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Two-dimensional imaging in 
hyperbolic media–the role of field 
components and ordinary waves
Alessandro Tuniz1,3 & Boris T. Kuhlmey1,2

We study full vector imaging of two dimensional source fields through finite slabs of media with 
extreme anisotropy, such as hyperbolic media. For this, we adapt the exact transfer matrix method 
for uniaxial media to calculate the two dimensional transfer functions and point spread functions 
for arbitrary vector fields described in Cartesian coordinates. This is more convenient for imaging 
simulations than the use of the natural, propagation direction-dependent TE/TM basis, and clarifies 
which field components contribute to sub-diffraction imaging. We study the effect of ordinary waves 
on image quality, which previous one-dimensional approaches could not consider. Perfect sub-
diffraction imaging can be achieved if longitudinal fields are measured, but in the more common 
case where field intensities or transverse fields are measured, ordinary waves cause artefacts. These 
become more prevalent when attempting to image large objects with high resolution. We discuss 
implications for curved hyperbolic imaging geometries such as hyperlenses.

Materials with extreme anisotropy, and in particular indefinite materials such as metal/dielectric mul-
tilayer and wire array metamaterials, can beat the diffraction limit because they carry propagating 
extraordinary waves with high spatial frequencies that are evanescent in conventional dielectrics1. For 
extreme anisotropy, all extraordinary waves have similar phase velocity, so that slabs of such materi-
als are sub-diffraction endoscopes2. Magnifying or focusing hyperlenses can be obtained from curved 
geometries3,4. Experimental implementations at microwave, terahertz, visible and ultra-violet frequencies 
have been demonstrated5–10, with numerous potential applications. However, in spite of the fact that 
hyperbolic media are able to carry high spatial frequencies, images obtained through hyperlenses and 
hyperbolic media slabs are not perfect. Known sources of artefacts include chromatic dispersion and res-
onances of slab waves, that can add minor side-lobes (at best) or completely scramble images (at worst), 
and diffracting ordinary waves which add unwanted blurriness and background noise5,11–15. While these 
artefacts are known or at least expected, a deeper understanding of their impact, and how to avoid or cor-
rect them, is of particular importance for future applications of hyperbolic media slabs and hyperlenses.

Numerical and theoretical studies of imaging through slabs of extremely anisotropic media, and of 
artefacts in particular, have so far either relied on full 3D numerical simulations such as finite element 
methods12, or considered the 2D problem of propagation along a longitudinal dimension of spatial fre-
quencies in one transverse dimension only13,14,16. General three dimensional numerical methods can be 
slow and can have convergence problems, in particular if one of the permittivity component is large 
or negative. Reducing the problem to two dimensions simplifies the use of transfer matrix methods, 
as ordinary waves decouple form extraordinary waves. Indeed, this has yielded considerable insight 
in artefacts due to extraordinary waves only14,15. However this decoupling also means that the role of 
unwanted ordinary wave excitation in imaging cannot be studied using two dimensional methods: In 
three dimensions, even for linearly polarized light, both ordinary and extraordinary waves are excited 
in a non trivial manner, affecting imaging. Here we apply the well known exact transfer matrix method 
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(TMM) to calculate the full three-dimensional propagation of fields through finite slabs of extreme uni-
axial media. In contrast to previous studies using TMM, we consider two dimensional images from 
any object, represented by a known field in Cartesian coordinates. A related approach using Hankel 
transforms and one dimensional transfer matrix methods was used by Kotyński et al.17 in the context of 
dielectric/metallic multilayers. However in that work the longitudinal cross coupling was ignored, which, 
as we show here, becomes of particular importance for near field imaging where it enables the extraction 
of perfect images.

We then use this method to analyse imaging transfer functions and two-dimensional point spread 
functions, as well as imaging artefacts due to ordinary waves, and present strategies to avoid them. The 
method lends itself to rapid exact calculation of images through slabs of uniaxial materials, and can 
be extended to exact calculations of images through planar layered hyperbolic media stacks as well as 
non-local models for wire media.

