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CrossNorm: a novel normalization 
strategy for microarray data in 
cancers
Lixin Cheng1, Leung-Yau Lo1, Nelson L. S. Tang2, Dong Wang3 & Kwong-Sak Leung1

Normalization is essential to get rid of biases in microarray data for their accurate analysis. Existing 
normalization methods for microarray gene expression data commonly assume a similar global 
expression pattern among samples being studied. However, scenarios of global shifts in gene 
expressions are dominant in cancers, making the assumption invalid. To alleviate the problem, here we 
propose and develop a novel normalization strategy, Cross Normalization (CrossNorm), for microarray 
data with unbalanced transcript levels among samples. Conventional procedures, such as RMA and 
LOESS, arbitrarily flatten the difference between case and control groups leading to biased gene 
expression estimates. Noticeably, applying these methods under the strategy of CrossNorm, which 
makes use of the overall statistics of the original signals, the results showed significantly improved 
robustness and accuracy in estimating transcript level dynamics for a series of publicly available 
datasets, including titration experiment, simulated data, spike-in data and several real-life microarray 
datasets across various types of cancers. The results have important implications for the past and 
the future cancer studies based on microarray samples with non-negligible difference. Moreover, the 
strategy can also be applied to other sorts of high-throughput data as long as the experiments have 
global expression variations between conditions.

Gene microarrays have been commonly used for global expression analysis of biological systems1–3. Moreover, 
normalization is widely regarded as an essential step before the microarray data analysis, in order to remove sys-
tematic experimental bias and technical variation while maintaining biological signals of interest4. The choice of 
normalization method has a profound impact on gene expression estimates5. Essentially, the results obtained by 
methodologies based on distinct assumptions could lead to entirely different biological interpretations, which call 
for development of more robust and effective normalization methods6. Currently, most normalization methods 
make two basic assumptions about the data, which are 1) only a few genes are over-expressed or under-expressed 
in one array relative to the others, and 2) the number of genes over-expressed in a condition is similar to the num-
ber of genes under-expressed4,6–8. Both of the two assumptions should agree with the experimental context when 
applying the corresponding methodologies. If the expression levels of all genes are globally equivalent or similar 
over the arrays, then normalized expression data should produce an accurate representation of the relative levels 
of each gene product. Otherwise, methodologies on the basis of the two basic assumptions may fail to produce 
biologically meaningful interpretation. Previous studies have found that genes are widely up-regulated and tend to 
have variable expression in a variety of cancers microarray datasets6,7. Furthermore, Lin, C.Y. et al. recently found 
transcriptional amplification in tumor cells with elevated c-Myc level. Cells with high levels of c-Myc can amplify 
their gene expression programs, producing two to three times more total RNA than their low-Myc counterparts9,10. 
In these scenarios, the differential expression of genes is predominately in one direction and hence a great number 
of genes are differentially expressed between cancer and normal states. All of these discoveries have led us to chal-
lenge loads of previous works that assume genes express evenly among arrays without allowing for transcriptional 
amplification or repression. Simply put, it is unreasonable to expect all genes to have similar distributions with 
respect to the expression levels of samples in different biological groups (e.g., normal and cancer states).
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However, virtually all well-accepted conventional normalization methods, such as Quantile, Baseline and LOESS 
normalization11–13, rely on the strong assumptions and perform poorly when the processing data are far from the 
assumptions, e.g., comparison of genes from cancer and normal states. More specifically, it is usual to normalize 
microarray data by forcing all of the arrays to have the same/similar distributions of probe intensity to remove 
technical variations in the data, such as the leading stochastic-model-based procedure, Quantile normalization, 
which even assigns an identical expression distribution for all arrays based on the rank of the measured intensity 
relative to all other probes on the array. Misinterpretation of microarray expression data is quite prevalent due to 
misunderstanding or abuse of the common assumptions, or just automatically using these methods without any 
pre-analysis. In particular, Quantile normalized microarray datasets were usually applied in cancer studies and were 
provided for other researchers, such as GSE15471 and GSE16515 for pancreatic cancer14,15 as well as GSE20347 
and GSE23400 for esophageal squamous cell carcinoma16,17. Because lack of robust normalization methods for 
expression data, practically all the experiments available in Gene Expression Omnibus (GEO)18 just simply employ 
the conventional normalization algorithms according to the basic assumptions.

Recently, the realization that current methods may lead to erroneous biological interpretation of transcriptome 
experiments have boosted the proposal of several methods, e.g. LVS and NVSA19,20. These tools are rarely used, 
however, partially due to their limitations. For instance, the LVS algorithm19 requires pre-selection of a proportion 
(40-60%) of genes as a reference set. But it engenders some problems of its own: we cannot conceive the exact 
number of genes changing in one state for a real-life experiment. It has a high risk of over fitting the data if the ideal 
reference gene set is arbitrarily chosen. Another algorithm, NVSA, may mistreat the variant genes as invariants 
when the percentage of variant genes is greater than 50%20. The choice of the bin width defined as fixed-width 
intervals of expression intensity is also a potential factor affecting the performance of NVSA, as it is too arbitrary 
and sensitive for data with dissimilar properties. Accumulated evidence suggests that the biological variation might 
be greater than the system variation introduced by technical noise in the microarray datasets6,7,21,22, which leads 
us to explore the information from the raw data with proper methods instead of destroying it. Hence, we have 
developed a novel normalization strategy, Cross Normalization (CrossNorm), for microarray datasets with global 
shift and unbalanced variation. It makes use of the overall statistics of the original signals for all samples and the 
results show significantly improved robustness and accuracy in estimating transcript level dynamics for a series 
of publicly available datasets, involving titration experiment, simulated data, spike-in data and several real-life 
microarray datasets across various types of cancers.

