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Incorporating Contact Network 
Structure in Cluster Randomized 
Trials
Patrick C. Staples1, Elizabeth L. Ogburn2 & Jukka-Pekka Onnela1

Whenever possible, the efficacy of a new treatment is investigated by randomly assigning some 
individuals to a treatment and others to control, and comparing the outcomes between the two 
groups. Often, when the treatment aims to slow an infectious disease, clusters of individuals are 
assigned to each treatment arm. The structure of interactions within and between clusters can 
reduce the power of the trial, i.e. the probability of correctly detecting a real treatment effect. 
We investigate the relationships among power, within-cluster structure, cross-contamination 
via between-cluster mixing, and infectivity by simulating an infectious process on a collection of 
clusters. We demonstrate that compared to simulation-based methods, current formula-based 
power calculations may be conservative for low levels of between-cluster mixing, but failing to 
account for moderate or high amounts can result in severely underpowered studies. Power also 
depends on within-cluster network structure for certain kinds of infectious spreading. Infections 
that spread opportunistically through highly connected individuals have unpredictable infectious 
breakouts, making it harder to distinguish between random variation and real treatment effects. Our 
approach can be used before conducting a trial to assess power using network information, and we 
demonstrate how empirical data can inform the extent of between-cluster mixing.

In order to determine how effective a treatment is, it is common to randomly assign test subjects to 
different treatment arms. In one arm, subjects receive the experimental treatment, and subjects in the 
other arm receive usual care or a placebo. Randomization helps to ensure that the treatment is the cause 
of any difference in outcomes between the subjects in the two treatment arms, as opposed to some 
pre-treatment characteristics of the individuals. If the treatment is effective, the probability that a trial 
will find a statistically significant difference attributed to the treatment is called the power of the trial1. 
Adequate power requires a sufficiently large number of subjects to be tested, which can be expensive or 
infeasible. Underpowered studies are not only less likely to find a true relationship if one exists, but they 
are also more likely to erroneously conclude that an effect exists when it does not2,3. In order to control 
the probability of these errors, it is important to be able to accurately assess power before conducting a 
study.

When designing a randomized trial, we may not want or be able to randomly assign individuals to 
treatment. Individuals may be members of a cluster with complex interactions, which makes it infeasible 
or unethical to assign some individuals within a cluster to treatment and others to control. For example, 
the spread of HIV from infected to uninfected individuals in a small village might be slowed by offering 
its members information about safer sexual practices. In this case, it may be difficult or unethical to 
keep treated individuals’ sex partners from sharing information or resources. We may instead choose to 
randomly select villages to participate in this regime, where villages correspond to naturally occurring 
clusters, and to compare HIV infection rates between treatment and control villages. This type of exper-
iment is called a Cluster Randomized Trial (CRT)4–7.
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The correlation in outcomes of individuals within a cluster (e.g. HIV infection statuses) is known 
to reduce the power of a trial5. This correlation is generally summarized by a single parameter, called 
the Intracluster Correlation Coefficient (ICC)4, which is the average pairwise correlation of outcomes 
within clusters. This measure assumes that the correlation in outcomes for any two individuals within 
a cluster is identical. However, the structure of relationships within a cluster can be heterogeneous, and 
power may depend on that structure, which is not captured by the ICC. Usually, this structure is either 
ignored8 or analysis is performed using methods that allow it to be left unspecified9. Furthermore, indi-
viduals are often likely to interact with others not only in the same cluster but also in other clusters. 
Cross-contamination10 or interference11 occurs when subjects’ outcomes depend not only on the treatment 
to which they are assigned, but on the treatment assignments of other subjects as well. This can reduce the 
difference in outcomes between treated and untreated clusters, thereby decreasing power12. For example, 
economic ties may exist between villages, the residents of which might then share information related 
to the treatment. In the context of infectious spread through clusters, cross-contamination would occur 
if infectious contact takes place across clusters. If the treatment succeeds in slowing the infection rate 
in the treatment cluster, mixing between clusters will decrease the difference between outcomes across 
clusters, so the power to detect a treatment effect will decrease and the probability of a false discovery 
will increase. This must be addressed either by adding more clusters to the trial or increasing cluster sizes, 
both of which could be difficult and costly. This issue is also often left unaddressed13,14.