Results
Method.  We consider a slab of uniaxial material, or more generally a multilayer stack of such mate-
rials (Fig. 1). Our aim is to calculate the transfer of an image, as described by a x- and y- dependent time 
harmonic field in a given plane z, through a uniaxial slab of finite thickness using the TMM. Although 
the TMM for uniaxial planar slabs has been solved decades ago using transfer matrices and can be found 
in the literature16,18, it relies on closed form expression of dynamic and propagation matrices in the nat-
ural TE/TM basis for given transverse wavevectors. Therefore, in order to use this method, a given image 
described as a field distribution in two-dimensional Cartesian coordinates must be expressed in the basis 
of TE and TM modes. First a spatial Fourier transform along x and y of the vector field components of 
the image is taken at the input; for each spatial frequency set ( , )k kx y , fields are then projected on the 
TE/TM basis in which transfer matrices are expressed; the TMM method is then used to propagate all 
spatial frequencies; finally, the inverse transform is used to reconstruct the fields at the other end. Here, 
we present the complete formalism of this method explicitly, which can be used to calculate images as 
produced by a uniaxial slab (and stacks of such slabs) for any arbitrary input field distribution.

We first introduce all notations and general characteristics of waves in homogeneous uniaxial media 
required for the derivations. We then introduce the boundary conditions and propagation matrices to 
build the usual transfer matrix method, and introduce the projection matrices required to apply the 
transfer matrix method to arbitrary field distributions. The method is finally used to explore imaging 
artefacts in hyperbolic media slabs. We also discuss how far our findings apply to curved geometries 
such as hyperlenses.

Basis of TE and TM waves in uniaxial media.  The first step in the method is to determine the 
wavevector-dependent TE and TM waves in which the TMM matrices are expressed. We consider har-
monic plane waves with wave vector k, and angular frequency  ω, in a non-magnetic (µ = �), homoge-
neous medium with relative permittivity tensor in each layer

Figure 1.  Schematic of the general geometry under consideration, for finding transfer matrices of 
uniaxial materials in the TE/TM bases. 
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For nontrivial plane wave solutions to exist, the determinant of the matrix of Eq. (3) must vanish, 
yielding a quartic equation for σkz  with four roots σ  =  1, 2, 3, 4,
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corresponding to the forward- and backward-propagating TE, and forward- and backward-propagating 
TM modes, respectively. In an uniaxial medium, the TE waves are the ordinary waves, and TM waves 
the extraordinary waves. Fields with spatial frequency ( , )k kx y  in the medium must be a superposition 
of such modes, with electric fields given by
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where σE  are expansion coefficients, and 
σp̂  are complex polarization unit vectors given by

( , ) = ( , ) = (− + )/ , ( )^ ^ ^ ^k k k k k k kp p x y 9x y x y y x t1 2
2

( ) ( ) ε

ε

ε

ε
, = , =









( + − )

( + − )
+

( + − )

( + − )
+







,
( )σ

σ

σ σ

σ

σ σ

^ ^ ^ ^ ^k k k k
N

k k k k
k k k k

k k k k

k k k k
p p x y z1

10
x y x y

x t z z

z t z t

y t z z

z t z t
3 4

2 2
0
2

2 2
0
2

2 2
0
2

2 2
0
2

where Nσ are normalization constants such that ⋅ =σ σ
^ ^p p 1. Maxwell’s equations yield the associated 

magnetic fields,
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which are not generally unit vectors.
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Transfer matrices in TE/TM basis
In view of building the transfer matrix method, we now consider the boundary conditions for fields of 
given ( , )k kx y  at interfaces between uniaxial media with aligned optical axis z orthogonal to their inter-
face, as shown in Fig. 1. We consider the general case of multiple uniaxial layers, and express electric and 
magnetic fields E and H in layer n as
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where zn is the starting position of the nth layer (for the n =  0 layer, corresponding to the half space to 
the left of the stack, z0 can be chosen arbitrarily as the phase reference, but is most conveniently set to 
be z0 =  z1). Imposing the boundary conditions of continuity of the tangential components of E and H at 
a boundary = +z zn 1 results in
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where = −+L z zn n n1  is the thickness of the nth layer. This can be re-written in compact form:
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where we introduce the dynamic matrix Dn for medium n
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By applying Eq. (18) iteratively, it is possible to relate the field coefficients at the output to those at 
the input for an arbitrary stack. We emphasize that all above matrices and bases ,σ σp q  depend on kx 
and ky. The transmission matrix of the stack can then be defined as
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for which we then have
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Specific case — single uniaxial slab
A number of additional steps are required to use the transmission matrix to calculate images and point 
spread functions. For simplicity, and without loss of generality, we now consider a single anisotropic 
dielectric slab of thickness L1 in air, as shown in the schematic of Fig. 2. We relate the coefficients at the 
output boundary (point B, noting the same coefficients describe the fields for all >z z 2 through Eqs. (8) 
and (11)) to the coefficients at the input boundary (point A, noting again that the same coefficients 
describe the fields for all <z z1) via the transfer matrix T. In the absence of backward propagating waves 
for >z z 2 we have = =( ) ( )E E 0B B