In the following sections, firstly, we show how the algorithm-driven artifact is generated in the step of normal-
ization, confirming and extending the finding that conventional normalization consistently overestimates sample 
similarity. After that, we show that CrossNorm is more robust in producing accurate assessments of transcript 
changes between samples in simulated data, spike-in data, titration experiment and several real sample-paired 
cancer datasets, respectively. We then demonstrate that CrossNorm outperforms the conventional methods from 
the point of expression direction that we consistently stressed. Finally, we show that the two versions of CrossNorm 
(Pairwise and General) perform comparably to each other and thereby the method is also applicable to more 
general non-paired experiments.

Results
Global shift exists in cancer expression data. Previous results6,7 illustrate that genes tend to be exten-
sively up-regulated in cancers in comparison with matched normal tissue in most of cancer datasets. Specifically, 
the raw signal intensities in cancer samples tend to be significantly or marginally significantly higher among more 
than half of the cancer datasets. The percentages even increased further to 80% when focused on five larger data-
sets with statistically sufficient sample size (≥ 70). Hence, it demonstrates that the distribution of probe intensity 
is dissimilar for different biological condition and accordingly the common assumptions for normalization are 
not suitable for these scenarios anymore.

To give a comprehensive assessment of the performance of CrossNorm, a total of four methods, including three 
conventional methods (Quantile, Baseline and LOESS) and the LVS relying less on the conventional assumptions, 
were employed for comparison. Firstly, we provided an overview of the global signal distribution between cancer 
and normal groups for the pair-matched cancer datasets normalized by each method. Figure 1a shows, in the 
pair-matched dataset Pancreatic32, genes of raw data have already been shown to be expressed much higher globally 
in cancer group than in the normal one6, but the clear change was removed by the three conventional normalization 
methods (Fig. 1d–f). The proportion of DEGs is expected to be low so that the per sample distributions of expres-
sion values are similar or even identical in these methods. For LVS, the trend was to some extent maintained, but it 
requires pre-selection of data driven features in an arbitrary proportion with the smallest array-to-array variation. 
When it comes to CrossNorm, however, it preserves the transcript changes between states while simultaneously 
processes all the arrays to remove system variation among them. Figure 1b shows that the overall expression 
increase from normal to cancer in the raw data can still be observed via data processed by CrossNorm. The same 
trend can also be detected using the other datasets listed in Table 1 (data not shown).

Performance on simulated and spike-in dataset. The performance of the CrossNorm method was 
firstly evaluated using two simulated datasets (ESCC34 and ESCC106) with specific proportions of up and down 
regulated Differentially Expressed Genes (DEGs, e.g., log2FC =  ± 0.8, ± 1.0, and ± 1.2) as mentioned in the 
Method section. The percentage of down-regulated DEGs was constant (10%) for all the compositions. For exam-
ple, 20% are up-regulated while 10% are down-regulated, when the proportion of DEGs is predefined as 30%. The 
criteria of log2FC greater than 0.8 and P value of t-test less than 0.01 were used for detecting DEGs (Methods and 
datasets). Figure 2 shows the results of several measures for datasets with a series of DEG percentages from 20% 
to 50% as described in the section of Method and datasets. It is clear that CrossNorm consistently has the highest 
scores in all measures over all the scenarios for the simulated data ESCC34. Specifically, the precision is as high 
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as or extremely close to 1.00 for all these methods when the Differential Expression (DE) ratio is 20% or 30%. For 
the conventional methods, however, the precisions drop obviously when the DE ratios are increased to 40% and 
50%. For instance, the precisions are 0.9799, 0.9532 and 0.9454 when DE ratio is 50% for Baseline, LOESS and 
Quantile expression values, respectively. On the other hand, the recall and F-score of CrossNorm are around 0.8 
and 0.9 while the measures are about 0.7 and 0.8 for the LVS normalization regardless of the feature compositions. 
For LOESS and Quantile, the measures of recalls and F-scores are less than CrossNorm but comparable to each 
other; all of them drop from around 0.65 and 0.8 to just 0.4 and 0.55 when the DE ratio is increased from 20% to 
50%. Baseline is the most sensitive method to the DE ratios, all the measures of which decrease significantly with 
the increasing DE ratio. Furthermore, the False Positive Rates (FPRs) of the identified DEGs are consistently less 
than 0.0002 when using CrossNorm and LVS across all situations. This measure is much higher for the other three 
methods but still acceptable (less than 0.01) when DE ratio is less than 30%. However, the FPR rises sharply when 
the DE ratio is increased to 50%, which are 0.0077, 0.0193 and 0.0229 for Baseline, LOESS and Quantile, respec-
tively. The same trend is also observed for the other simulated data ESCC106. To sum up, CrossNorm and LVS, 

Figure 1. Boxplot of expression intensity of each sample for dataset Pancreatic32 before (a) and after (b–f) 
normalization. Samples in normal and disease group are represented by white and gray, respectively. Expression 
intensities were averaged over all samples of each group. The box stretches from the lower hinge (defined as the 
25th percentile) to the upper hinge (the 75th percentile) and the median is shown as a line across the box.