The effect of within-cluster structure and between-cluster mixing may depend on the type of infec-
tion spreading through each cluster. For example, a highly contagious infectious disease like the flu can 
spread more efficiently through more highly connected individuals15. Other infectious diseases, such as 
a sexually transmitted disease, can only be transmitted to one person at a time, no matter how many 
partners one has. The number of individuals whom an infected person may infect at a given time is the 
person’s infectivity. This quantity likely differs from person to person, and it depends crucially on the 
transmission dynamics of the disease.

In this paper, we study, via simulation, the effect of within-cluster structure, the extent of between-cluster 
mixing, and infectivity on statistical power in CRTs. We simulate the spread of an infectious process and 
investigate how power is affected by features of the process. Specifically, we consider two infections with 
different infectivities spreading through a collection of clusters. We use a matched-pairs design, wherein 
clusters in the study are paired, and each pair has one cluster assigned to treatment one to control7. We 
model the complex within-cluster correlation structure as a network in which edges represent possible 
transmission pathways between two individuals, comparing results across three different well-known 
network models. To model one type of cross-contamination, we introduce a single parameter γ that sum-
marizes the extent of mixing between the two clusters comprising each cluster pair. This approach departs 
from standard power calculations for CRTs, in which the researcher applies a formula that determines 
the required sample size as a function of the number and size of clusters, the ICC, and the effect size16. 
Figure 1 depicts the different assumptions behind these two approaches. We show that our measure of 
mixing between clusters can have a strong effect on experimental power, or the probability of correctly 
detecting a real treatment effect. We also show that within-cluster structure can affect power for certain 
kinds of infectivity. We contrast this method to standard power calculations. We end by demonstrating 
how to assess between-cluster mixing before designing a hypothetical CRT, using a network dataset of 
inter-regional cell phone calls.

Results
Simulation of cluster randomized trials. We simulate both within-cluster structure and 
between-cluster mixing using network models. We simulate pairs of clusters with each cluster in each 
pair initially generated as a stand-alone network. We examine the Erdös-Rényi (ER)17, Barabási-Albert 
(BA)18, and stochastic blockmodel (SBM)19 random networks, and we simulate 2C clusters comprised of 
n nodes each. In order to explicitly allow for between-cluster mixing, we define a between-cluster mix-
ing parameter γ as the number of network edges between the treatment cluster and the control cluster, 
divided by the total number of edges in the cluster pair. To ensure that proportion γ of the edges are 
shared across clusters, we perform degree-preserving rewiring20 within each of the C cluster-pairs until 
proportion γ edges are shared between clusters. We then use a compartmental model to simulate the 
spread of an infection across each cluster pair21. All nodes are either susceptible (S) or infected (I), and 
nodes may only transition from S to I. The number of neighbors each node can potentially infect at any 
given time is called its infectivity. We consider both unit and degree infectivity, for which infected nodes 
may contact one or all of their neighbors at a given time, respectively. Treated and control clusters infect 
their neighbors with equal probability under the null hypothesis, and infected individuals in treatment 
clusters infect with reduced probability under the alternative hypothesis. Finally, we analyze the resulting 
trial under two different analysis scenarios, and we juxtapose our findings with a standard power calcu-
lation16. Full simulation details are found in Methods.

We begin by showing the effect of the mixing parameter γ on the infection risk ratios (see meth-
ods) between treated and untreated clusters. The means and standard deviations of simulated risk ratios 
observed under Scenario 1 are presented in Fig. 2.

