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Fragmentation of Fast Josephson 
Vortices and Breakdown of 
Ordered States by Moving 
Topological Defects
Ahmad Sheikhzada & Alex Gurevich

Topological defects such as vortices, dislocations or domain walls define many important effects 
in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we 
address the breakdown of the topologically-protected stability of such defects driven by strong 
external forces. We focus on Josephson vortices that appear at planar weak links of suppressed 
superconductivity which have attracted much attention for electronic applications, new sources of 
THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving 
vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex 
pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated 
and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect 
is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex 
can switch the whole junction into a resistive state at currents well below the Josephson critical 
current. Our work gives a new insight into instability of a moving topological defect which destroys 
global long-range order in a way that is remarkably similar to the crack propagation in solids.

Quantized vortex lines are quintessential topological defects1,2 which determine the behavior of super-
conductors and superfluids. Vortices in superconductors are characterized by an integer winding num-
ber n in the phase ϕ of the complex order parameter Ψ  =  Δ exp(iϕ), singularity of ∇ ϕ in a vortex 
core, and the quantized magnetic flux, φ =  nφ0, where φ0 =  h/2e =  2.07 ×  10−15 Wb is the magnetic 
flux quantum, e is the electron charge and h is the Planck constant. Because destruction of a topo-
logical defect requires overcoming a huge energy barrier proportional to the length or the area of a 
system, vortices can only disappear by annihilating with antivortices with the opposite sign of n or 
exiting through the sample surface, or forming shrinking loops. This brings about the question: does 
this fundamental, topologically-protected stability of vortices remain preserved for a vortex driven by 
a strong force and, more generally, what happens to a global long-range order if a moving topologi-
cal defect becomes unstable? To address this issue, we performed numerical simulations of vortices in 
superconducting-insulating-superconducting (SIS) Josephson junctions3,4 where the lack of suppression 
of the superconducting gap Δ (r) greatly reduces viscous drag of vortices, allowing them to reach veloc-
ities as high as a few percent of the speed of light c under a strong current drive. Dynamics of superfast 
Josephson vortices has been probed in annular thin film junctions5, and has recently attracted much 
attention for the development of superconducting qubits and low-dissipative digital memory6–8, and 
new sources of THz radiation9. We show that a rapidly moving vortex can become unstable, causing a 
cascade of expanding vortex-antivortex pairs, which eventually destroy the global long-range order. This 
effect may impose limitations on the performance of Josephson memory6–8, superconducting sources of 
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THz radiation9, or polycrystalline superconducting resonator cavities for particle accelerators10, and have 
broader implications for other systems with long-range order.

We start with a standard theory of a Josephson vortex in a long junction described by the sine-Gordon 
equation for the phase difference of the order parameter θ(x, t) =  ϕ1 −  ϕ2 between two bulk electrodes3,4:

θ ηθ θ θ β+ = ″ − + . ( )̈ sin 1

Here the prime and the overdot denote partial derivatives with respect to the dimensionless coordinate 
x/λJ and time ωJt, ωJ =  (2πJc/φ0C)1/2 is the Josephson plasma frequency, Jc is the tunneling critical current 
density, C is the specific capacitance of the junction, λJ =  (φ0/4πμ0λJc)1/2 is the Josephson penetration 
depth, λ is the London penetration depth, η =  1/ωJRC is the damping constant due to the ohmic qua-
siparticle resistance R, and β =  J/Jc is the driving parameter controlled by a uniform transport current 
density J.

The sine-Gordon equation has been one of the most widely used equations to describe topological 
defects in charge and spin density waves11, commensurate-incommensurate transitions12–14, magnetic 
domain walls15, dislocations in crystals16,17, kinks on DNA molecules18,19, etc. Particularly, the 2π kink 
solution θ ( , ) = ( − )/−x t x vt L4 tan exp[ ]1  of equation (1) at η →  0 describes a Josephson vortex of 
width λ= ( − / )

/
L v c1 s J

2 2 1 2  moving with a constant velocity v, where cs =  ωJλJ is the Swihart velocity of 
propagation of electromagnetic waves along the junction3. As v increases, the vortex shrinks at η ≪  1 and 
expands at η >  14.