Dataset
Accession 
Number Platform Disease Name

Breast26 GSE10780 HG-U133_Plus_2 Breast cancer, Invasive Ductal Carcinoma 
(IDC)

Colon34 GSE18105 HG-U133_Plus_2 Colorectal Cancer (CRC)

ESCC34 GSE20347 HG-U133A_2 Esophageal Squamous Cell Carcinoma (ESCC)

ESCC106 GSE23400 HG-U133A Esophageal Squamous Cell Carcinoma (ESCC)

Gastric62 GSE13911 HG-U133_Plus_2 Primary Gastric Tumors

HCC20 GSE29721 HG-U133_Plus_2 Hepatic Cellular Carcinoma (HCC)

HNSCC44 GSE6631 HG_U95Av2 Head and Neck Squamous Cell Carcinoma 
(HNSCC)

OTSCC40 GSE13601 HG_U95Av2 Oral Tongue Squamous Cell Carcinoma 
(OTSCC)

Pancreatic32 GSE16515 HG-U133_Plus_2 Pancreatic Tumor

Pancreatic78 GSE15471 HG-U133_Plus_2 Pancreatic Ductal Adenocarcinoma

Table 1.  Microarray gene expression datasets with paired samples. The name of each dataset follows the 
simple naming pattern: cancer type followed by sample size. In total 12 datasets were collected.
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both of which are not based on the strong assumptions, consistently return more reliable results while CrossNorm 
outperforms all the others for datasets with global and unbalanced biological variation.

Spike-in data, which consist of probe sets with intensities for a gene spiked in at different known concentrations, 
are the perfect reference for evaluating the performance of normalization methods. The so-called Golden Spike-in 
data on Affymetrix DrosGenome1 platform23 was employed in this study, because it has imbalanced proportion 
of up-regulated genes. As demonstrated in Fig. 3, it is apparent that the performance of CrossNorm is better than 
the others. The measures of recall and F-score for CrossNorm are approximately 0.37 and 0.53 regardless of the DE 
ratios and are consistently higher than the other methods, which indicates that CrossNorm is not as sensitive as 
the conventional normalization methods to the DEG compositions. The precisions of CrossNorm also are higher 
than the three conventional methods across all the DE ratios, although they are a bit lower than that of LVS. For 
instance, the values are 0.9427 for CrossNorm while 0.9494 for LVS when the DE ratio is 0.2. On the other hand, 
the FPRs are consistently low for all the methods regardless of the DEG compositions, although it is higher for 
CrossNorm than that of the other methods. Overall, CrossNorm tends to detect more biological variations at the 
cost of having a slightly higher but acceptable FPRs.

Performance on titration experiments. The titration experiments were then employed to further eval-
uate the performance of CrossNorm. In contrast to spike-in studies where a set of transcripts are added at prede-
termined concentrations to some samples, titration series are not based on synthetic transcripts but they provide 
measurements from real-life biological samples that reflect the intricate characteristics of RNA samples. Although 
we do not know the authentic DEGs, the relationship between mRNA amounts throughout the titration series can 
be investigated and compared on measurements acquired from several normalization methods. As illustrated in 
Fig. 4, exploratory investigation of the raw data has revealed a distinct overall trend of expression intensities; the 
non-normalized expression intensities are broadly stronger in the kidney than in the liver samples. Arrays with a 
higher concentration of mRNA from the kidney samples are expected to produce higher expression values. The 

Figure 2. Impact of DEG ratio on the performance of CrossNorm, LVS, Baseline, LOESS and Quantile 
normalization on the simulated data. White, dark gray, black and light gray bars represent the measure of 
precision, F-score, MCC and Recall, respectively, while black diamond stands for FPR (False Positive Rate). The 
FPRs of the identified DEGs are consistently low when using CrossNorm and LVS across all DEG compositions, 
but it rises sharply with the increased DE ratio for the other three methods.

Figure 3. Impact of DEG ratio on the performance of CrossNorm, LVS, Baseline, LOESS and Quantile 
normalization on the spike-in data. White, dark gray, black and light gray bars represent the measure of 
precision, F-score, MCC and Recall, respectively, while black diamond stands for FPR (False Positive Rate). The 
FPRs are consistently less than 0.005 for all the methods regardless of the DEG compositions.
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normalized expression values of the entire probe sets are not able to illustrate the overall expression increase from 
the liver to the kidney except the one normalized by CrossNorm. In other words, the overall increased trend in 
raw expressions can only be well detected by the CrossNorm method. Baseline and LOESS to some extent retain 
the trend but not as pronounced as CrossNorm. LVS and Quantile perform the worst for the mixture data and 
the expression distributions for both of them are more or less identical and hence no increase trend can be found.

Figure 5 illustrates the observed proportions of significant trends. Data normalized by different methods shows 
distinct trend shapes of the category distribution (described in Methods and datasets). Klinglmueller, L. et al.22 
found that data without any normalization shows approximately five times upward trends more than downward 
ones (bars marked up and down in Fig. 5) whereas these trends are more balanced for the Quantile and Baseline 
normalized data. Similar results were reported for the data normalized via the two methods as well as LOESS and 
LVS in this study. Surprisingly, CrossNorm normalized data illustrates approximately six times more significant 
upward than downward trends, which is highly consistent with the overall upward trend of expression values 
observed in Fig. 4. Furthermore, non-monotonous trend (NMT) is a clear indication of data artifacts, which is not 
expected to be detected in the titration series. However, we observed that all of the four other methods produce 

Figure 4. Expression value distributions for all probe sets averaged per mixture. L and K represent of lung 
and kidney while M1 and M2 stand for different mixtures of the two tissues, respectively.