For both kinds of infectivity, neither the heavy-tailed degree distribution of the BA network nor the 
within-cluster community structure of the SBM network dramatically impacts the differences between 



www.nature.com/scientificreports/

3Scientific RepoRts | 5:17581 | DOI: 10.1038/srep17581

a

b

Figure 1. A schematic comparing the Intracluster Correlation Coefficient (ICC) approach to the design 
of this study. Each panel shows a cluster pair, and each enclosure represents a cluster. Panel (a) depicts 
cluster pair outcomes (circle colors) which are correlated (gray shading) within each cluster according to 
the ICC. In contrast, Panel (b) shows specific relationships (contact network ties) among individuals both 
within and between the two clusters, and outcomes among them will depend on an infection spreading 
only through these ties. We show that modeling both contact network structure and the spreading process 
explicitly rather than modeling correlations across outcomes results in new findings about power in CRTs.

Figure 2. The log risk ratio means and standard deviations under Scenario 1. The rows correspond to 
the means (Panels (a,b)) and standard deviations of the log risk ratio (Panels (c,d)), shown on the y axis. 
The x-axis is the value of the mixing parameter γ, and each curve represents one of the three within-cluster 
network structures. The left column shows the spread of an infection in which an infected node may only 
infect one neighbor per time step (unit infectivity), whereas the right column assumes one may spread an 
infection to each of their neighbors (degree infectivity). We see that network topology has an effect on the 
variation of the log rate ratio only in the latter case.
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the proportion of infections in the treated and controlled clusters in each pair (top row) compared to 
the ER network. The differences between the risk of infections in the treated and untreated cluster pairs 
decreases as mixing increases, and reverses direction when γ >  1/2. This is expected because for this 
range of between-cluster mixing, infected individuals in the treatment cluster are more likely to contact 
members of the untreated cluster and vice versa, which is unlikely in practice but is included here for 
completeness. In almost all cases, the variation in the simulated studies’ average log risk ratio decreases 
uniformly as γ increases, which suggests that increasing the amount of mixing across communities 
results in less variation in the average rate of infections. However, the BA network is an exception. Under 
degree infectivity, when individuals can infect everyone to whom they are connected in a single time 
step, an infected node with large degree may spread its infection to each of its contacts at a single time 
point, which can cause a very fast outbreak. However, highly-connected individuals are rare, so in this 
case outbreaks are large but infrequent, increasing the variation in observed differences between treated 
and untreated clusters. This variation means that more clusters are required to estimate the average 
treatment effect with any precision. In other words, rare outbreaks make it harder to distinguish whether 
differences between the treatment arm and control arm are due to treatment or to a chance outbreak 
occurring in either arm. Therefore, under degree infectivity, the BA network results in less power than 
the SBM or ER networks, which shows that within-cluster network structure can impact the power to 
detect treatment effects in CRTs for certain kinds of infections.

For the two analysis scenarios described in Methods, we can directly estimate empirical power as the 
proportion of simulations resulting in the rejection of the null hypothesis at the α =  0.05 level under 
the alternative for a range of mixing values γ. Our results, as well as a comparison with the standard 
approach, are summarized in Fig. 3.

In all settings, power is lowest when γ ≈  1/2, with approximately the same number of edges between 
clusters as within them. Scenarios 1 and 2 (the top and bottom rows, respectively) show few differences 
from one another, which suggests that the two strategies for significance testing tend to give qualitatively 
similar results. Unit infectivity (lefthand column) shows no differences in power among network types. 
This is not the case for degree infectivity (righthand column), in which the BA network shows less power 
than the other networks, for the reasons discussed above. Finally, the gray bars indicate that when no 
mixing is present, standard power calculations are conservative for all network types we studied, and no 
sample size adjustment may be needed. However, moderate to severe between-cluster mixing can greatly 
overestimate expected power. In the case of the BA network and degree infectivity, the standard approach 
always overestimates trial power.

