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Plasmonic CROWs for Tunable 
Dispersion and High Quality Cavity 
Modes
John J. Wood*, Lucas Lafone*, Joachim M. Hamm, Ortwin Hess & Rupert F. Oulton

Coupled resonator optical waveguides (CROWs) have the potential to revolutionise integrated 
optics, to slow-light and enhance linear and non-linear optical phenomena. Here we exploit the 
broad resonances and subwavelength nature of localized surface plasmons in a compact CROW 
design where plasmonic nanoparticles are side coupled to a dielectric waveguide. The plasmonic 
CROW features a low loss central mode with a highly tunable dispersion, that avoids coupling to the 
plasmonic nanoparticles close to the band-edge. We show that this low loss character is preserved 
in finite plasmonic CROWs giving rise to Fabry-Perot type resonances that have high quality factors 
of many thousands, limited only by the CROW length. Furthermore we demonstrate that the 
proposed CROW design is surprisingly robust to disorder. By varying the geometric parameters one 
can not only reduce the losses into dissipative or radiative channels but also control the outcoupling 
of energy to the waveguide. The ability to minimise loss in plasmonic CROWs while maintaining 
dispersion provides an effective cavity design for chip-integrated laser devices and applications in 
linear and non-linear nano-photonics.

Since their inception coupled resonator optical waveguides (CROWs) have emerged as an exciting tech-
nology for the integrated optics community1. On-chip guiding of light allied to the control of dispersion 
offered by CROW designs have opened the door to a raft of interesting phenomena including slow 
light and enhanced light-matter interaction2–7 and over the last decade CROWs have been explored 
extensively with a view to applications in optical switching8, optical filters9, delay lines10, sensing11 and 
wavelength conversion12. Since the exploitation of CROWs has so far been mainly confined to appli-
cations within photonics they typically employ low-loss dielectric resonators with narrow line-widths 
to minimise the prospective losses; yet these devices are very sensitive to disorder through fabrication 
imperfections due to the high quality resonances required. A CROW composed of plasmonic resonators 
(or plasmonic CROW) is yet to be investigated.

In contrast to dielectric resonators plasmonic nanoparticles have broad resonances, enable 
sub-wavelength confinement of light and have high associated losses. For systems of directly coupled 
resonators these losses can be detrimental to the waveguiding properties as the energy of the incident 
wave is absorbed13,14. However, in side coupled CROW schemes15–18 only a fraction of the energy flows 
in/out of the resonator and no losses occur as the light travels between resonator sites through the dielec-
tric waveguide. In other words, within a side-coupled CROW the modes of the resonators are hybridised 
with the underlying waveguide structure so the plasmonic losses can be minimal. Interestingly, aside 
from mitigation of plasmonic losses, hybrid plasmonic-photonic systems have been shown to exhibit 
phenomena such as extraordinary optical transmission19 and waveguide plasmon polaritons20.

Furthermore, within the side coupled CROW the broad resonances of the plasmonic nanoparticles 
are beneficial as they interact strongly with light over a large frequency range providing a large degree of 
tunability as the nanoparticles are gradually brought into resonance with the sharp band-structure. As 
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we show in this article, this mechanism allows extensive dispersion control as well as the ability to tune 
the hybrid nature of the modes and thereby affect the various loss channels from the plasmonic CROW. 
A further advantage of the use of plasmonic resonators is that the physical size of potential plasmonic 
CROW devices can be significantly compacted as the resonator size is no longer a limiting factor.

In this letter we investigate a plasmonic CROW that evanescently couples cut-wire resonators to 
photonic TE waveguide modes of a dielectric slab (Fig. 1). By design the structure enables; control of the 
coupling strength21, easy tuning of the plasmonic resonance and simple integration with on-chip devices 
through the silicon-on-insulator (SOI) platform. This intrinsic link between the geometric parameters 
and the CROW properties allows for dispersion control of the low loss CROW band which avoids cou-
pling to the plasmonic nanoparticles. Moreover, we find that finite length plasmonic CROWs sustain the 
avoided coupling to the nanoparticles giving rise to high quality (Q ∼  4000) cavity modes with strong 
mode discrimination, which are particularly interesting given the otherwise inherently lossy nature of 
plasmonic systems. Importantly, the transfer of energy out of these modes can be manipulated by altering 
the geometry to allow increased outcoupling to the waveguide channel. Finally, the effect of structural 
disorder on the CROW cavity mode is considered and we find that the characteristics of the hybrid 
resonances are robust against fabrication imperfections, particularly in the case of small resonator-array 
detuning.