The Lorentz-like contraction of the Josephson vortex at η ≪  1 indicates that equation (1) should be 
modified at large velocities if L(v) approaches the geometry-dependent magnetic screening length Λ . 
Indeed, equation (1) was obtained assuming that both θ(x, t) and the magnetic field B(x, t) produced by 
vortex currents vary slowly along the junction over the same length ~L(v) ≫  Λ 3; otherwise θ(x, t) and 
B(x, t) vary over different lengths and the relation between B(x, t) and θ(x, t) becomes nonlocal4. The 
equation, which generalizes equation (1) to θ(x, t) and B(x, t) varying over any lengths larger than the 
superconducting coherence length ξ, is given by20–23:
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where ϵ =  λJ/λ, α =  Λ /λJ, and the kernel G(x) depends on the sample geometry. Here G(x/α) =  π−1K0(x/α) 
for a planar junction in a bulk superconductor, where α =  λ/λJ and K0(x) is the modified Bessel func-
tion21. For an edge junction in a thin film of thickness t ≪  λ, we have 2G(x/α) =  H0(x/α) −  Y0(x/α), 
where α =  2λ2/tλJ, and H0(x) and Y0(x) are the Struve and Bessel functions, respectively22,23. The kernels 
G(x, u) for different geometries decrease with u at |x −  u| >  Λ  and have the same logarithmic singularity 
at u =  x20–23. The nonlocal effects are most pronounced at λ λ/ < ΛJ

2 , particularly in high-Jc bulk junc-
tions with Jc >  Jd/κ21 and thin film junctions20,22–24 with large Pearl length Λ  =  2λ2/t, where Jd =  φ0/23/2μ0λ2ξ 
is the depairing current density, and κ =  λ/ξ. At λ λ/ ΛJ

2 , only the universal logarithmic part of G(x, u)

α π α( − / ) = ( / − ) ( )−G x u x uln 30
1

is essential, while a nonsingular, geometry-dependent part of G(x, u) can be disregarded21–23. Equations 
(2)-(3) describe mixed Abrikosov vortices with Josephson cores of length λ λ ξ= / /l J JJ d c

2  along the 
junction (AJ vortices)21. Equations (2)-(3) in the overdamped limit of η ≫  1 have an exact solution 
θ π β( , ) = + + ( − )/− −x t x vt Lsin 2 tan [ ]1 1  that describes a driven AJ vortex core with weak suppres-
sion of Δ (x) and the length L =  (1 −  β2)−1/2l expanding as β increases21. AJ vortices have been observed 
in flux flow experiments on low-angle grain boundaries of high-Tc cuprates25, the c–axes resistivity in 
layered pnictides26, and most recently by STM imaging of step edge junctions in Pb and In monolayers 
on Si substrates27,28. Equations (2)-(3) also reduce to the Peierls equation that describes slow dislocations 
in crystals16.

Unlike the sine-Gordon equation, the nonlocal equation (2) at η =  0 is not Lorentz-invariant, so a 
uniformly moving vortex can radiate Cherenkov waves δθ(x, t) ∝  exp(ikx −  iωkt) with the phase velocities 
ωk/k smaller than v23,29. The condition of Cherenkov radiation at η =  0 is given by:
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2 , and G(k) is the Fourier image of G(x). Here G(k) decreases as 1/k at 

k >  Λ −1 so equation (4) is satisfied for k >  kc where the maximum wavelength 2π/kc increases with v30. 
To address the effect of Cherenkov radiation on the moving vortex, we performed numerical simulations 
of equation (2) for SIS junctions of different geometries.