Figure 5. Shape analysis of the distribution of detected trends for the six normalization methods. NMT 
bar represents the percentage of non-monotonous trends and NST bar shows that of non-significant trends as 
described in the Method section. The other bars illustrate the percentages of genes showing one, two or three 
significant change(s) in up or down direction. The exact gene numbers are shown in the right hand side of the 
panels.
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a huge number of NMTs, which are contrary to the experiment implications. Specifically, 342, 178, 1196 and 309 
NMTs are observed in the data normalized by Baseline, LOESS, Quantile and LVS, respectively, whereas merely 3 
and 8 NMTs are detected in the non-normalized and CrossNorm preprocessed data. Overall, CrossNorm performs 
quite comparable as the non-normalized data in artifact elimination and it can identify even more upward trends 
in the trend shape analysis.

Effect on DEG identification and expression direction in cancer data. To further confirm the effec-
tiveness of the CrossNorm method, we also investigated the reliability of solely identified DEGs for the cancer 
datasets with significant increases in the raw signal intensities in the cancer samples. As shown in Table 2, we 
compared the expression directions of the DEGs detected via CrossNorm and two other normalization methods, 
Quantile and LVS, for dataset ESCC106. Here, the expression direction of a gene represents the over-expression 
or down-expression of this gene in cancer samples compared with normal ones. The results illustrate that LVS and 
CrossNorm are more powerful than Quantile normalization in detecting DEGs. Specifically, 2889 and 2272 DEGs 
were detected when employing LVS and CrossNorm, respectively, but the number was decreased to 1843 when 
the dataset was processed by Quantile. When comparing Quantile and LVS, CrossNorm exclusively identified 693 
and 811 genes as up-regulated DEGs, respectively. 5.63% of the 693 up-regulated DEGs that were solely selected 
by CrossNorm were listed as cancer genes in the Cancer Gene Census database. This was significantly higher than 
the corresponding proportion (3.74%) of background genes that are defined as all genes measured on the array 
(P =  0.007, hypergeometric test). In contrast, the proportion (3.03%) of down-regulated DEGs that were selected 
solely by Quantile was no higher than the background genes (P =  0.7762, hypergeometric test). Similarly, 5.67% 
of the 811 up-regulated DEGs that were exclusively identified using CrossNorm were in the cancer genes set, 
which was also significantly higher than the corresponding proportion of all background genes (P =  0.003, hyper-
geometric test). But for the down-regulated DEGs solely detected by Quantile, the proportion (2.32%) was much 
lower than the background genes. We can draw the same conclusion for dataset Pancreatic32 and Pancreatic78. 
Although no significance was identified for the other data ESCC34, the cancer gene ratio for the DEGs solely 
detected by CrossNorm (3.48%) is much higher than that of LVS (2.86%). These results indicate that the DEGs 
detected by CrossNorm for cancer datasets are more likely to be associated with cancer than using other methods.

Additionally, 78.79% (1790/2272) of the DEGs selected using CrossNorm were up-regulated, whereas the 
percentages for Quantile and LVS were only 59.52% (1097/1843) and 55.35% (1599/2889), respectively. Similar 
results can also be observed by using LOESS and Baseline. In the context of cancer cells, where genes tend to express 
higher, it is apparent that Quantile and LVS may more likely make an incorrect directional decision. This in turn 
indicates that CrossNorm is able to precisely identify DEGs and thereby provide more reliable interpretations for 
experiments.

General CrossNorm performs comparably to Pairwise CrossNorm. For the Pairwise CrossNorm 
method, samples of the processed datasets should have pairwise relation between groups, and then it can nor-
malize the data by assigning the pairwise samples as a new array. For non-pair datasets, on the other hand, 
the General CrossNorm method could also acquire a comparable result. In order to evaluate whether the per-
formance of General CrossNorm is as powerful as Pairwise CrossNorm, we applied General CrossNorm and 
Pairwise CrossNorm on the simulated data ESCC34. As shown in Table 3, it is clear that the detected DEGs by the 
Pairwise and General CrossNorm are highly consistent. For instance, 2097 genes were selected with differential 
expression after the General CrossNorm normalization while 2074 out of them were also identified as DEGs 
via Pairwise CrossNorm for the data with 20% assigned DEGs. The results by the two methods were extremely 
consistent with the Overlapping Coefficient not less than 99% for all the scenarios. Hence, for expression datasets 
without the pairwise case-control relation, comparable results could also be produced by the General CrossNorm 
methods.

Moreover, General CrossNorm has acceptable computational efficiency. When we performed General 
CrossNorm on a reasonably sized experiment with 15,000 genes as well as 100 normal and 100 disease samples, 

DEGs Quantile LVS CrossNorm

Quantile vs. CrossNorm LVS vs. CrossNorm

Quantile 
exclusive

CrossNorm 
exclusive

Common 
genes LVS exclusive

CrossNorm 
exclusive

Common 
genes

Up-regulation 1097 1599 1790 0 693 1097 620 811 979

Down-regulation 746 1290 482 264 0 482 818 10 472

Total 1843 2889 2272 — — 1579 — — 1451

Table 2.  The impact of normalization on the regulation directions of DEGs in the ESCC106 dataset.

Assigned DE ratio No. of detected DEG Pairwise CrossNorm No. of detected DEG General CrossNorm Overlap genes Overlapping Coefficient

0.2 2087 2097 2074 99.14%

0.3 3120 3145 3111 99.31%

0.4 4086 4115 4075 99.38%

0.5 5191 5222 5175 99.41%

Table 3.  Statistic of DEGs identified after Pairwise and General CrossNorm for simulated data ESCC34. 
DEG: Differentially Expressed Gene.
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which led to a 10,000 columns cross-matrix to normalize, it only costs 95 second on a 64-bit personal computer with 
Intel Core i5 3470 CPU @ 3.20GHz under the Windows operating system. When the sample size decreased to 50 vs 
50 for normal and disease groups, which is a more normal case, the computation time dropped to approximately 
30 second. Hence, CrossNorm in general is a fast, simple and efficient normalization method.