Results
Theory of Mode Hybridisation. The photonic field is guided within the semiconductor slab as wave-
guide modes of a tri-layered slab with alternating refractive indices (n1, n2, n1). For the plasmonic nan-
oparticles we have used cut-wires due to their strong interaction with the TE waveguide modes and the 
ease with which their resonances can be altered. The cut-wires, located within the upper layer a distance 
h from the central layer (see Fig. 1), are composed of silver with ε ε ω ω γω= − /( + )ip0

2 2 . The Drude 
parameters, ε = .4 00 , ω = . × −rads1 36 10p

16 1, γ = . × −rads3 31 1013 1 were chosen to fit the numerical 
data reported by Johnson and Christy22. Throughout this work we assume the refractive indices to be 
= .n 1 441  (e.g. Silica) and = .n 3 472  (e.g. Silicon) and a central layer width of 100 nm; whilst the two 

cladding layers are assumed to be semi-infinite in width. We note that the waveguide mode frequency at 
the edge of the first Brillouin zone (at π= /k dy ) is governed by the array pitch, d, and can be expressed 
as ω π π( = / ) = /k d c n ds y eff , where neff  is the effective refractive index experienced by the waveguide 
mode.

The plasmonic modes of the cut-wires are dependent on both the material and geometry. The reso-
nant frequency of the mode along the cut-wire axis, ω0, can be altered by changing either the lengths of 
the cut-wires segments, l, or the gaps, g; Fig. 1: inset i shows an example of the broad cut-wire resonance. 
Throughout the rest of this paper the cross-section is kept constant at 30 × 50 nm and =l 80nm unless 
otherwise stated.

The dispersion of the hybrid mode is altered drastically when the wires are spaced such that the phase 
change of the waveguide mode between resonators is an integer multiple of π. These effects are achieved 
since the three individual modes (two photonic and one plasmonic) are degenerate at the edge of the 
first Brillouin zone (FBZ); in other words the structure is tuned such that ω ω≈ s0 . This resonant cou-

Figure 1. Schematic of the general geometry analysed in this paper. A dielectric stack waveguide of 3 
layers, within the top layer there is a periodic array of metallic cut-wires. The parameters that define the 
structure are the refractive indices of the dielectric stack (alternating n1, n2, n1), the array pitch, d, and the 
cut-wire segment length and gap length, l and g. The resulting CROW mode electric field profile ( ( )E zx ) is 
represented showing the high concentration of fields within the central layer as well as the excited cut-wire 
resonators. The inset (i) illustrates the broad spectral response of a plasmonic cut-wire.
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pling between the array of cut-wires and the propagating photonic modes has been described as the 
waveguide plasmon polariton and has been shown to produce many interesting results including 
ultra-narrow and highly dispersive transparency bands23, slow light dispersion24, enhanced transverse 
magneto optical Kerr effect25 and enhanced generation of light26.

Before we proceed to the rigorous numerical calculations, we use a simple tight-binding model23,24 
to calculate the expected behaviour of our system. By treating each cut-wire as a damped harmonic 
oscillator (p) driven by a time harmonic electric field (E) we can use the harmonic oscillator equation 
of motion as27

γ ω+ + = ( )ω−
p̈ p p gEe 1i t

0
2

where g is the coupling between the field and the oscillator. There are three separate channels by which 
the excited oscillator can decay, emitting either out of the array or back into the waveguide and absorp-
tion losses within the oscillator. By splitting the losses γ γ κ→ ′ +  to include decay of the mode back 
into the waveguide (κ) we can write the scattered field into the waveguide as κ= − g E ps . This allows 
the scattered field to be written as

κω
ω ω γω

=
− −

=
( )

ω ω− −E i
i

Ee rEe
2s

i t i t

0
2 2

where r is the reflection coefficient. As the waveguide scattering has no preferential direction the trans-
mission coefficient is given by = +t r1  and the total transmission and reflection are calculated as 
=R r 2 and =T t 2.
Figure 2 shows how the waveguide modes incident on a cut-wire are transmitted and reflected within 

a single period or cell of the structure. Waveguide modes (An and +Bn 1) enter the cell from the left and 
right, then propagate between neighbouring cut-wires acquiring a phase, ( / )exp ik d 2wg , where 

