C P P P P1 0 0;1 0 03 3 3 1 1 1 1, where the four paths P1 are incident to the pendant 

vertex of v1, ( , , , , ) + + +,‴C P P P2 0 0;2 0 03 3 1 1 1, where the three paths P1 are incident to the pendant vertices of 
v1, and ( ) ≤ ( ) =⁎W B W B 12p p3 3 ;

(7)	 If n =  10, then ≅ ( , , , , ) + + + +,‴
⁎B C P P P P2 0 0;2 0 03 3 3 1 1 1 1, where the four paths P1 are incident to the pen-

dant vertices of v1, and ( ) ≤ ( ) =⁎W B W B 16p p3 3 ;
(8)	 If n =  11, then ≅ ( , , , , ) + + + + +,‴

⁎B C P P P P P2 0 0;2 0 03 3 3 1 1 1 1 1, where the five paths P1 are incident to the 
pendant vertices of v1, ( , , , , ) + + + +,‴C P P P P3 0 0;3 0 03 3 1 1 1 1, where the four paths P1 are incident to the pen-
dant vertices of v1, ( , , , , , ),‴C 2 2 2;2 2 0 03 4 , ( , , , , , ),‴C 1 2 3;1 2 0 03 4 , and ( ) ≤ ( ) =⁎W B W B 20p p3 3 ;

(9)	 For n ≥  12, let + + = +s s s k r31 2 3  ( ∈ , , )r {0 1 2} .

If r  =   0 ,  then  ≅ ( − , − , + − , − , , ),‴
⁎B C k k k k k1 1 2; 1 1 0 03 3 4 ,  ( − , , + − , , , ),‴C k k k k k1 1; 1 0 03 4 ,  and 

( ) ≤ ( ) = + +⁎W B W B k k3 2 1p p3 3
2 ;

I f  r  =     1 ,  t h e n  ≅ ( , , + , , , ),‴
⁎B C k k k k k1; 0 03 3 4 , ( − , , + − , , , ),‴C k k k k k1 2; 1 0 03 4 ,  a n d 

( ) ≤ ( ) = + +⁎W B W B k k3 4 2p p2 2
2 ;

If r =  2, then ≅ ( , , + , , , ),‴
⁎B C k k k k k2; 0 03 3 4 , and ( ) ≤ ( ) = + +⁎W B W B k k3 6 4p p3 3

2 . □ 
Theorem 0.4. Let B be a bicyclic graph of order n (≥ 4), B* be the bicyclic graph with the maximum polarity index 

among all bicyclic graphs.

(1)	 If n =  4, then = = ( , , , , ),‴
⁎B B C 0 0 0;0 0 03 3 , and Wp(B3) =  0;

(2)	 If n =  5, then ≅ ″ ( , , , , ),
′⁎B C 0 0 1;0 0 03 3 , and ( ) ≤ ( ) =⁎W B W B 1p p ;
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(3)	 If n =  6, then ≅ ′ ( , , , , ),
⁎B C 0 0 0;0 0 03 3 , and ( ) ≤ ( ) =⁎W B W B 4p p ;

(4)	 If n =  7, then ≅ ′ ( , , , , ),
⁎B C 1 0 0;0 0 01 3 3 , ″ ( , , , , ) + +,

′C P P1 0 0;1 0 03 3 1 1, where the two paths P1 are incident to the 
pendant vertex of v1 and ( ) ≤ ( ) =⁎W B W B 6p p1 1 ;;

(5)	 If n =  8, then ≅ ′ ( , , , , ),
⁎B C 1 0 0;1 0 03 3 , ′ ( , , , , ) +,C P1 0 0;0 0 03 3 1, where P1 is incident to one pendant vertex of v1, 

( , , , , ) + + +,‴C P P P1 0 0;1 0 03 3 1 1 1, where the three paths P1 are incident to the pendant vertex of v1, and 
( ) ≤ ( ) =⁎W B W B 9p p ;