Discussion
Theoretically, a global shift in gene expression occurs in cancers, as the alterations of many essential cellular func-
tions collectively dictate malignant growth for practically all types of human cancers24,25. In practice, the amplifica-
tion of gene expression levels during cancer development was also well documented via several works6,8,10. Hence 
blindly normalizing arrays to have similar distributions of probe intensities regardless of the sample condition 
may take a rather high risk of resulting in erroneous interpretations, although it is widely used in other studies26,27. 
Here we have proposed CrossNorm as a better alternative to existing normalization methods to process microarray 
experiments that contain global shifts over samples. The CrossNorm strategy has been demonstrated to have clear 
advantages by using simulated data, spike-in data, titration experiments and comprehensive real-life expression 
cancer datasets in comparison to three conventional global normalization methods and the LVS normalization 
that relies less on the assumption.

Our results have illustrated that conventional normalization methods tend to reverse the regulation direction 
of a large fraction of genes in cancer microarray data and the LVS algorithm might also over-normalize signals 
to a certain extent, while CrossNorm is able to take full advantage of the raw signal and more accurately estimate 
the regulation direction. As described in previous works and Jakob Love´n’s recent study6,7,10, many up-regulated 
DEGs associated with cancers were missed and more down-regulated ones were falsely produced when processed 
by global normalizations. The identification of the regulation direction of genes is also of vital importance for the 
subsequent biological analysis, as they play a critical role in studies like expression correlation of gene produc-
tions and regulation relations between transcript factor/miRNA and target mRNA, or merely the detection of 
the regulation direction of oncogene and tumor suppress genes28. All of these sorts of studies could be misled by 
inappropriate normalization methods. Besides, CrossNorm fully utilizes biological signals from the raw data rather 
than artificially presetting parameters with high impact specifically on the analysis, e.g., predefining a proportion 
of housekeeping genes in the LVS method. Also, the application of CrossNorm is very flexible. It is not restricted 
to cancer study, but also applicable to researches such as comparing tissues and developmental stages, as genes are 
expected to have high variation in both cases.

It is worth noticing that the expression values in samples in the treatment group may be shifted to some extend 
due to technical reasons. CrossNorm is on the basis that technical biases are independent of the treatment groups 
and it is not quite effective in eliminating such kind of artifact. In this paper, however, all the samples are required 
from the same experiment, so no or little batch effect exists between the compared sample groups. Also worth men-
tioning is that normalization methods are not very effective for the batch effect adjustment even for the Quantile, 
which forces all the arrays to have the same signal intensity distribution. However, it is still quite an issue being 
debated. Therefore we highly recommend the users to make sure that all the collected samples are from the same 
experiment batch before data normalization.

This consideration of gene’s behavior in biological conditions gives us a more comprehensive insight into inter-
preting the biological variance. In conclusion, CrossNorm is a robust and unbiased procedure that could help us 
better understand the expressional difference in a specific circumstance. An increasing number of genomic data 
detecting mRNA signal by different sorts of frameworks29,30 have been made available and opens new doors for 
investigation. To reduce the burden of data normalization, it is highly recommended to optimize experimental 
designs, stringently randomize potential experimental artifacts across biological groups and collect samples of 
sufficiently large sizes6. Also, it is worth noting that pairwise information between biological groups is of vital 
importance and more effort should be made for microarray preparation.

Methods and Datasets
Overview of the preprocessing procedure. Typically, the preprocessing procedure of microarray data 
consists of three steps: background correction, normalization and summarization. In the experiments, for uni-
formity, the raw data for each dataset were firstly processed using the RMA algorithm for background adjust-
ment. Then, each probe-set ID was mapped to the official gene symbol. For a gene represented by multiple probe 
sets, we averaged its signal intensity in a sample for all the probe sets. Finally, the summarized data were pro-
cessed separately via a series of methods for normalization, namely Quantile, Baseline (median scaling), LOESS, 
LVS and CrossNorm, respectively. Quantile, Baseline and LOESS normalization are well accepted methods and 
default values were applied for each of them. Quantile normalization is typically used by the Robust Multichip 
Average (RMA) while Baseline is a global normalization method that scales the expression values in each array 
with respect to a predefined baseline value. LVS defines a set of genes (t) with a low variation across all of the 
arrays and then uses a non-linear model to fit the genes from individual arrays to those from a reference array. 
It requires the pre-selection of a proportion of genes as a reference set. The suggested value of t is 60% or 40% 
by the authors. Here, we set t to 40%. Therefore, overall four categories of normalization method are utilized for 
comparison: rank-based model, baseline transformation, linear fitting model and data-driven housekeeping gene 
model. Quantile, Baseline, LOESS and LVS are the typical example for each normalization model, respectively.

The procedure of Cross Normalization (CrossNorm). CrossNorm consists of two versions, Pairwise 
CrossNorm and General CrossNorm, depending on whether the datasets have matching pairwise relation 
between conditions or not, as it is quite restrictive to require all the expression experiments to have pairwise 
case-control tissue samples. It is very flexible and easily generalizable to all the prevalent normalization proce-
dures. For brevity, CrossNorm represents Pairwise CrossNorm and is a modification of Quantile in the present 
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paper unless explicitly stated. The flowchart shown in Fig. 6 illustrates the Pairwise CrossNorm procedure. It is 
advised to process the raw data using a particular background correction method, execute the probe set summa-
rization, and then perform CrossNorm.