ω= /k n cwg eff . When the modes are incident upon the cut-wire they are reflected, transmitted or they 
can be absorbed through the oscillator losses (γ ′). Propagating the amplitudes along the unit cell induces 
a phase, ( / )exp ik d 2wg , before the modes exit (as Bn and +An 1). This can be written
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We note here that this is of the same form as reported in literature for similar side-coupled resonator 
systems15,28,29. To calculate the band structure we apply the Bloch conditions: =+A A ei i

ik d
1

y  and 
=+B B ei i

ik d
1

y . Upon inspection it is apparent that the eigenvalues of T  must be equal to the Bloch vec-
tors ±e ik dy . By writing = /( + )C r r1 , and solving for the eigenvalues we acquire the dispersion relation 
for such a structure as:

( ) = ( ) + ( ) ( )k d k d iC k dcos cos sin 4y wg wg

We have fitted this model to the numerical calculations that follow by varying the harmonic oscillator 
parameters (ω0, γ ′ and κ).

Dispersion Bands and Tunability. The modes resulting from hybridization between the cut-wire 
array and the slab waveguide are illustrated by the solid lines in Fig.  3a, where the pitch and cut-wire 
gaps were chosen to be =d 164nm and =g 20nm, respectively. (All simulations were performed using 
COMSOL.) As expected a large splitting is observed due to the coupling of the waveguide mode to the 

Figure 2. Schematic of the transfer matrix formalism detailing the scattering channels coupling the 
incoming and outgoing waves on either side of the cut-wire resonator for a single unit cell. The 
waveguide modes enter the unit cell, with amplitudes An and +Bn 1, and propagate towards the cut-wire. At 
the cut-wire a fraction, t, is transmitted and a fraction, r, is reflected and they then propagate out of the cell, 
with amplitudes +An 1 and Bn.
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localized surface plasmon resonance. However, a flat central CROW band also emerges within the band-
gap. Remarkably, this central mode is composed entirely of forward and backward propagating wave-
guide modes, with very little involvement from the cut-wires particles. This is evident from the electrical 
field distribution of the central mode (green) at the edge of the FBZ, Fig.  3c, which shows that the 
cut-wire sits in the node of the electric field, effectively unexcited. The lack of plasmonic characteristics 
in this central mode suggest low loss, which is confirmed by the small imaginary part of the dispersion 
relation (Fig. 3b). On the other hand, at π= . /k d0 8y  the loss of the central band is much higher; here 
the CROW mode is dominated by the cut-wire resonance. Since the low loss characteristics only occur 
for this central band near the FBZ edge, we focus the following discussion on this band.

The simple transfer matrix theory used to describe the system provides a good match to the band 
structure predicted by the rigorous calculations. The small discrepancies between the two descriptions 
originate from the influence of higher order waveguide modes in the simulation, which are not con-
sidered in this 3-band transfer matrix model. Indeed, the structure guides higher-order TE slab wave-
guide modes, which perturb the band structure through their interaction with the cut-wire resonances. 
Meanwhile, the transfer matrix theory breaks down in its prediction of the central mode’s loss at the edge 
of the FBZ. The discrepancy arises from the finite size of the cut-wire resonator, whereas the transfer 
matrix model assume point-like dipoles. Indeed, the loss of this central band must be non-zero due to a 
residual overlap of the cut-wires with the fields around the central mode’s nodes. We note that the loss 
is sensitive to the cross-section of the cut-wires and could thus be minimized further.

It is important to note that the central dispersion band changes character as k y is varied; at =k 0y  
the band is predominantly the cut-wire plasmonic mode whereas at π= /k dy  it is solely composed of 
waveguide modes. This dramatic change in character allows for the possibility that its shape can be 
manipulated. While the band’s position is fixed at the band edge with the frequency specified by the pitch 
of the array, ω s, the cut-wire resonance determines the dispersion for π< /k dy . Thus by varying the 
frequency of the cut-wire mode ω0 whilst keeping ω s constant the shape of the central dispersion band 
can be tuned.

Figure  4a shows how the shape of the central dispersion band shifts as ω0 is changed over a small 
range. As expected, the shape of the real part of the dispersion band is varied and the sign of the gradient 
close to the band edge can be changed from positive to negative. It is therefore possible to engineer a 
band shape that is relatively flat over a range of k-values. As with traditional CROWs, this opens up the 
possibility of using such a structure for slow light applications. In contrast to the theoretical model, 
which predicts the possibility of a completely flat band (i.e. ω/ = ∀d dk k0 ), there are clearly limits in our 
ability to tune the flatness of the central band in the physical system arising from higher order waveguide 
modes which distort the band structure.