(6)	 If n =  9, then ≅ ′ ( , , , , ),
⁎B C 2 0 0;1 0 03 3 , ′ ( , , , , ) +,C P1 0 0;1 0 03 3 1, where the path P1 is incident to the pendant vertex 

of  v 1,  ′ ( , , , , ) +,C P2 0 0;0 0 03 3 1,  where  the  path P 1 i s  incident  to  one pendant  ver tex of  v1, 
′ ( , , , , ) + +,C P P1 0 0;0 0 03 3 1 1, where the two paths P1 are incident to the pendant vertex of v1, ″ ( , , , , ),C 0 2 2;0 0 03 3 , 
( , , , , ) + + + +,‴C P P P P1 0 0;1 0 03 3 1 1 1 1, where the four paths P1 are incident to the pendant vertex of v1, 
( , , , , ) + + +,‴C P P P2 0 0;2 0 03 3 1 1 1, where the three paths P1 are incident to the pendant vertices of v1, and 
( ) ≤ ( ) =⁎W B W B 12p p1 1 ;

(7)	 If n =  10, then ≅ ′ ( , , , , ),
⁎B C 2 0 0;2 0 03 3 , ′ ( , , , , ) +,C P2 0 0;1 0 03 3 1, where the path P1 is incident to one pendant 

vertex of v1, ′ ( , , , , ) + +,C P P2 0 0;0 0 03 3 1 1, where the two paths P1 are incident to the pendant vertices of v1, 
″ ( , , , , ),C 0 2 3;0 0 03 3 , ( , , , , ) + + + +,‴C P P P P2 0 0;2 0 03 3 1 1 1 1, where the four paths P1 are incident to the pendant 

vertices of v1, and ( ) ≤ ( ) =⁎W B W B 16p p1 1 ;
(8)	 For n ≥  11, let + + = +s s s k r31 2 3  ( ∈ , , )r {0 1 2} .

I f  r  =   0 ,  t h e n  ≅ ″ ( − , + , + − , , ),
⁎B C k k k k2 1 1; 2 0 03 3 ,  ″ ( − , , + − , , ),C k k k k1 1; 1 0 03 3 ,  a n d 

( ) ≤ ( ) = + +⁎W B W B k k3 4 1p p
2 ;

If r =  1, then ≅ ″ ( − , + , + − , , ),
⁎B C k k k k1 1 1; 1 0 03 3 , and ( ) ≤ ( ) = + +⁎W B W B k k3 6 3p p

2 ;
If r =  2, then ≅ ″ ( − , + , + − , , ),

⁎B C k k k k1 1 2; 1 0 03 3 , and ( ) ≤ ( ) = + +⁎W B W B k k3 8 5p p
2 . □ 

Discussion
Quantifying the structure of complex networks is still intricate because the structural interpretation of quantita-
tive network measures and their interrelations have not yet been explored extensively. In this paper, we studied 
sharp upper bounds for the Wiener polarity index among all bicyclic networks, by using some transformations. 
The graphs attaining these bounds are also characterized. The proof techniques use structural properties of the 
graphs under consideration and it may be intricate to extend the techniques when using more general graphs.

An interesting thing is that the Wiener polarity index is related to a pure mathematical problem: counting 
the number of subgraphs of a graph. This counting problem is a basic problem in mathematics but much more 
complicated. For example, Alon and Bollobás provide some results on this topic, e.g.39–41.

As a future work, we will consider the extremal problems of the Wiener polarity index for general networks 
and also some special networks. Furthermore, we would like to explore advanced structural properties of the 
Wiener polarity index, and relations between the Wiener polarity index and some other topological indices. On 
the other hand, it would be interesting to investigate the applications of Wiener polarity index in characterizing 
the structure properties of complex networks and studying algorithm theory and computational complexity. For 
instance, one can consider the possibility of using the Wiener polarity index or other distance measures to study 
other very interesting algorithms, like the google algorithm in complex networks42,43.

Methods
First we introduce some operations on bicyclic graphs, then we give the corresponding lemmas which state that 
the Wiener polarity index is not decreasing after applying these operations on bicyclic graphs.