Let , = , …,C i n1i c  be the expression profiles of the nc  control arrays, and let , = , …,D j n1j d  be the 
expression profiles of the nd disease arrays. The Ci and D j expression profiles have the same length (the number of 
genes) m. We assume that the Ci and the D j expression profiles are independent identically distributed (i.i.d.) for 
both paired and unpaired datasets.

In a paired dataset, where =n nc d, Pairwise CrossNorm is performed as follows:

•	 Form a matrix of nc columns = ( , )X C Di i
T

i
T T

 (i.e. concatenate the two column vectors), for = , …,i n1 c.
•	 Normalize the columns Xi using an appropriate approach, such as Quantile, to obtain a matrix with col-

umns = ( , )
∼∼

X C Di i
T

i
T T ; obtain the final normalized control cases as , = , …,C i n1i c , and the normalized 

disease cases as , = , …,
∼D i n1i c.

Furthermore, a General CrossNorm is defined for the unpaired datasets. Its workflow is as follows:

•	 Form a large matrix with ∗n nc d columns = ( , )X C Dij i
T

j
T T, for = , …, , = , …,i n j n1 1c d; normalize the 

columns Xij  using an appropriate approach (Quantile in this study) to obtain a matrix with columns 
= ( , ) ,

∼∼
X C Dij ij

T
ij
T T where both Cij

T and ∼Dij
T

 are of length m.
•	 Obtain the final normalized control cases as ′ = ∑ , = , …,=

C C i n1i n j
n

ij c
1

1d
d , and the normalized disease cases 

as ′ = ∑ , = , …,
∼

=D D j n1j n i
n

ij d
1

1c
c . ′Ci  is the average of the elements of the normalized columns originally 

formed from Ci, and similarly for ′Dj .

The Quantile normalization requires all arrays in the same distribution; therefore, we argue that each column 
of the column-binding matrix retains the same distribution. When the data are paired, =n m, Ci and Di originate 
from the same individual, corresponding to the expressions of the normal and disease cells, respectively. Ci and Di 
may be dependent, but since the data are for the same disease, we may assume that the dependence is similar in 
different patients. Therefore we may assume that = ( , )X C Di i

T
i
T T

, = , …,i n1  are i.i.d. For an unpaired dataset, 
we merge the control and disease arrays by forming a large matrix where the columns are = ( , )X C Dij i

T
j
T T. Because 

the Ci expression profiles are i.i.d. and are independent of the D j expression profiles, ( , )C Di
T

j
T T

1  and ( , )C Di
T

j
T T

2  
have the same distribution and are dependent. Similarly, ( , )C Di

T
j
T T
1  and ( , )C Di

T
j
T T
2  are dependent and have the 

Figure 6. The flowchart for Pairwise CrossNorm normalization. (a) A profile to be normalized with pairwise 
normal (Ci) and disease (Di) samples; (b) Cross Profile: reassemble the disease and normal profiles by column 
corresponding to their pairwise relation; (c) perform Quantile on the Cross Profile; (d) resume the positions of 
the disease and normal profiles.
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same distribution. Therefore, = ( , )X C Dij i
T

j
T T  for = , …, , = , …,i n j m1 1  all have the same distribution, 

though some columns may be dependent.
In either case, we may assume that the columns of the merged expression matrix have the same distribution. 

Therefore, it is reasonable to perform the Quantile normalization on the cross-matrix to obtain a comparable 
expression profile. In addition, the current implementation of CrossNorm can normalize the expression data at 
either the probe or the probeset level.

Microarray gene expression datasets. From the NCBI GEO database13, we collected the Affymetrix23 
datasets with pair-matched cancer and normal samples according to the following criteria: 1) each dataset must 
consist of at least 20 arrays (10 for each condition) and all of which are from the same platform, and 2) the 
expression level increases (marginally) significantly in cancer state. Ultimately we collected a total of 10 datasets 
across 8 cancer types with all samples being pair-matched, all of which are listed in Table 16,7. For datasets with 
pair-matched cancer and control samples, the effects of certain complex factors, such as familial, individual and 
environmental differences can be avoided and hence more reliable signals can be produced6.

Simulation, spike-in and titration series data. Three types of data, simulation, spike-in and titration 
experiment, were used to evaluate and compare the performance of CrossNorm with those of other normaliza-
tion algorithms in this study.

For the simulated data, in order to retain the intrinsic structure of the data, data were simulated for 34 disease 
samples and 106 disease samples based on the expression profiles of 12,752 genes for 34 and 106 normal esoph-
agus tissue samples extracted from the GSE20347 and GSE23400 datasets, respectively31. For normal samples, a 
proportion of DEGs were produced and used to produce a disease sample by setting these genes with different 
magnitudes of differential expression (e.g., log2FC =  0.8, 1 and 1.2). The mean vector for each gene in the disease 
sample group was determined by sampling from a Gaussian distribution whose mean was equal to the corre-
sponding normal group mean and variance was the same as original disease group. Random noise sampled from 
a chi-squared distribution was added to each means. Eventually, this dataset was simulated to have two groups 
with the same sample size.

Spike-in dataset is produced by controlled experiments with known RNA concentrations and assigned Fold 
Change (FC) before detection. The spike-in DrosGenome1 dataset23 designed for group comparison provides a 
dataset of 14,010 probe sets, 3,866 of which are assigned concentration folds. Specifically, 2,535 of them had been 
assigned unchanged concentrations, namely FC equal to 1, while 1,331 with FC greater than 1. The other empty 
probe sets were not spiked any concentration. To produce an expression profile with a specific percentage of dif-
ferentially expressed genes (DEGs), gene products with priori concentrations fold greater than a given threshold 
(actual DEGs) are involved while the non-DEGs are selected from both the unchanged and empty probe set pool. 
For example, the produced profile has 4,437 genes when the assigned DE ratio is 0.3, consisting of all the 1,331 
probe sets with assigned higher FC and the 3,106 others with unchanged or unknown concentration fold. Each 
group consists of 3 replicate arrays for both spike-in datasets and eventually profiles with 6 arrays were laid out.