2 4 , so that we may write:













=













=













.

( )

( )

( )

( )

( )

( )

( )

− −

( )

( )

( )

( )

E

E

E

E

E

E

E

E

E

E

0

0

T D D P D D

23

1
B

3
B

1
A

2
A

3
A

4
A

0
1

1 1 1
1

0

1
A

2
A

3
A

4
A

If propagation through a stack of slabs rather than a single slab is to be considered, T can simply be 
replaced by its more general form Eq. (21). Note that we have used the fact that the first and last layers 
are both air, so that D2 =  D0.

More conveniently, we wish to relate the incident field coefficients to the transmitted and reflected 
coefficients, using a 4 ×  4 scattering matrix S:
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Equations (23)–(24) can be solved simultaneously to relate the calculated elements of T with those of 
S, providing the fields reflected and transmitted by the slab for a given input. Explicit expressions for the 
general case are contained in the Supplementary Methods 1.1.

Figure 2.  Schematic of the specific case under consideration. Sources (point dipoles) at a position z = 0 
generate an image at input A (z = z1) of a single uniaxial slab of thickness L1 = z2−z1. The output fields at 
the slab output B (z = z2) are calculated as in the text. 



www.nature.com/scientificreports/

6Scientific Reports | 5:17690 | DOI: 10.1038/srep17690

Fields in each layer have so far been expressed in a four-dimensional orthogonal basis 
( , ), ( , )σ σ

^ ^k k k kp qx y x y  such that, for a given ( , )k kx y , they are composed of forward- and backward- 
propagating TE and TM modes with fields expressed as in Eq. (13). In practice, electromagnetic fields at 
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where C is a 4 ×  6 change of basis matrix depending on kx and k y and the layer, that can be determined 
by taking dot products of the different expressions with 

σ
( )p̂ n  and 

σ
( )q̂ n . In isotropic layers - as is the case 

for air at the input and output of the slab– Eqs. (9), (10), (12) lead to equality and orthogonality relations 
that can be used to express C explicitly:

C
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where CE and CH are 4 ×  3 matrices that relate electric- and magnetic- field contributions to σE , respec-
tively, and we omit the (n) superscript for the basis vectors of each layer to simplify notations. 
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where we have defined the “inverse” change of basis matrix Cinv such that

C
C

C

CE
inv and CH

inv are 3 ×  4 matrices that express how σE  coefficients contribute to the electric and mag-
netic fields, respectively, at =z z n. Equations (27) and (30) simply express Eqs. (8) and (11), and unlike 
Eq. (26) do not rely on the special cases of relations Eqs. (9) and (10), and is also valid in anisotropic 
layers.

Note that while for a given set of σE  coefficients, Cinv determines uniquely all field components in 
Cartesian coordinates, the converse is not true: arbitrary functions expressed in Cartesian coordinates 
are not necessarily a unique superposition of TE and TM modes, since not all functions of space satisfy 
Maxwell’s equations. Two arbitrary functions of space may thus be mapped to the same set of σE  coeffi-
cients through Eq. (26). However any field satisfying Maxwell’s equations will be mapped to itself through 
multiplication by CinvC. For an arbitrary field with components propagating in both positive and negative 
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z directions, it is necessary to use the complete E and H fields with the full 4 ×  6 matrix C in Eq. (26). 
Indeed, an identical E distribution determined on a single z plane can propagate in either z direction; 
the direction of propagation is then determined through the relative sign of the H components. However, 
since for use in Eq. (24) we only need E1 and E3 which are known to propagate in the positive z direction 
only, Eq. (26) can be simplified to express σE  in terms of CE and the electric field only–setting the σE  
coefficients corresponding to backward- or forward- propagation respectively to zero. This is the case 
when calculating the transmission of images generated from objects consisting of sources exclusively on 
the input side of the slab. The formalism then can also provide the reflected field back to the sources 
from the slab.