Let B be a bicyclic graph. As we have claimed, suppose = …C v v v vp p1 2 1 and = …C u u u uq q1 2 1 are two 
cycles. If both ( ≤ ≤ )T v i p[ ] 1B i  and ( ≤ ≤ )T u j q[ ] 1B j  are stars, then we denote such a bicyclic graph  
by ( , …, , …, ),C s s t t;p q p q1 1 , where si and tj represent the number of pendant vertices of vi and uj, 
respectively.

We define Operation I as follows. Let TB[v] denote a hanging tree on vertex v of a bicyclic graph B with p ≥  4, 
q ≥  4, where v is on the cycle of B. Among all hanging trees, suppose … −vc c cr r1 1  is one of the longest paths from 
the root v to a leaf cr in TB[v]. If r ≥  2, then after deleting the edge vc1 from B, we obtain a bicyclic graph A and a 
tree T such that ∈v A and ∈c T1 . Let B* denote the bicyclic graph obtained from A and T by identifying c1 and v′  
(a neighbor of v on the cycle of B) and adding a new hanging leaf vx to v.

We define Operation II as follows. Let B be a bicyclic graph with p =  3, TB[vi] be a hanging tree rooted at vi 
(i = 1, 2, 3). Let … −v c c ci r r1 1  be one of the longest paths from the root vi to a leaf cr of the hanging tree TB[vi].

For r ≥  3, we define a new graph B* as follows:

=





− + , > ,
− + , = . ( )

− −

−

⁎B
B c c c c r
B c c v c r

if 3
if 3 2

r r r r

r r i r

1 3

1

For r =  2, the operation differs on the three types of bicyclic graphs.

(1)	 For bicyclic graphs in type I, we let

=





− + , = ,
− + , = , ( )

⁎B
B c c c w v v
B c c c v v v v

if
if or 3

i

i

1 2 2 1 1

1 2 2 1 2 3



www.nature.com/scientificreports/

5Scientific Reports | 6:19066 | DOI: 10.1038/srep19066

where ∈ ( )w N vB i1  is on the path …v u1 1.
(2)	 For bicyclic graphs in type II, by considering the value of q, there are two cases.

Case 1. q ≥  4. In this case, let

=





− + , ≠ ,
− + , = , ( )

⁎B
B c c c v v v
B c c c u v v

if
if 4

i

i

1 2 2 1 1

1 2 2 2 1

where ( ∈ ( , , ))v i 1 2 3i  is the root vertex mentioned above.
Case 2. q =  3 and ( ) ≥V B 9. Here we let Cq =  v1v4v5v1. We define an operation as follows: delete TB[vi]\vi and 

add a copy of TB[vi] to vj by identifying vj and ′vi  which is a copy of vi. We call this operation “move TB[vi] to vj”. By 
considering the number of vertices on the cycles of B with hanging trees, there are two subcases.

Subcase 2.1. There is only one vertex ( ∈ , , , , )v i {1 2 3 4 5}i  with a hanging tree. Let ( ) = , …,N v c c{ }B i
a

1
1

1 , 
( ) = , …,N v c c{ }B i

b2
2
1

2 .
For the case vi =  v1, we apply operations as follows. If b ≥  4, then move c2

1, c2
1 to v2 and c j

2  (3 ≤  j ≤  b) to v3; if b =  3, 
then move c2

1, c2
2 to v2 and c3

2, c1
1 to v3; if b =  2, then move c2

1, c2
2 to v2 and c1

1 to v3; if b =  1, then move c2
1 to v2 and c1

1 
to v3. The new graph is denoted by B*.
For the case vi =  v2, we construct a new graph = − +⁎B B c c c v1 2 2 3.

Subcase 2.2. There are at least two vertices vs, vt ( , ∈ , , , , )s t {1 2 3 4 5}  with hanging trees. In this subcase, let 
= − +⁎B B c c c vk1 2 2 , where ∩∈ ( ) ( )v N v N vk B s B t .

(3)	 For the bicyclic graphs in type III. By considering the value of q, there are two cases.
Case 1. q ≥  4. In this case, we can apply Operation 1 on Cz.
Case 2. q =  3 and ( ) ≥V B 12. Here let Cq =  v1v2v4v1. We can move TB[v4] to v3 to get a new graph B′  satisfy-

ing Wp(B′ ) =  Wp(B). By considering the number of vertices on the cycles of B′  with hanging trees, there are two 
subcases.