For the titration series data, the EMERALD experiment was used, in which the total RNA was extracted from 
liver and kidney tissues of six rats22. The resulting sample material was then composed in four mixtures: (L) pure 
liver material; (M1) 75% liver and 25% kidney material; (M2) 25% liver and 75% kidney; and (K) pure kidney 
material. Since equal mRNA amounts were used for each array, the produced signal intensities merely reflect the 
fraction constituted by mRNA. Titration series provide measurements from real-life biological samples that reflect 
the intricate characteristics of RNA samples, but no ground truth is provided. Namely, we do not know the exact 
FC for each probe and therefore which genes are authentically differentially expressed. The only prior knowledge 
available in titration series experiments is the mixture proportions and the relationship between mRNA amounts 
over the titration series. The Affymetrix platforms used in this study for the EMERALD project is Rat Genome 
230 2.0. Each mixture group consists of 24 arrays.

DEGs identification and consistency statistic. One of the main aims of normalization is differential 
analysis across samples. Results from the MAQC project32 indicate that a straightforward approach of FC ranking 
plus a non-stringent P value threshold can be successful in identifying concordant gene lists, whereas merely 
selecting DEGs via the t-test statistic predestine a poor reproducibility in results, because of the relatively unstable 
nature of the variance (noise) estimate in the t-statistic measure. The same as the MAQC project, both expression 
FC with a threshold and t-test with a P value were applied for detecting DEGs. The criteria were Fold Change 
(log2FC) greater than or equal to 0.8 and P value less than 0.01. All the calculations are on log2 scale.

We calculated both the Overlap Coefficient (OC) and Direction Overlap Coefficient (DOC) ratio to assess the 
consistency of two given gene sets. OC is defined as

∩=
∗ ( )

OC
X Y
X Y 1

where X and Y represent the two detecting gene sets, respectively. Similarly, DOC is the ratio of the genes that have 
the same regulation direction in both gene sets. DOC1 (or DOC2) is the percentage of the DEGs in set 1 (or in set 
2) regulating in the same directions in another dataset from which the DEGs in set 2 (or in set 1) were extracted.

The Evaluation of differential analysis. Precision, Recall, False Positive Rate (FPR), F1-score and 
Matthews Correlation Coefficient (MSS) are employed in this study to measure the performance of each nor-
malization method. The spike-in experiment enables us to know the true DEGs a priori, which facilitates us 
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to compute all of these measures. Here, the precision is defined as the ratio of correctly identified DEGs to all 
detected DEGs and the recall is defined as the ratio of correctly identified DEGs to all true DEGs. The F1-score is 
a harmonic mean of precision and recall and its formula is:

=
∗ ∗

+
=

∗
+ + ( )⁎

F precision recall
precision recall

TP
TP FP FN

1 2 2
2 2

As recommended by MAQC II33, we also report performance based on Matthews Correlation Coefficient 
(MCC) because it is informative when the distribution of the two classes in a dataset is highly skewed and it is 
simple to calculate and available for all models. The MCC value is more useful than other measurements, such as 
ROC curve, since by definition a ROC curve is constructing the performance over all possible cutoffs. But in the 
case of differential analysis, only one or a few reasonable cutoffs are provided for identifying DEGs. MCC values 
range from –1 to 1 with 0 indicating random prediction. − 1 and 1 indicate total inverse prediction and perfect 
prediction, respectively. MCC can be calculated directly as follows:

=
∗ ∗

( + ) ∗ ( + ) ∗ ( + ) ∗ ( + ) ( )

–MCC TP TN FP FN
TP FP TP FN FP TN TN FN 3

TP, TN, FP, and FN represents true positive, true negative, false positive and false negative, respectively.

Measures for the titration experiment. In the titration experiment, the difference between adjacent 
mixtures (L− M1, M2− M1 and K− M2) can be positive, negative or no difference. So totally 27 changes could 
be detected for each feature and these changes were ultimately categorized into eight types of trends, significant 
non-monotonous trend (NMT), non-significant trend (NST) and monotonous trend characterized by the num-
ber of significant changes, 1up, 2up and 3up for the upward trend and 1down, 2down and 3down for the down-
ward trend, respectively. Significant non-monotonous trend is defined as at least one significant increase together 
with at least one significant decrease while non-significant trend indicates no significant expression changes. The 
detailed information of the method for trend test is described in Klinglmueller, F. et al.22. The measures can be 
calculated using R package orQA, which is available in CRAN http://cran.r-project.org.

References
1. Brown, P. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat Genet. 21, 33–37 (1999).
2. Quackenbush, J. Microarray analysis and tumor classification. N Engl J Med. 354(23), 2463–2472 (2006).
3. Zou, Q. et al. Survey of MapReduce Frame Operation in Bioinformatics. Brief Bioinform. 15(4), 637–647(2014)
4. Quackenbush, J. Microarray data normalization and transformation. Nat Genet. 32, 496–501 (2002).
5. Hoffmann, R., Seidl, T. & Dugas, M. Profound effect of normalization on detection of differentially expressed genes in oligonucleotide 

microarray data analysis. Genome Biol. 3(7), 0033.1–0033.11 (2002).
6. Wang, D. et al. Extensive up-regulation of gene expression in cancer: the normalised use of microarray data. Mol Biosyst. 8(3), 818–827 

(2012).
7. Wu, D. et al. Deciphering global signal features of high-throughput array data from cancers. Mol Biosyst. 10(6), 1549–1556 (2014).
8. Wu, Y. et al. Global gene expression distribution in non-cancerous complex diseases. Mol Biosyst. 10(4), 728–731 (2014).
9. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 151(1), 56–67 (2012).