Figure 3. Estimated power for each scenario. The blue (thick dashed), red (solid), and green (thin dashed) 
lines represent the ER, BA, and SBM network models, respectively. The top row shows results for Scenario 
1, and the bottom row shows results for Scenario 2. The left column shows unit infectivity, and the right 
column shows degree infectivity. The horizontal gray bars represent the expected power using the standard 
approach for a range of plausible values for the ICC (see Methods for details).
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Size and number of study clusters. Our results so far have shown how power in CRTs is affected 
by between-cluster mixing, within-cluster structure, and infectivity. Next, we show how power relates 
to other trial features, namely the size and number of clusters, n and C, respectively. The results are 
qualitatively similar for Scenarios 1 and 2, and the results shown in Table 1 are for Scenario 1. Table 2 
shows results for each combination of a range of cluster sizes n =  {100, 300, 1000} and numbers  
C =  {5, 10, 20} as a 3 ×  3 grid of pairs of cells. Each cell pair is a side-by-side comparison of results for 
unit infectivity (lefthand cell) and degree infectivity (righthand cell). Each cell shows simulated results 
for within-cluster structure (columns) as well as amount of between-cluster mixing (rows). Considering 
the case of C =  10, n =  300 (the middle-most cell pair), we notice a few trends. We see that increasing 
mixing (looking down each column) decreases power in all cases. We can directly compare the two 
types of infectivity (comparing cells in the pair), and see that all the entries are similar except for the 
BA network (middle column). For BA networks, power is much lower for degree infectivity spreading 
compared to unit infectivity. This suggests that CRTs with network structure similar to BA networks can 
have substantially less power when the infection spreads in proportion to how connected each node is. 
Finally, we may compare studies of differing cluster numbers and sizes (comparing cell pairs), and see 
qualitatively similar results: in each case, more or larger clusters in the study (cell pairs further down 
or right) result in more power overall. When power is very high (bottom-right cell pair), within-cluster 
structure affects results less. Therefore, careful consideration of expected power is most important when 
trial resources are limited, which is often the case in practice.

Real-world data and the extent of mixing. Finally, we show how our mixing parameter can be 
estimated using data in the planning stages of an idealized CRT. Sometimes the entire network structure 
between individuals in a prospective trial is known beforehand, such as the sexual contact network on 
Likoma Island22. In this case, between-cluster mixing can be estimated using Equation 3. In other trials, 
perhaps only partial information is known, like the degree distribution18 and/or the proportion of ties 
between clusters. In this case, clusters can be generated that preserve partial network information such 
as degree distribution23,24, and degree-preserving rewiring can be performed until proportion γ of ties 
between clusters is observed, where this quantity is estimated from the network data, if possible.

The structure of calls between cell phones is often persistent over time25 and indicative of actual social 
relationships26. We use a network of cell phone calls http://www.pnas.org/content/104/18/7332.abstract 

Table 1.  Experimental power in our simulation framework for different sizes and numbers of 
cluster pairs, n and C, respectively, for Scenario 1. Each cell shows output for 3,000 simulations of each 
combination of n and C, all three within-cluster structures, various values of mixing parameter γ, and both 
unit and degree infectivity. The results are similar for Scenario 2.

1) For all clusters in the study:

 a)  Ascertain or conjecture within-cluster network structure and 
between-cluster mixing for clusters.

2) Repeat several times:

 a)  Simulate a collection of networks consistent with cluster 
structure and mixing properties.

 b) Propagate an infectious spread through networks.

3) Assess the empirical power of the simulation using the out-
comes from the spreading process.

Table 2.  Our simulation algorithm used to assess the effect of within-cluster structure, between-cluster 
mixing and infectivity on statistical power.
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as a proxy for a contact network, and use our definition of between-cluster mixing to estimate the 
amount of mixing between hypothetical clusters. The dataset consists of calls made between cell phones 
of a large mobile carrier within a quarter year, comprising 2,386,888 nodes (individuals) and 19,616,208 
edges. Individual phone numbers were anonymized, and we only report results for the number of indi-
viduals and calls within or between billing zip codes.