Explicitly, for fields radiating from sources exclusively at positions <z z1, combining Eqs. (24–27) the 
(Cartesian) transfer matrix then relates the transmitted field to the input field, both expressed in Cartesian 
coordinates:













=






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
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


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E

E

E

E

E

E
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B

B

B

c

A

A

A

where the ( , )k kx y -dependent transfer matrix Tc for Cartesian fields is defined as

= ( )T C QSC 30E E
c inv

with

=












.

( )

Q
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0 31

The matrix Q simply enforces the condition that fields are incoming from <z z1 and extracts the 
transmitted fields from the vector in the left hand side of Eq. (24) to the correct basis for CE

inv. It is 
important to note that the matrix Tc has no reason to be diagonal. In general the transmission of electric 
fields and magnetic fields are coupled, so that the output electric field also depends on the input magnetic 
field. It may thus be surprising that in Eq. (31) we can express the transmitted electric field solely in terms 
of the incoming electric field. To understand this it is important to recall that in Eq. (31) EA is not the 
total field on side A, but only the incoming part of the field, which is the field generated by sources at 
<z z1 calculated without reflection from the interface (i.e. calculated in free space). For such a forward 

propagating field in a non magnetic medium (µr isotropic and unity), the magnetic field is directly given 
by the electric field through Maxwell-Faraday law for a forward propagating plane wave 

µ( ) = / × ( )

~H k k E k1 0 . The forward propagating incoming field can thus be entirely described by the 
electric field only. The total electric field at the input face also includes backward waves due to reflection 
from the slab, which one can obtain from Eq. (24) from the incident field.

Application to imaging
Cartesian transfer matrix.  To analyse the effect of ordinary and extraordinary waves and the cou-
pling from Cartesian field components, we will now use an illustrative example reproducing experimen-
tal conditions of our previous publication on imaging through wire-media fibres for the high GHz and 
THz spectrum10: we consider a finite slab of highly anisotropic medium formed of Zeonex19 with length 
= .L 3 4 mm containing an array of indium wires of diameter µ=R2 10 m and pitch µ=a 50 m. This 

corresponds to the same parameters presented in Ref. 15. We consider two frequencies: before and at the 
second Fabry-Perot resonance, corresponding to =f 55 GHz and =f 58 GHz, respectively; results are 
shown in Figs.  3 and 4. Note that imaging is expected to be optimal at frequencies corresponding to 
Fabry-Perot resonances12. For imaging purposes, this medium is well described by a local anisotropic 
homogenized permittivity tensor with ε = . + . i2 3104 0 0061t  and ε = − × + × i1 10 5 10z

2 4  as 
detailed in the Supplementary Methods 1.2.

The magnitude of all components of the Cartesian transfer matrix ( , )k kT x y
c  is shown in Figs. 3a and 

4a. Note that ordinary waves only propagate for ε/ < ( ) ./
k ek R 1 52t0

1 2  so that at the scale of the 
figure the main contribution to transmission is from extraordinary waves. Good sub-diffraction imaging 
is obtained when a broad range of spatial frequencies have near-unity transmission and are in phase.