10. Lovén, J. et al. Revisiting global gene expression analysis. Cell. 151(3), 476–482 (2012).
11. Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 

4(2), 249–264 (2003).
12. Bolstad, B. M. et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. 

Bioinformatics. 19(2), 185–193 (2003).
13. Liu, B. et al. QChIPat: a quantitative method to identify distinct binding patterns for two biological ChIP-seq samples in different 

experimental conditions. BMC Genomics. 14(Suppl 8):S3, doi: 10.1186/1471-2164-14-S8-S3 (2013).
14. Badea, L. et al. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies 

genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 55(88), 2016–2027 (2008).
15. Pei, H. et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 16(3), 259–266 (2009).
16. Hu, N. et al. Genome wide analysis of DNA copy number neutral loss of heterozygosity (CNNLOH) and its relation to gene expression 

in esophageal squamous cell carcinoma. BMC Genomics. 11, 576 (2010).
17. Su, H. et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical 

phenotypes. Clin Cancer Res. 17(9), 2955–66 (2011).
18. Barrett, T. et al. NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res. 35(suppl 1), 

D760–D765 (2007).
19. Calza, S., Valentini, D. & Pawitan, Y. Normalization of oligonucleotide arrays based on the least-variant set of genes. BMC 

Bioinformatics. 9(1), 140 (2008).
20. Ni, T, T. et al. Use of normalization methods for analysis of microarrays containing a high degree of gene effects. BMC Bioinformatics. 

9(1), 505 (2008).
21. Klebanov, L. & Yakovlev, A. How high is the level of technical noise in microarray data. Biol Direct. 2(9), doi: 10.1186/1745-6150-2-

9 (2007).
22. Klinglmueller, F., Tuechler, T. & Posch, M. Cross-platform comparison of microarray data using order restricted inference. 

Bioinformatics. 27(7), 953–60 (2011).
23. Choe, S. et al. Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol. 6(2), 

R16 (2005).
24. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell. 100(1), 57–70 (2000).
25. Hanahan, D. & Weinberg R. A. Hallmarks of cancer: the next generation. Cell. 144(5), 646–674 (2011).
26. Xiao, S. et al. TiSGeD: a database for tissue-specific genes. Bioinformatics. 26(9), 1273–1275 (2010)
27. Pan, J. et al. PaGeFinder: Quantitative Identification of Spatiotemporal Pattern Genes. Bioinformatics. 28(11), 1544–1545 (2012)
28. Liu, B. et al. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One. 10(3), 

e0121501, doi: 10.1371/journal.pone.0121501 (2015).
29. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10(1), 57–63 (2009).

http://cran.r-project.org


www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:18898 | DOI: 10.1038/srep18898

30. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11(R106), R106 (2010).
31. Wang, H. et al. Individual-level analysis of differential expression of genes and pathways for personalized medicine. Bioinformatics. 

31(1), 62–8 (2015).
32. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression 

measurements. Nat Biotechnol. 24(9), 1151–61 (2006).
33. Shi, L. et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of 

microarray-based predictive models. Nat Biotechnol. 28(8), 827–38 (2010).

Acknowledgements
This work was supported by the Direct Grant from the Chinese University of Hong Kong and the GRF Grant 
(Project Reference 414413) from the Research Grants Council of Hong Kong SAR, China. It was also supported 
by the National Natural Science Foundation of China (31100901), the China Postdoctoral Science Foundation 
funded project (2013M531064, 2014T70363), the Heilongjiang Postdoctoral Foundation (LBH-Z12171) and the 
Scientific Research Fund of Heilongjiang Provincial Education Department (12541426).

Author Contributions
L.C. and D.W. conceived and designed the experiments. L.C. analyzed the data and performed the experiments. 
L.C., D.W., L.L., K.L. and N.T. wrote the manuscript. All authors reviewed and approved the final manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Cheng, L. et al. CrossNorm: a novel normalization strategy for microarray data in 
cancers. Sci. Rep. 6, 18898; doi: 10.1038/srep18898 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	CrossNorm: a novel normalization strategy for microarray data in cancers
	Introduction
	Results
	Global shift exists in cancer expression data
	Performance on simulated and spike-in dataset
	Performance on titration experiments
	Effect on DEG identification and expression direction in cancer data
	General CrossNorm performs comparably to Pairwise CrossNorm

	Discussion
	Methods and Datasets
	Overview of the preprocessing procedure
	The procedure of Cross Normalization (CrossNorm)
	Microarray gene expression datasets
	Simulation, spike-in and titration series data
	DEGs identification and consistency statistic
	The Evaluation of differential analysis
	Measures for the titration experiment

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                CrossNorm: a novel normalization strategy for microarray data in cancers
            
         
          
             
                srep ,  (2015). doi:10.1038/srep18898
            
         
          
             
                Lixin Cheng
                Leung-Yau Lo
                Nelson L. S. Tang
                Dong Wang
                Kwong-Sak Leung
            
         
          doi:10.1038/srep18898
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep18898
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep18898
            
         
      
       
          
          
          
             
                doi:10.1038/srep18898
            
         
          
             
                srep ,  (2015). doi:10.1038/srep18898
            
         
          
          
      
       
       
          True
      
   