Despite the ability to engineer the real part of the dispersion relation, the imaginary part is not so 
easily changed. This is because the loss is mainly determined by the physical overlap of electric field near 

Figure 3. Dispersion relation for an infinite array of cut-wires with =g 20nm, corresponding to a single 
cut-wire resonance of ω = . ω0 9850 s. (a) The real part of the dispersion band and (b) the imaginary part of 
the dispersion band for numerical calculations (solid lines) and theory (dashed lines). Also shown are the 
bare waveguide modes (dotted black lines). (c) The electric field profile, Ex , for a single unit cell in the y–z 
plane for the central dispersion band (green) at the band edge, π= /k dy . The colour scale ranges from blue 
(minimum) to red (maximum).
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the nodes with the cut-wires, which cannot be modified by simply varying ω0. However, it is possible to 
engineer the imaginary part of the dispersion relation through other means. We can approach the theo-
retical mode loss limit by reducing the overlap between the cut-wire resonators and the waveguide 
modes. In Fig. 4b we reduce this overlap by increasing the height of the buffer layer, whilst maintaining 
the condition that ω ω≈ s0 . It can be seen that the loss of the mode is reduced, but only very close to 
the edge of the FBZ, where the hybrid mode is solely composed of waveguide modes. Counter-intuitively, 
away from the edge of the FBZ, the change in buffer height causes an increase in loss. This occurs because 
the larger spacer layer reduces the intrinsic coupling between waveguide mode and cut-wires. Thus the 
central mode maintains its cut-wire character further along the band than previously leading to the 
increase in mode loss. From a coupled mode theory perspective, the cross-over region for these two 
behaviours in Fig.  4b thus indicates the position where the plasmonic and photonic character of the 
central CROW mode is equal.

CROW Cavity Modes. We now turn our attention to finite arrays and their associated modes. The 
boundary between a region patterned with an array of resonators and the bare multilayer structure will 
inevitably induce reflections due to modal mismatch30. The flat nature of the central dispersion band and 
the associated high group index originates from the interference of forwards and backwards propagating 
modes in the patterned region, which cannot be matched to the scattered modes of the bare waveguide. 
Thus, a finite array of cut-wires on top of the multilayer slab supports Fabry-Perot type resonances. As 
with any Fabry-Perot resonator the corresponding resonances coincide with photon energies that cause 
an integer multiple of π phase change across the structure. Taking the beginning and end of the structure 
to be the centre of the first and last cut-wire the expected k-values should then be given as

π
=

−
= , … −

( )
k n

n d
n n

1
; 1 2 2

5n
w

w

Figure 4. Tuning of the dispersion relation. (a) Real part of the central dispersion band tuned through the 
cut-wire resonance by changing the gap-size from =g 30nm (pink line) to =g 20nm (dark blue line) in  
1 nm increments. (b) Imaginary part of the central dispersion band tuned by changing the buffer height 
from =h 5nm (dark blue line) to =h 95nm (pink line) in 10 nm increments.

Figure 5. (a) Comparison of the dispersion relation (lines) and eigenmodes (dots) for arrays with =g 20nm 
(blue) =g 25nm (grey) and =g 30nm (green). The eigenmodes are found for finite arrays with 20 cut-wires. 
(b–d) Ex  of the three highest order modes of an array 20 cut-wires with =g 30nm. From Equation 5:  
(b) mode 18, (c) mode 17 and (d) mode 16. The colour scale ranges from blue (minimum) to red 
(maximum).
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where nw is the number of cut-wires in the array. By assigning the appropriate wavevector we can com-
pare these modes of a finite structure with the dispersion bands of the infinite structure. A comparison 
is shown in Fig. 5a for modes 18, 17 and 16 of a 20 wire array for three different cut-wire resonances. 
There is a good agreement between the numerically determined eigenfrequencies of the finite modes and 
their mapping to the infinite band structure using Equation (5). The corresponding field distributions for 
modes 18, 17 and 16 of the 20 wire structure are shown in Fig. 5b–d. Importantly, the general field dis-
tribution of the infinite array from Fig. 3c is retained by these modes, since the field hotspots are located 
predominantly inside the waveguide, avoiding the cut-wire resonators. However, in contrast to the 
infinite case, the phase change across each unit cell is not sufficient to preserve this field profile through-
out the array. As such, the mode gradually de-phases as it crosses the array leading to regions where the 
cut-wires are excited. At these points nodes appear in the electric field distributions and hence the modes 
appear to have standing wave type envelope functions.