Subcase 2.1. There exists only one vertex, say ( ∈ , , )v i {1 2 3}i , which has a hanging tree. Firstly, move TB′[vi] 
to v3 (denote the new graph by B″ ), delete a vertex in ( )″N vB

2
3  and meanwhile subdivide edge v1v4 (denote the new 

graph by ″B1 ); secondly, move all the other vertices in ( )″N vB
2

3  to v1 (denote the new graph by B″′ ); thirdly, if 
( ) ≥‴d v 5B 1 , then just move one pendant vertex of v1 to v2; if ( ) =‴d v 4B 1 , then move one pendant vertex of v3 to v2.
Subcase 2.2. There exist two vertices, say , ( , ∈ , , )v v i j {1 2 3}i j , which have hanging trees. If i =  1 and j =  2, 

then move TB′[v2] to v3. Now we can only consider the case i =  1 and j =  3.
If there exists ∈ ( )′c N vB2

2
3 , then delete c2 and subdivide the edge v1v4 (denote the new graph by B″ ). Now 

return to the situation in Case 1.
If and ( ) ≥″d v 4B 3 , then delete a vertex ∈ ( )″c N vB1

2
1  and subdivide the edge v1v4. Now return to Case 1. For the 

situation that ( ) =″d v 3B 3 , delete a vertex ∈ ( )″c N vB2
2

1  and subdivide the edge v1v4, move all pendant vertices in 
( )″N vB

2
1  to v2, at last move one pendant vertex of v1 or v2 to v3.

Subcase 2.3. There exist three vertices which have hanging trees. By deleting some pendant vertex in ( )′N vB i
2 , 

where ∈ , ,i {1 2 3}, and meanwhile subdividing the edge v1v4, we return to the situation in Case 1.
The final graph obtained after the above operation is denoted by B*.
We def ine Operation  III  as  fol lows.  Let  B  be a bicyclic  graph.  If  dB(v)  =   2 ,  then let 
= − ′ − ″ + ′ ″ +⁎B B vv vv v v vx, where v′ , ″ ∈ ( )v N vB , ∈ ( )x V B . We call such an operation smooth v to x.
We define Operation IV as follows. Let B be a bicyclic graph, where ( ≤ ≤ )T v i p[ ] 1B i  and ( ≤ ≤ )T u j q[ ] 1B j  

are both stars. Denote the set of the pendant vertices of vi(uj) by Vi(Uj).
For bicyclic graphs in type I, we will take the following two steps.
Step 1. For Cp and ∈ ,…, −i p{3 1}, if i is odd, then move Vi to v1 and smooth vi to v2; if i is even, then move 

Vi to v2 and smooth vi to v1. For Cq and ∈ ,…, −j q{3 1}, if j is odd, then move Uj to u1 and smooth uj to u2; if j 
is even, then move Uj to u2 and smooth uj to u1. Therefore, we obtain a graph ′ = ( , , , , ),B C s s s t t t;3 3 1 2 3 1 2 3  with a 
unique path P connecting Cp and Cq. Let the set of hanging leaves of u1, u2, uq be ′U1, ′U2, ′Uq, respectively.

Step 2. Let = …P v w w ut1 1 1, = ′W T w: [ ]k B k  (1 ≤  k ≤  t).
If k is odd, then move Wk to v3 and smooth wk to v2; if k is even, then move Wk to v2 and smooth wk to v3.
If t is odd, then move ′U1 to v2, ′U2 to v1, ′Uq to v3; if t is even and t ≥  2, then move ′U1 to v3, ′U2 to v1, and ′Uq to v2, 

respectively; if t =  0, ( ′) ≥V B 9 and d(v2) =  d(v3) =  2, let ( ) = , …,′N v a a{ }B s1 1  and ( ) = , …,′N u b b{ }B t1 1 , 
then for the situation that b =  1, move b1 to v2 and move a1 to v3, for the situation that b ≥  2, move b1 to v2 and 
move , …,b bt2  to v3; if t =  0 and d(vi) =  2, ( )> ( , ∈ , )d v i j2 {1 2}j , then move ′U1  to vi, ′U2 to v1, ′Uq  to vj, 
respectively.