Shown in Fig.  1 are the numerical results for a planar bulk junction at η =  0.05 and the large ratio 
λJ/λ =  10 usually described by the sine-Gordon equation (1). Yet the more general integral equation 
(2) reveals the effects which are not captured by equation (1), particularly a trailing tail of Cherenkov 
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radiation behind a vortex moving with a constant velocity29. Moreover, as the amplitude and the wave-
length of radiation increase with v, the vortex becomes unstable at β >  βs, the instability is triggered 
at the highest maximum of Cherenkov wave where θm reaches a critical value θc ≈  8.65–8.84, depend-
ing on η, λ/Λ , and the junction geometry30. Here θc is confined within the interval 5π/2 <  θc <  3π in 
which a uniform state of a Josephson junction is unstable3,4. As the velocity increases, the domain where 
5π/2 <  θ(x −  vt) <  3π behind the moving vortex widens and eventually becomes unstable as its length 
exceeds a critical value. This suggests a qualitative picture of the vortex instability caused by the appear-
ance of a trailing critical nucleus being in the unstable π-junction state3,4 caused by strong Cherenkov 
radiation. The latter appears entirely due to the Josephson nonlocality described by equation (2), which 
has no steady-state vortex solutions at J >  Js where Js can be well below Jc at which the whole junction 
switches into a resistive state.

The dynamic solutions of equation (2) at β >  βs change strikingly. Our simulations have shown that 
the instability originates at the highest maximum θ =  θm of the trailing Cherenkov wave which starts 
growing and eventually turning into an expanding vortex-antivortex pair30, as shown in Fig.  1. As the 
size of this pair grows, it generates enough Cherenkov radiation to produce two more vortex-antivortex 
pairs which in turn produce new pairs. Continuous generation of vortex-antivortex pairs results in an 
expanding dissipative domain in which vortices accumulate at the left side, antivortices accumulate at 
the right side, while dissociated vortices and antivortices pass through each other in the middle30. As 
a result, θ(x, t) evolves into a growing “phase pile” with the maximum θm(t) increasing approximately 
linear with time and the edges propagating with a speed which can be both smaller and larger than cs, 
the phase difference θ(∞) −  θ(− ∞) =  2π between the edges remains fixed. We observed the phase pile 
dynamic state for different junction geometries and η ranging from 10−3 to 0.530. For instance, Figs 2 and 
3 show the 3D images of the initial stage of dynamic separation of vortices and antivortices calculated for 
a bulk junction and a thin-film edge junction. Here the local magnetic field B(x, t) oscillates strongly at 
the moving domain edges but becomes rather smooth away from them, as shown in Fig. 4. In the most 
part of the phase pile overlapping vortices are indistinguishable, yet the net flux φ =  φ0 of this evolving 
multiquanta magnetic dipole remains quantized.

Shown in Fig. 5 are the steady-state vortex velocities v(β) calculated for different junction geometries. 
The instability corresponds to the endpoints of the v(β) curves which have two distinct parts. At small 
β η the velocity v(β) increases sharply with a slope limited by a weak quasiparticle viscous drag. At 

larger β η the increase of v(β) with β slows down, as the vortex velocities are mostly limited by radi-
ation friction29 and depend weakly on the form of dissipative terms in equation (2). For a low-Jc junction 
with λJ/λ =  10, the effect of Cherenkov radiation on v(β) is weak, but for a high-Jc bulk junction with 
λ λ/ = 10J  and η ≪  1, radiation friction dominates at practically all β, significantly reducing both v(β) 
and βs.