The shape of ( , )k kT x y
c  components is a consequence of the transfer function of ordinary and 

extraordinary waves, and how Cartesian field components couple to them. The former is strongly fre-
quency dependent, while the latter is not. The main difference between Figs. 3a and 4a thus comes from 
the frequency dependence of the transmission of TE and TM waves.
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Figure 3.  (a) Transfer matrix for Cartesian components of the electric field at 55 GHz just below the Fabry-
Perot Frequency. (b,c) input and output fields for dipoles sources for = ^d z  (b) and = ^d x (c). (d,e) input 
and output of the letters “THz” formed of dipoles along the same orientation as in (b,c) respectively.
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Figure 4.  (a) Transfer matrix for Cartesian components of the electric field at the Fabry-Perot frequency 
58 GHz. (b,c) input and output fields for dipoles sources for = ^d z  (b) and = ^d x (c). (d,e): input and output 
of the letters “THz” formed of dipoles along the same orientation as in (b,c) respectively.
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All transverse spatial frequencies with ( / ) + ( / ) >k k k k 1x y0
2

0
2  are evanescent in air. As a conse-

quence, high spatial frequency resonant slab modes can exist20, leading to larger than unity transmission 
in this region, as is the case for =f 55 GHz: In Fig. 3 all components of Tc have a sharp resonance ring 
due to the existence of a slab mode, which will lead to scrambling of the image. In the absence of losses, 
transmission would diverge at these spatial frequencies. This resonant ring in k-space is only complete 
for Tzz

c , with other components modulated azimuthally, appearing as pairs of two half circles, or four 
quarter circles. This azimuthal modulation is also present at the Fabry-Perot frequency in Fig.  4, and 
reflects how much Cartesian components couple with extraordinary waves: taking the example of Txx

c , 
electric field components along x can only couple to and from extraordinary waves for non-zero kx, with 
the strength of coupling given by the relevant dot products in Eqs. (26) and (27).

Figure  4 shows that, as expected, the components of Tc are relatively flat and broad functions of 
( , )k kx y  at the FP resonance =f 58 GHz, but again are modulated azimuthally by the coupling to and 
from TM waves for all Tc components with an −x  or −y  contribution (i.e. all except Tzz

c ). Fig. 4a also 
clearly shows for Txx

c  and Tyy
c  the transmission is higher within the circle of propagation of ordinary 

waves, with azimuthal dependence inverted compared to transmission outside this circle, showcasing the 
contribution of ordinary waves to the transmission.

While it comes as no surprise that best imaging will be achieved at the Fabry-Perot resonance, it is 
worth reflecting on the contributions of different field components to the final image. Clearly the best 
image would be expected if a purely z-polarized field source could be used, and the z component used 
for imaging. This however is hardly practical at THz or optical frequencies. Instead, the source field 
would most often be predominantly transverse, or even more commonly an incoherent superposition of 
all polarizations. Furthermore, most detectors at optical and THz frequencies are polarization insensitive. 
For example an object that is predominantly x-polarized imaged using polarization insensitive near field 
detectors at the output would result from the contributions of Txx

c , Txy
c  and Txz

c . As a consequence high 
spatial frequencies along the k y axis would not contribute to images. High spatial resolution would then 
only be achieved along x, with loss of resolution expected in the y direction.

Image of a dipole.  We now use the transfer matrix from the above section to calculate the output 
fields and ensuing point spread function (PSF) of a dipole in two different orientations. We first look at 
the PSF for each field components separately, as it would be measured by polarization sensitive detectors 
used in microwave and many THz systems, and then look at the PSF in intensity only, which is relevant 
for the optical spectrum, and more useful when considering incoherent light sources. We consider a 
single harmonic electric dipole at the origin. In Cartesian coordinates21 the electric field at the slab input 
A (at =z z1) is then given by

πε
( , ) =







( × ) × + ( ⋅ ) −






−











,

( )

( )
   

^ ^ ^x y k e
r r

ik
r

eE n d n n n p p1
4

[3 ] 1

32
A

ik r
ik r

0

2
3 2

where = ( , , )x y zr 1 , = /n r r , and d̂ is the unit vector describing the orientation of the dipole oscilla-
tion. The 2D-Fourier transform of the dipole field along x and y at =z z1 then serves as input field for 
Eq. (31), and the field in direct space obtained through an inverse Fourier transform of the output fields.

In all below examples λ= /z 501  and the image is calculated at the output interface. An illustrative 
comparison between the electric fields calculated using this method and a commercial finite element 
solver (COMSOL) at the output of a uniaxial slab, is included in the Supplementary Methods 1.3, vali-
dating our approach.