The dataset contains phone calls originating from Z =  3806 different zip codes, and we define a clus-
ter as a collection of zip codes that are spatially close to one another. Because zip codes are numerically 
assigned according to spatial location, we assume that zip codes that are numerically contiguous to each 
other are also close to each other spatially. Therefore, zip code z =  1, …, Z assigned to cluster cz =  1, …, 2C 
is

=








 ( )

c z
Z

C: 2 1z

where 2C is the total number of clusters in the trial, and ⋅⌈ ⌉ is the ceiling function. Once the number of 
clusters 2C is specified, clusters may be paired, with one cluster in each pair randomized to a hypothetical 
treatment, and the other to the control condition.

Next, we estimate mixing parameter γ for this dataset. We consider two definitions for the number of 
edges shared between individuals, one in which they are unweighted and one in which they are weighted 
by the number of calls between them. We define between-cluster mixing parameter γ in terms of these 
edges and cluster membership (see Methods). For a range of numbers of cluster pairs C, we cluster all Z 
zip codes into 2C clusters, and randomize one cluster in each pair to a hypothetical treatment, and the 
other to a control. For 200 randomizations, we calculate the between-cluster mixing parameter γ. We 
examine the relationship between γ and the number of clusters C. The mean and (2.5, 97.5) percentiles 
of these estimates as a function of the number of clusters number C are shown in Fig. 4.

Figure 4 displays a number of distinct trends. As the number of clusters increases, fewer of the total 
zip codes are included in each cluster, and the number of calls between clusters increases. This means 
that individuals are more likely to call others in zip codes geographically closer to them, which has 
been confirmed in other phone communication networks27. Between-cluster mixing unweighted by the 
number of calls (blue) results in higher estimates of γ than weighted (red), which means that when indi-
viduals call others outside their cluster, they tend to call those people less than others they call within 
their cluster. There is significant between-cluster mixing for all values of C, implying that between-cluster 
mixing would significantly decrease the power of a trial that assumes each cluster to be independent 
(γ =  0). Furthermore, as the number of clusters increases, the average cluster size decreases, and mixing 
reaches a maximum of γ =  0.45. Extrapolating from our simulation framework, power could be reduced 
dramatically in this case.

Discussion
Before conducting a trial, it is important to have an estimate of statistical power in order to assess the 
risks of failing to find true effects and of spurious results. If individuals belong to interrelated clusters, 
randomly assigning them to treatment or control may not be a palatable option, and CRTs can be used 
to test for treatment effects. Power in CRTs is known to depend on the number and size of clusters, as 
well as the amount of correlation within each cluster. However, within-cluster correlation structure is 
often measured by a single number and clusters are usually assumed to be independent of one another. 
Unfortunately, these assumptions can produce misleading estimates of power.

Figure 4. A log-linear plot displaying empirical values of mixing parameter γ. The y axis shows the 
mean and (2.5, 97.5) quantiles of these estimates. The x axis in each panel corresponds to a range of cluster 
numbers C.
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To investigate this problem, we studied the effects of complex within-cluster structure, a measure of 
between-cluster mixing strength, and infectivity on power by simulating a matched-pairs CRT for an 
infectious process. We simulated a collection of cluster pairs as a network, controlling the proportion of 
edges shared across each pair. We then simulated an SI infectious process on each cluster pair, with one 
cluster assigned to treatment and the other assigned to control. The effect of treatment in this simulation 
lowered the probability that an infected individual succeeds at infecting a susceptible neighbor. We also 
considered two types of infectivity: unit and degree.

We found that between-cluster mixing had a profound effect on statistical power, no matter what 
network or infectious process was simulated. As the number of edges shared across clusters in different 
treatment groups increased to 1/2, on average the two clusters were nearly indistinguishable, and thus 
power fell to nearly zero. This is not surprising, but most power calculations assume clusters are inde-
pendent, and this issue is usually left unaddressed. We compared these findings to the ICC approach, 
and found it will significantly overestimate expected power if the extent of between-cluster mixing is 
moderate to severe.