Figure 1.  Steady-state vortex profiles and the initial stage of fragmentation instability. (a) A sequence 
of phase profiles in a propagating vortex (shifted horizontally for clarity in the moving frames) calculated 
for a bulk junction by solving equation (2) for different values of β, η =  0.05, and λJ/λ =  10. At βs =  0.6676 
the peak amplitude of Cherenkov wave reaches θc =  8.76 and starts growing and evolving into an expanding 
vortex-antivortex pair. (b) Snapshots of θ(x) at β =  βs which show first three dissociations of the unstable 
vortex into vortex-antivortex pairs accompanied by Cherenkov radiation. Movies showing the initial stage 
of vortex instability and formation of the phase pile after multiple generations of vortex-antivortex pairs are 
available in ref. 30. Notice that θ(∞) −  θ(− ∞) =  2π remains fixed by the phase difference in the initial vortex.
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For thin film edge junctions, the critical splitting current density Js gets reduced down to Js ≈  0.4Jc at 
η =  10−3, as shown in Fig. 5. In the extreme nonlocal limit described by equations (2) and (3), the max-
imum velocity vs =  v(Js) at which the steady-state moving vortex remains stable, can be written in the 
scaling form vs =  csλJf(η)/λ, where f(η) decreases from ≃ 2.5 at η =  0.5 to ≃ 1 at η =  10−3. The Josephson 
vortex in thin film edge junctions can reach the velocities exceeding the nominal Swihart velocity 
cs =  ωJλJ at J ≃  Js if λJ >  λ but l <  Λ , that is, λ λ< /t 2 J

3 2. Dynamics of θ(x, t) in the nonlocal limit at J >  Js 
is similar to that is shown in Figs 1–3, except that the edges of phase pile can propagate with “superlu-
minal” velocities >v v cs s if λJ >  λ30. Once vortex-antivortex pairs start replicating, the speed of lead-
ing vortices at the edges gradually increases from vs to a limiting value v∞, for instance, from vs ≈  0.72lωJ 
to v∞ ≈  1.12lωJ for an edge junction with l =  Λ /2 and η =  0.130.

The effects reported here are most pronounced in underdamped SIS junctions between s-wave super-
conductors at low temperatures for which the viscous drag coefficient η  ∝ exp(− Δ /T) due to 
thermally-activated quasiparticles3 is small. Here η ≪  1 also implies that a moving vortex does not gen-
erate additional quasiparticles because the induced Josephson voltage θ= ′ /V v eL2m  is smaller than 
Δ /e, where θ ′m is the maximum phase gradient. These conditions are satisfied for the parameters used in 

Figure 2.  A 3D image of the evolution of phase pile triggered by an unstable vortex. The dynamic 
phase distribution θ(x, t) was calculated from equation (2) for a bulk junction at β =  0.6676, λJ/λ =  10 and 
η =  0.05. Here the maximum phase θm(t) increases approximately linear with time while the edge vortices 
move with constant velocities close to cs. Individual vortices and antivortices clearly visible at the edges of 
the expanding phase pile overlap strongly toward its central part.

Figure 3.  A 3D image of vortex instability and the initial stage of the phase pile formation in nonlocal 
regime. The dynamic phase distribution was calculated at β =  βs =  0.63 for a thin film edge junction with 
η =  0.1 and l =  Λ /2. Here θ(x, t) in the vortex at β =  βs was computed by solving the full dynamic equation 
(2) with the initial distribution equal to the stable single-vortex solution θ(x −  vt) calculated at β =  βs −  0.01. 
As a result, the vortex then accelerates slightly and becomes unstable, triggering the growth of the phase 
pile. After multiple generations of vortex-antivortex pairs, vortices at the leading edges reach velocities of 
1.12lωJ.
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the calculations and are facilitated by the electromagnetic nonlocality of thin film edge junctions30, par-
ticularly monolayer junctions27,28. Furthermore, a small power P dissipated by a moving vortex at η ≪  1 
does not really affect the Cherenkov instability. For instance, P generated by a vortex at the critical 
velocity ωv ls J  in a thin film junction is given by30:

Figure 4.  A snapshot of the normalized magnetic field B(x, t)/B1. Here B(x, t) was calculated from 
equation (2) for a bulk junction at η =  0.05, β =  0.6676, λJ/λ =  10 and B1 =  φ0/2πλλJ. Inset shows the 
corresponding phase distribution, θ(x, t). One can clearly see a complex structure of the left leading edge 
comprised of a vortex overlapping with a vortex-antivortex pair. Away from the edges vortices overlap so 
strongly that the Cherenkov radiation gets suppressed almost to zero, and the smooth distribution of B(x, t) 
in the growing resistive domain can be regarded as a giant multiquanta vortex-antivortex dipole.