Dipoles aligned with z axis.  Figures 3 and 4 show the input and output field components in direct 
space of a single dipole aligned with =^ ^d z  (Figs. 3b and 4b), as well as of an object consisting of 311 
dipoles aligned with z arranged to form the letter “THz” (Figs.  3d and 4d). This is the most favorable 
case for imaging, as extraordinary waves can be coupled to in all directions through Tzz

c . Note the object 
fits within a 2 mm window, imaged at wavelengths around .3 4 mm.

As expected from the transfer functions, imaging is very good at 58 GHz with the image matching 
the input field almost perfectly. Remarkably, imaging appears to be near perfect for all field components, 
but this is misleading as the x and y components of the the output field largely come from the cross 
coupling Tzx

c  and Tzy
c  terms.

Images at 55 GHz are completely scrambled due to the excitation of the high spatial frequency reso-
nant slab mode.

Dipoles aligned with x axis.  Figures 3 and 4 show the input and output field components in direct 
space of a single dipole aligned with =^ ^d x (Figs. 3d and 4d), as well as of an object consisting of 311 
dipoles aligned with x arranged to form the letter “THz”(Figs. 3e and 4e). Again, images at 55 GHz are 
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completely scrambled due to the excitation of the slab mode. At the Fabry-Perot resonance, images are 
considerably better, and in fact appear almost as good as for z-polarized dipoles, but with a slight increase 
in the spread of the field distribution of the x field in the y direction. This is consistent with the fact that 
the x dipole can only excite extraordinary waves directly through its dominant x field for ≠k 0x , but can 
still excite extraordinary waves in all directions through its z field. If the letters “THz” are harder to read 
this is mainly because the input field due to different (coherent) x aligned dipoles cancel out in numerous 
places.

Figure 5 shows the input and output electric field intensity of the hyperbolic medium slab, for x- and  
y-polarized point dipoles at both frequencies. Only at the Fabry-Perot frequency is the PSF narrow. As 
expected from Fig. 4, z-polarized dipoles provide a circularly symmetric PSF, while the PSF of x-polarized 
dipoles is slightly wider and oval shaped.

Effects of ordinary waves.  Aside from perturbation of the sources themselves and reflection and 
excitation of high-k waves studied elsewhere5,11–15, the main causes of artefacts when imaging through a 
hyperbolic slab are the residual diffraction of the extraordinary waves for finite εz, which is negligible in 
our case, and the contribution of ordinary waves: While extraordinary waves in hyperbolic media are not 
subject to the diffraction limit, ordinary waves do diffract, which can contribute to direction-dependent 
blurriness or additional noise. To study this phenomenon, we consider the same hyperbolic medium slab 
as previously, but with several thicknesses (for which 58 GHz corresponds to higher order FP reso-
nances): the increasing propagation distance will lead to ordinary waves spreading further.

Figure  6 shows the images from the same source x aligned dipoles forming the letters “THz” as in 
Fig.  4e, through slabs of thickness .3 4 mm, .6 8 mm and .10 2 mm. For this polarization, ordinary TE 
waves are predominantly excited in the y direction, and so additional blurriness in the y direction is 
expected. However, this is barely apparent in the images for increased slab thickness. In fact the image 
used here being entirely contained within half a wavelength, does not have strong low frequency Fourier 
components. The object thus only weakly excites ordinary waves which would contribute to the 
distortion.

To back this explanation, Fig.  7 shows images through the same set of thicknesses of a scaled up 
object, several wavelengths wide (and now consisting of 28017 dipoles). The sources now do have low 
spatial frequency components exciting ordinary waves. This results in added low-spatial frequency noise 
even for the shortest propagation distance visible on the x and y components of the field, and additional 
distortion with increasing propagation distance. Note that the z field components, to which ordinary 
waves do not contribute, are unaffected by this noise, and remain invariant with propagation distance.

Diffracting ordinary waves from a point source spread with propagation and thus decay in intensity. 
However, this decay is a simple inverse square dependence. Extraordinary waves, while they do not 
spread, typically have higher absorption loss and thus stronger exponential decay with distance. Over 
long enough propagation distances, it is thus expected that relative noise due to ordinary waves increases.