Finally, we get a new graph ″ = ( ′, ′, ′ , , ),B C s s s ;0 0 03 3 1 2 3  and there is a unique path P =  v1u1 connecting Cp and Cq.
For bicyclic graphs in type II, we also give two steps as follows.
Step 1. For Cp and ∈ ,…, −i p{3 1}, if i is odd, then move Vi to v1 and smooth vi to v2; if i is even, then move 

Vi to v2 and smooth vi to v1. For Cq and ∈ ,…, −j q{3 1}, if j is odd, then move Uj to u1 and smooth uj to u2; if j 
is even, then move Uj to u2 and smooth uj to u1. Thus we get a graph ′ = ( , , , , ),B C s s s t t t;3 3 1 2 3 1 2 3  with s1 =  t1. Let 
the set of hanging leaves of u1, u2, uq be ′U1, ′U2, ′Uq, respectively.

Step 2. By moving ′U2 to v2, ′Uq to vp, we have ″ = ( , ′, ′ , , ),B C s s s t; 0 03 3 1 2 3 1  with s1 =  t1.
For bicyclic graphs in type III, the operation is defined as follows. Recall that we use l (≥ 1) to denote the num-

ber of common vertices of Cp and Cq, and without loss of generality, assume l −  2 ≤  p −  2 ≤  q −  2.
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(1)	 If p ≥  3 and q ≥  4, then we will take the following three steps.
Step 1. For ∈ ,…, −i p{3 1}, ∈ ,…, −j q{3 1}. If i is odd, then move Vi to v1; if i is even, then move Vi to v2; 

if j is odd, then move Uj to v1; if j is even, then move Uj to v2; move Uq to vp.
Step 2. If l =  2 or 3, smooth vertices , …,+ −v vl p1 1 to v1 and v2 alternately.
If l ≥  4, then we first smooth vertices , …, −v vl3 1 to v1 and v2 alternately; then smooth vertices , …,+ −v vl p1 1 

to v1 and v2 alternately.
After applying this operation, we get a new graph B′  with cycles Cp′, Cq′ and Cz′. Let l′  be the number of common 

vertices of Cp′ and Cq′, p′  (p′  =  3 or 4) be the number of vertices of the smallest cycle of B′ , then we have l′  =  2 
or l′  =  3. Now relabel the vertices on Cp′ and Cq′ of B′ , and we have = …′ ′C v v vp p1 1 and = …′ ′C u u uq q l1 .

Step 3. Considering the value of l′ , there are two cases.
Case 1. l′  =  2.

We just smooth …+ ′−u ul q2 2 to v1 and v2 alternately, and smooth uq′−1 to vp′. The new graph obtained is denoted 
by = ( , , , , , ),

⁎B C s s s s s; 0 03 4 1 2 3 1 2 .
Case 2. l′  =  3, ( ′) ≥V B 6 and ′ = ( , , , , , ,… , ),B C s s s t t0 ; 0 0q4 1 2 4 1 2  with s1 =  t1.

Let ″ = ′ − +B B v v v v3 4 2 4. If q′  ≥  5, then smooth v3 to vertex v1, smooth , …, ′−u uq5 2 to v1 and v2 alternately 
and smooth uq′−1 to v4; if q′  =  4 and ( ) ≥″d v 3B 4 , then we do nothing; if q′  =  4 and ( ) =″d v 2B 4 , then move 
the pendant vertices of v2 to v4.

Finally, we get the desired graph = ( ′, ′, ′ ′, ′, , ),
⁎B C s s s s s; 0 03 4 1 2 3 1 2 .

(2)	 If p =  3 and q =  3, by Operation II on B and its resultant graphs repeatedly, we have a new graph 
′ = ( ′, ′, ′ ′, ′, ′),B C s s s s s t;3 3 1 2 3 1 2 3 . Move the pendant vertices of u3 to v3, we obtain ″ = ( ″, ″, ″ ″, ″, ),B C s s s s s; 03 3 1 2 3 1 2 .
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