Figure 5.  Velocities of a stable singe vortex v(β) as functions of current calculated for different junction 
geometries. The instability occurs at the endpoints (shown by arrows) of the v(β) curves. The upper panel 
shows v(β) for a bulk junction calculated from equation (2) at ηl =  0.1 in the seemingly conventional weak-
link limit, λJ/λ =  10 (for comparison, the blue curve shows v(β) calculated from eq. (1) at ηsg =  0.1). The 
magenta and green curves show v(β) calculated for a bulk nonlocal junction with λ λ/ = 10J  for values of 
ηnl =  0.1 and ηnl =  0.01, respectively, where the indices sg, l and nl correspond to the pure sine-Gordon, 
weakly nonlocal and strongly nonlocal limits, respectively. The lower panel shows results for a thin film edge 
junction in the extreme nonlocal limit described by equations (2) and (3). Notice that both the v(β) curves 
and the critical values βs at η =  0.1 and η =  0.01 for the thin film junction are close to those for the bulk 
junction shown in the upper panel. This is because for a nonlocal bulk junction, θ′′ (u) in equation (2) has a 
sharp peak of width ~(λJ/λ)2λ =  0.1λ so G[(x −  u)/α] =  π−1K0[|x −  u|/α] can be approximated by its 
expansion at small argument, K0(x/α) →  ln(2α/|x|) −  0.577, which reduces to equation (3). Here any constant 
factor under the log does not affect θ(x, t) since θ ′ (− ∞) =  θ ′ (∞) =  0.
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This equation shows that the power P is independent of Jc and is greatly reduced in the underdamped 
limit at low temperatures as the quasiparticle resistance R of SIS junctions becomes exponentially large 
at T ≪  Tc. To estimate P, it is convenient to write equation (5) in the form ηε ωP t J0 , where 
ε φ πµ λ= /40 0

2
0

2 is a characteristic line energy of Abrikosov vortex31. For an edge junction in a Nb film 
with t =  1 nm, λ =  40 nm, ε0 ~ 104 kelvin/nm, and ωJ =  100 GHz much smaller than ∆/ . 2 4 THz10, 
equation (5) yields P ~ 0.16 nW at η =  10−2. Local overheating δT =  PYK caused by vortex dissipation is 
further reduced in thin film junctions for which the energy transfer to the substrate due to ballistic 
phonons is much more effective than diffusive phonon heat transport in thick samples, where YK is the 
Kapitza interface thermal resistance32. Such weak overheating caused by a moving vortex cannot result 
in thermal bistability and hysteric switching due to hotspot formation32.

Proliferation of vortex-antivortex pairs triggered by a moving Josephson vortex can be essential for 
the physics and applications of weak link superconducting structures where the formation of expanding 
phase pile patterns can switch the entire junction into a normal state at currents well below the Josephson 
critical current, > ( . − . )J J J0 4 0 7s c. Such dynamic vortex instability can result in hysteretic jumps on 
the V-I curves which appear similar to those produced by heating effects4,9, yet this instability is affected 
by neither cooling conditions nor the nonequilibrium kinetics of quasiparticles. Indeed, heating is most 
pronounced in overdamped junctions with η >  1 in which Cherenkov radiation is suppressed. By con-
trast, the Cherenkov instability is characteristic of the weakly-dissipative underdamped limit η ≪  1, 
although Fig. 5 shows that this instability in thin film edge junctions can persist up to η =  0.5. Therefore, 
the crucial initial stage of the phase pile formation at η ≪  1 is unaffected by heating which may become 
more essential at the final stages of the transition of the entire junction into the normal state. At η ~ 1 
the Cherenkov instability may be masked by heating effects, particularly in bulk junctions for which heat 
transfer to the coolant is less efficient than in thin films.