Note that, since for our simulations finite Fourier transforms are used, the source and image are 
effectively periodic in x and y, with periodicity of 4.1 cm, filling up the entire xy plane. Power emitted 
by a plane source does not decay due to energy spreading when integrated over an entire plane, and so 
in our simulations, TE waves, even though they are diffracting, do not decay in power averaged over 
the unit cell over long distances. However, given the resulting periodicity is much larger than the prop-
agation distance used in our simulations, fields within the unit cell behave as the fields of an individual  
point source.

Discussion
We adapted the well known transfer matrix method to study imaging in full two dimensions through 
hyperbolic media slabs. While we have used a local model only, as is sufficient in many cases15, this can 

Figure 5.  Intensity point spread function for x- and z-polarized dipoles from Figs. 3 and 4.
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readily be extended to non-local models22 or used for metal/dielectric multilayer stacks14. Propagation 
through hyperbolic media slabs cause mixing of Cartesian field components, so that field components 
measured at the output should be interpreted with care. The intensity point spread function depends 
on the orientation of source dipoles, but not much more than the source field themselves depend on 
orientation of dipoles.

One of our main motivations for extending the transfer matrix method to full-two dimensional imag-
ing was to study the effect of ordinary waves, in particular in light of experimental results in Ref. 10. It is 
now clear that for most imaging experiments through hyperbolic media to date, objects were too small to 
effectively excite ordinary waves. Ordinary waves will start playing a role when sub-diffraction imaging 
of objects at least a few wavelengths large will be possible, requiring large scale hyperbolic media slabs or 
hyperlenses. For future devices with such wide field of view, ordinary waves will add noise to the image. 
This noise can be entirely eliminated if imaging of the z component of the field is possible, regardless of 
illumination polarization, but this is difficult to achieve at optical frequencies.

Figure 6.  Electric fields for x-polarized “THz” at 58 GHz, for different slab lengths of 3.4 mm, 6.8 mm 
and 10.2 mm. Ordinary waves barely affect the images, which remain unchanged with increasing 
propagation distance. 

Figure 7.  Electric fields for a larger image, x-polarized “THz” at 58 GHz, for different slab lengths 
of 3.4 mm, 6.8 mm and 10.2 mm. Additional noise is cause by ordinary waves, and is present for the 
transverse electric field components only. 
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While this study is limited to planar geometries, a number of conclusions drawn here directly trans-
late to the case of curved geometries and magnifying hyperlenses. To illustrate the different spread of 
ordinary and extraordinary waves in curved geometries, we calculate in Supplementary Methods 1.4 the 
point spread function in two polarizations for a cylindrical geometry, at resonance and off-resonance. 
In the case shown, imaging is also best at radial Fabry-Perot resonance, but the effect of high spatial 
frequency resonances that are so detrimental in a slab geometry is more limited. Indeed all azimuthal 
spatial frequencies lower than the diffraction limit on the wide side of hyperlenses (but sub-diffraction 
on the narrow side) couple to the far field – they are not totally internally reflected, and thus do not lead 
to strong resonances. When using curved hyperlenses to image in the far field, high spatial frequency 
resonances are thus naturally filtered out and of little consequence.

Diffracting ordinary waves will also contribute noise in magnifying hyperlenses, but as in the planar 
case, this should only become a problem if the object to be imaged is larger than a few wavelengths. 
Perfect imaging (without the noise of ordinary waves) can also be achieved in a magnifying hyperlens 
if the longitudinal (i.e. radial) components of fields can be measured at the output. However since the 
longitudinal field does not couple to propagating waves and thus has to be measured in the near field, 
this would largely defeat the purpose of hyperlenses for which imaging is done in the far field. As is the 
case for planar geometries, Cartesian field components couple differently to ordinary and extraordinary 
waves in curved geometries, in a way that depends on spatial frequency, so that linearly polarized meas-
urements need to be interpreted with care. For the same reason, separating ordinary from extraordinary 
waves in the far field cannot simply be done using linear polarizers. Our qualitative conclusions for 
curved geometries however still require support from a full quantitative investigation of point spread 
function, field component mixing, separation of ordinary and extraordinary waves etc. in curved geom-
etries. This could also be done by using transfer matrices, but in the somewhat more cumbersome basis 
of spherical waves.
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