The utility of plasmonic CROW cavities depends on how well the various cavity loss mechanisms can 
be controlled. These can be divided into radiation loss to free-space (γ r), dissipative loss to the metallic 
resonators (γd), and waveguide coupling loss (γwg). The parasitic cavity losses, γd and γ r are enhanced 
in a finite array when cut-wire particles are excited. From Fig. 5b–d we have seen that excited cut-wires 
lead to nodes in the field distributions, thus the number of nodes in the field distribution indicates the 
parasitic loss rate of the modes. Hence, it is clear that the loss rates for each mode will be highly depend-
ent on the mode number (as = −n n nnodes wires ). This is desirable trait of a laser cavity for example, since 
the least lossy mode will dominate the laser’s response31; in this case assuring the laser has a single lon-
gitudinal mode. In fact, for the array of 20 wires shown in Fig. 5b–d the Q-factors of the three modes 
are 544 (mode 18), 242 (17) and 195 (16), following approximately the ratio of the number of nodes; i.e. 
1:2:3. Henceforth, we refer to the low loss mode as the fundamental mode of the laser cavity.

Before we focus on controlling the various sources of loss in the cavity, let us first focus our attention 
on how the number of wires affects the fundamental mode losses, shown in Fig. 6a, where the Q-factor 
for each array is also plotted. Remarkably, despite the fact that silver is a lossy material, the Q-factor of 
the fundamental mode continues to increase with the number of wires added to the array. This is slightly 
counter-intuitive as an increased amount of silver does not equal greater losses. Instead the displacement 
of the mode due to the increased number of cut-wires shifts the field hotspots further into the gaps, thus 
decreasing the spatial overlap between metal and field, working overall to decrease the modal loss and 
provide a higher Q-factor. In other words, the fundamental mode accumulates an increasing number of 
π phase changes across the array (i.e. a higher wave-vector from eq. 5) and the mode progressively 
approaches the edge of the FBZ, where loss is minimized. Alternatively, one can see that as the mode 
gets larger, while the number of nodes at cut-wire sites is fixed, the proportion of light in metallic regions 
decreases, thus driving down loss; the mode profile becomes increasingly similar to that of Fig.  3c for 
the infinite array. At the same time the mode is acquiring an increasingly high group index introducing 

Figure 6. Change in the fundamental mode loss rates. The four rates are: Γ, total losses, γd, dissipative 
losses, γwg , losses into TE0 waveguide mode and γr, other radiative losses, and Q is the Q-factor. (a) Change 
in the loss rates with increasing number of wires in the array; the results shown are for an array of wires 
with =l 80nm and =g 25nm. (b) Change in the loss rates with an increasing cut-wire detuning; the results 
shown are for an array of 20 wires and =g 25nm. The effect of disorder is shown by the crosses (mean) and 
error bars (standard deviation), averaged over 10 simulations for =l 80nm (a) and =l 88nm (b).
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a further modal mismatch between the fundamental mode and the surrounding waveguide structure, 
which also decreases the waveguide loss. From Fig. 6 the Q-factor for an array of 50 cut-wires is ∼ 4000 
but this is not an upper limit. Theoretically, modal losses would continue to decrease for larger arrays, 
tending towards the dispersion band loss at the edge of the FBZ (Q ∼  104). Here, loss could be further 
reduced through the resonator waveguide coupling (see Fig. 4) in order to attain even higher Q-factors.

The close correspondence in ratio of field node numbers with cavity mode order loss suggests that 
loss is dominated by the parasitic process; i.e. these cavity modes couple very little light to the waveguide. 
In fact, Fig. 6a shows clearly that dissipative loss dominates. Consequently, this particular CROW cavity 
design is plasmon-like. Although it is desirable to produce cavity modes with low losses, it is often useful 
to be able to tune the individual loss mechanisms since these direct the light as it leaves the cavity. For 
instance, if the cavity were to be used to construct a laser we would require the light to be emitted into 
the waveguide mode, for example. As we saw for the infinite array case, the dissipative loss and indeed 
the plasmon-photon character of the array is controlled by the cut-wire mode detuning. We have also 
analysed how the cut-wire mode resonance affects the various loss channels of the fundamental CROW 
cavity mode by increasing the length of the cut-wire segments, l, which in turn decreases the resonant 
frequency. By increasing l we can drastically increase the proportion of the mode energy that is trans-
ferred to the photonic waveguide mode (see Fig.  6b). This process not only enhances the waveguide 
coupling rate but decreases the dissipation rate by nano-particles. The reason for this increased cou-
pling to the waveguide mode can be understood through the group index of the band structure. As the 
cut-wire mode frequency decreases below the array resonance the slope of the dispersion band becomes 
increasingly positive, thus increasing the group velocity of the fundamental mode. As a result, the mode 
mismatch between the cavity mode and that of the bare waveguide mode is reduced allowing for more 
efficient outcoupling of the mode out of the array to the point where radiation loss dominates, albeut 
with a reduced Q-factor. In this case, we can view this plasmonic CROW design as being photon-like 
and Q-factors in excess of 100 can be achieved with waveguide radiation loss accounting for at least 87% 
of cavity loss.