It should be emphasized that the instability reported here does not require special junctions with 
Jc ~ Jd. In fact, even for the seemingly conventional bulk junction with λJ =  10λ shown on the top panel 
of Fig. 5, the instability at .J J0 846s c implies Jc ~ 0.01Jd/κ, which translates into Jc ~ 10−4Jd for bulk NbN 
junctions. Moreover, in wide thin film edge junctions the nonlocality becomes important at even much 
lower Jc, as is evident from the lower panel of Fig. 5. Therefore, the effects reported here can occur in 
conventional underdamped junctions with Jc ≪  Jd, particularly wide thin film or monolayer edge junc-
tions. Interaction of Josephson vortices with pinned Abrikosov vortices in electrodes can result in addi-
tional mechanisms of splitting instability of Josephson vortices. For instance, radiation by Josephson 
vortices can be greatly enhanced as they move in a periodic magnetic potential of Abrikosov vortices 
along weak link grain boundaries25,33, whereas Abrikosov vortices trapped perpendicular to the Josephson 
junction can result in generation of Josephson vortex-antivortex pairs in the presence of the applied 
electric current34.

Our results can be essential for other topological defects such as crystal dislocations or magnetic 
domain walls described by the generic nonlocal equation (2) in which the integral term results from 
a common procedure of reduction of coupled evolution equations for several relevant fields to a single 
equation. For Josephson junctions, such coupled fields are θ and B, but for domain walls in ferromagnets, 
the nonlocality can result from long-range magnetic dipolar interactions35. For dislocations, the nonlo-
cality and Cherenkov radiation of sound waves in equation (2) come from the discreteness of the crystal 
lattice17 and long-range strain fields16, although the dynamic terms in the Peierls equation36,37 are more 
complex than those in equation (2). Dynamic instabilities of dislocations have been observed in the lat-
tice Frenkel-Kontorova models17 in which sonic radiation can also result from periodic acceleration and 
deceleration of a dislocation moving in a crystal Peierls-Nabarro potential16. The latter effect becomes 
more pronounced as the dislocation core shrinks at higher velocities and becomes pinned more effec-
tively by the lattice. By contrast, the instability reported here results entirely from Cherenkov radiation, 
the condition (4) can be satisfied for any system in which G(k) in equation (4) decreases with k. This 
instability can thus have broader implications: for instance, the phase pile dynamics of Josephson vortices 
appears similar to a microcrack propagation caused by a continuous pileup of subsonic dislocations with 
antiparallel Burgers vectors at the opposite tips of a growing crack described by equations (2) and (3)16.

Our results give a new insight into breakdown of a global long-range order which has been usu-
ally associated with either thermally-activated proliferation of topological defects (like in the 
Berezinskii-Kosterletz-Thouless transition) or static arrays of quenched topological defects pinned by the 
materials disorder2. Here we point out a different mechanism in which a long-range order is destroyed 
as a single topological defect driven by a strong external force becomes unstable and triggers a cascade 
of expanding pairs of topological defects of opposite polarity.

Methods
We have developed an efficient MATLAB numerical code to solve the main integro-differential equation 
(2) using the method of lines38. By discretizing the integral term in equation (2) it was reduced to a set 
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of coupled nonlinear ordinary differential equations in time which were solved by the multistep, variable 
order Adams-Bashforth-Moulton method39. We have checked our numerical results using a slower iter-
ative method to make sure that the logarithmic singularity of G(x −  u) is handled properly, the absolute 
and relative error tolerances were kept below 10−6. The length Lb of computational box x1 <  x <  x1 +  Lb 
along the x–axis (either co-moving with the vortex or expanding with the phase pile) was taken large 
enough to assure no artifacts coming from possible reflected waves at x =  x1 and x =  x1 +  Lb. We set 
θ β( , ) − <− −x t sin 101