A major limitation in realising many of the initially suggested applications of CROWs is the high 
sensitivity to disorder32–34, in particular to that of the inter resonator spacing35. Many of these applica-
tions were deemed impossible or their efficiency was dramatically reduced as a result of unavoidable 
fabrication imperfections. In order to assess the viability of our system to proposed devices we have 
performed a number of simulations where the resonator spacing is subjected to random disorder in the 
range of ± 1 nm and ± 2.5 nm, respectively. The chosen values are within the stage position accuracy of 
commercially available EBL machines and should be achievable in practice. The results for the 2.5 nm 
fluctuations are presented as error bars in Fig. 6, where the crosses represent the mean value of the decay 
rates and the error bars are 1 s.d. long, averaged over 10 different random distributions.

It is well known that extrinsic losses due to disorder becomes more prominent in slow light systems 
as the group index increases. Therefore we have considered two separate resonator detunings ( =l 80 nm 
and =l 88nm). The results for the =l 80nm detuning, Fig. 6a (when resonator loss is dominant), show 
that the overall loss rates are increased and the Q-factor is reduced by 15–25% (± 1 nm) and 30–40% 
(± 2.5 nm). In contrast, for a slight detuning of =l 88 nm, Fig.  6b (when losses to the waveguide are 
comparable to resonator loss), the structure demonstrates far greater robustness; again the loss rates are 
increased but overall the Q-factor is only reduced by 1–3% (± 1 nm) or 3–7% (± 2.5 nm). For both detun-
ings, the channel most affected by the disorder in the resonator position is the radiative decay rate. These 
results reveal a high level of robustness to disorder, particularly in the case of the slightly larger 
detuning.

The plasmonic CROW sustains Fabry-Perot type modes that reside mainly within the central layer of 
the photonic waveguide. Due to the steep loss dispersion of the structure there is strong mode discrim-
ination and the fundamental mode is the least lossy. By increasing the number of cut-wires in the array 
it is possible to create Q-factors in excess of several thousand and although we have only shown results 
for sizes of up to 50 cut-wires there is no reason that these Q-factors could not be further increased 
with larger arrays. Finally, we have also seen how the modal loss to various channels can be engineered 
through the detuning of the cut-wire resonance allowing for the efficient outcoupling of energy from the 
fundamental mode to the waveguide modes of the stack. Such cavity modes could be highly desirable 
for producing compact on-chip single mode lasing devices and demostrate robustness against disorder 
in the array period.

Conclusions
We have demonstrated that side coupled plasmonic CROWs display dispersion bands with low loss 
modes that avoid the plasmonic nanoparticles. Due to the broad nature of the plasmonic resonance there 
is extensive control of the dispersion characteristics over a range of frequencies. Moreover, the losses of 
the central CROW mode are highly dependent on the coupling parameter and can be reduced at the 
band-edge through tuning of the geometry. Within finite plasmonic CROWs these low-loss modes are 
preserved in the form of Fabry-Perot type resonances that similarly avoid coupling to the plasmonic 
nanoparticles. As the losses primarily arise from the overlap of the Fabry-Perot modes with the plas-
monic nanoparticles the modal loss strongly depends on the mode order. This leads to strong mode 
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discrimination which could be utilised in plasmonic CROW cavity laser devices. Importantly the geom-
etry of the plasmonic CROW allows for tuning of the quality of the cavity and also the individual 
decay channels. By increasing the array size dissipation limited quality factors in excess of 4000 can be 
achieved, and by detuning the plasmonic and structure resonances the energy can be efficiently outcou-
pled into propagating waveguide modes. Finally, we have shown that the CROW cavity demonstrates a 
surprisingly high robustness to fabrication imperfections. This unprecedented control over the character-
istics of the cavity modes along with the easy to fabricate on-chip design make the suggested structure 
an ideal candidate for applications in semiconductor optoelectronics.
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