1 6 and θ π β( + , ) − − <− −x L t 2 sin 10b1
1 6 and made sure that changing Lb 

does not affect the results, where Lb was typically taken at least three times larger than the spatial extent 
of θ(x, t), be it a single vortex or expanding phase pile. The steady state phase distribution θ(x −  vt) in a 
uniformly moving vortex at a given β was computed by solving the full dynamic equation (2) using the 
single-vortex solution calculated at a smaller preceding value of β as an initial condition. The code then 
run until the velocity of the vortex stabilizes to the accuracy better than 0.1%.

References
1.	 N. D. Mermin. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).
2.	 Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics. (Cambridge University Press, Cambridge, New York, 

Madrid, 2010).
3.	 Barone, A. & Paterno, G. Physics and Applications of Josephson Effects (Wiley, New York, 1982).
4.	 Likharev, K. K. Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, New York, 1986).
5.	 Ustinov, A. V. et al. Dynamics of sine-Gordon solitons in the annular Josephson junction. Phys. Rev. Lett. 69, 1815–1818 (1992).
6.	 Herr, A., Fedorov, A., Shnirman, A., Il’ichev, E. & Schon, G. Design of a ballistic fluxon qubit readout. Supercond. Sci. Technol. 

20, S450 (2007).
7.	 Devoret, M. & Schoelkopf, R. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).
8.	 Fedorov, K. G., Shcherbakova, A. V., Wolf, M. J., Beckmann, D. & Ustinov, A. V. Fluxon readout of a superconducting qubit. 

Phys. Rev. Lett. 112, 160502 (2014).
9.	 Welp, U., Kadowaki, K. & Kleiner, R. Superconducting emitters of THz radiation. Nature Photonics 7, 702–710 (2013).

10.	 Gurevich, A. Superconductivity radio-frequency fundamentals for particle accelerators. Rev. Accel. Sci. Technol. 5, 119–146 
(2012).

11.	 Grüner, G. The dynamics of charge density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).
12.	 Pokrovsky, V. L. & Talapov, A. L. Ground state, spectrum, and phase diagram of 2-dimensional incommensurate crystals. Phys. 

Rev. Lett. 42, 65–67 (1979).
13.	 Bak, P. Commensurate phases, incommensurate phases, and devil’s staircase. Rep. Prog. Phys. 45, 587–629 (1982).
14.	 Woods, C. R. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nature Phys. 10, 

451–456 (2014).
15.	 Bar’yakhtar, V. G., Chetkin, M. V., Ivanov, B. A. & Gadetskii, S. N. Dynamics of Topological Magnetic Solitons. (Springer-Verlag, 

Berlin, Heidelberg, New York, 1994).
16.	 Hirth, J. B. & Lothe, J. Theory of Dislocations. (McGraw-Hill, New York, 1968).
17.	 Braun, O. M. & Kivshar, Yu. S. The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer-Verlag, Berlin, New 

York, 2004).
18.	 Salerno, M. Discrete model for DNA-promoter dynamics. Phys. Rev. A 44, 5292–5297 (1991).
19.	 Yakushevich, L. V. Nonlinear physics of DNA (2nd ed., John Wiley and Sons, 2006).
20.	 Ivanchenko, Yu. M. & Soboleva, T. K. Nonlocal interaction in Josephson junctions. Phys. Lett. A 147, 65–69 (1990).
21.	 Gurevich, A. Nonlinear viscous motion of vortices in Josephson contacts. Phys. Rev. B 48, 12857–12865 (1993).
22.	 Kogan, V. G., Dobrovitski, V. V., Clem, J. R., Mawatari, Y. & Mints, R. G. Josephson junction in a thin film. Phys. Rev. B 63, 

144501 (2001).
23.	 Abdulmalikov, A. A., Alfimov, G. L. & Malishevskii, A. S. Nonlocal electrodynamics of Josephson vortices in superconducting 

circuits. Supercond. Sci. Technol. 22 023001 (2009).
24.	 Boris, A. A. et al. Evidence for nonlocal electrodynamics in planar Josephson junctions. Phys. Rev. Lett. 111, 117002 (2013).
25.	 Gurevich, A. et al. Flux flow of Abrikosov-Josephson vortices along grain boundaries in high-temperature superconductors. Phys. 

Rev. Lett. 88, 097001 (2002).
26.	 Moll, P. J. W. et al. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nature 

Mater. 12, 134–138 (2013).
27.	 Brun, C. et al. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon. Nature Phys. 10, 

444–450 (2014).
28.	 Yoshizawa, S. et al. Imaging Josephson vortices on the surface superconductor Si (111)-( × )7 3 -In using a scanning tunneling 

microscope. Phys. Rev. Lett. 113, 247004 (2014).
29.	 Mints, R. G. & Snapiro, I. B. Josephson-vortex Cherenkov radiation. Phys. Rev. B 52 9691 (1995).
30.	 See the Supplemental Information for details of calculations and movies of vortex instabilities for different junction geometries.
31.	 Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. 

Rev. Mod. Phys. 66, 1125–1532 (1994).
32.	 Gurevich, A. V. & Mints, R. G. Self-heating in normal metals and superconductors. Rev. Mod. Phys. 59, 941–999 (1987).
33.	 Gurevich, A. & Cooley, L. D. Anisotropic flux pinning in a network of planar defects. Phys. Rev. B 50, 13563–13576 (1994).
34.	 Berdiyorov, G. R., Milosević, M. V., Savel’ev, S., Kusmartsev, F. & Peeters, F. M. Parametric amplification of vortex-antivortex pair 

generation in a Josephson junction. Phys. Rev. B 90, 134505 (2014).
35.	 Cizeau, P., Zapperi, S., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall and the Barkhausen effect. Phys. 

Rev. Lett. 79, 4669–4672 (1997).
36.	 Rosakis, P. Supersonic dislocation kinetics from an augmented Peierls model. Phys. Rev. Lett. 86, 95–98 (2001).
37.	 Pillon, L., Denoual, C. & Pellegrini, Y. P. Equation of motion for dislocations with inertial effects. Phys. Rev. B 76, 224105 (2007).
38.	 Schiesser, W. E. The Numerical Method of Lines: Integration of Partial Differential Equations (Academic Press, San Diego, 1991).
39.	 Shampine, L. F. & Gordon, M. K. Computer Solution of Ordinary Differential Equations: The Initial Value Problem (W. H. Freeman, 

San Francisco, 1975).

Acknowledgements
This work was supported by the United States Department of Energy under Grant No. DE-SC0010081.



www.nature.com/scientificreports/

8Scientific Reports | 5:17821 | DOI: 10.1038/srep17821

Author Contributions
A.S. performed all numerical simulations described here, and A.G. directed the project. Both authors 
contributed to the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Sheikhzada, A. and Gurevich, A. Fragmentation of Fast Josephson Vortices 
and Breakdown of Ordered States by Moving Topological Defects. Sci. Rep. 5, 17821; doi: 10.1038/
srep17821 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Fragmentation of Fast Josephson Vortices and Breakdown of Ordered States by Moving Topological Defects
	Introduction
	Methods
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Fragmentation of Fast Josephson Vortices and Breakdown of Ordered States by Moving Topological Defects
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17821
            
         
          
             
                Ahmad Sheikhzada
                Alex Gurevich
            
         
          doi:10.1038/srep17821
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep17821
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep17821
            
         
      
       
          
          
          
             
                doi:10.1038/srep17821
            
         
          
             
                srep ,  (2015). doi:10.1038/srep17821
            
         
          
          
      
       
       
          True
      
   