The effect of within-cluster structure was more nuanced. For degree infectivity, the spread of infection 
was less predictable if the network contained some highly-connected nodes, due to the variation in and 
strong effects of these hubs becoming infected. We did not observe this level of variability for networks 
without highly-connected hub nodes. We also did not observe this level of variability for unit infectivity, 
regardless of how many hubs were present in the network. Taken together, we found that for the net-
work structures we studied, within-cluster structure had a significant impact on power only when the 
infectious process exhibited degree infectivity. The effect of within-cluster structure and between-cluster 
mixing on statistical power are qualitatively similar for a range of cluster sizes and numbers, although 
(as is well known) an increase in either results in more power overall.

Our simulation framework, outlined in the pseudo-algorithm in Methods, can be used to estimate 
power before an actual trial. If partial or full network information is available, it can be used to simulate 
an infectious processes using a compartmental model, and analyze the resulting outcomes as we have 
described. We demonstrated how to estimate between-cluster mixing using a dataset composed of cell 
phone calls from a large mobile carrier, which are taken to represent a contact network. For a hypothet-
ical prospective trial on the individuals in this dataset, we defined a cluster as a group of individuals 
within a collection of numerically contiguous zip codes. We then grouped clusters into pairs, randomly 
assigned one cluster in each pair to a hypothetical treatment condition and the other to a control, and 
estimated mixing parameter γ for each simulation. We found substantial between-cluster mixing for all 
choices of cluster numbers, and mixing increased when clusters were chosen to be more numerous but 
smaller. Estimates of between-cluster mixing ranged from moderate to severe, regardless of whether the 
estimation adjusted for the frequency of calls or not.

We have shown that our simulation-based method of calculating power can differ quantitatively from 
the formula-based method (see Fig.  3). The two differ qualitatively as well. Traditional formula-based 
power calculations have been developed outside the context of network theory and consequently they 
do not take either within-cluster structure or between-cluster mixing into account. Furthermore, 
although we selected a restrictively simple simulation for clarity of demonstration, simulations for an 
actual prospective trial could include a much higher level of study-specific realistic detail, making a 
simulation-based power calculation more appropriate to the given study. The methods that we propose 
are most appropriate for studies in which the outcome is infectious, spreading through the population 
via person-to-person contacts. We leave it to subject matter experts to recognize when this condition is 
satisfied.

Our study invites several investigations and extensions. First, we have employed restrictively simple 
network models and infectious spreading process, and more nuanced generalizations are available. While 
our work shows how infectious spreading and complex structure can affect expected results in CRTs, 
more specific circumstances require extensions with more tailored network designs and infection types 
for power to be properly estimated. Second, we have focused our attention on matched-pair CRTs, and 
our framework should be extended to other CRT designs used in practice7. Third, these findings should 
be replicated in data for which both network structure and infectious spread are available.

Methods
Networks. Infectious disease dynamics have been studied extensively using deterministic ordinary 
differential equations28 as well as network simulations29. Using networks to simulate the spread of infec-
tion allows rich epidemic detail, and this added complexity facilitates exploration of the effect of cluster 
structure on power in CRTs. A brief treatment of these features using differential equations is in the 
supplement (S1).

A simple network  G consists of a set of n nodes (individuals) and a set of binary pairwise edges 
(relationships) between the nodes. This structure can be compactly expressed by a symmetric adjacency 
matrix An×n. If an edge exists between individuals i and j then Aij =  Aji =  1 and 0 otherwise. The degree of 
node i, denoted by ki, is the number of edges connecting node i to other nodes in the network. Networks 
can be used to describe complex systems like social communities, the structure of metabolic pathways, 
and the World Wide Web; many reviews of this work are available30–33.
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A random graph ensemble is a collection of all possible networks specified either by a probability 
model or a mechanistic model31. The simplest and most studied random network is the Erdös-Rényi (ER) 
model17, which assumes that each potential edge between any pair of nodes in a network occurs inde-
pendently with fixed probability. Nodes in an ER network tend to have degrees close to their shared 
expected value, while in real-world social and contact networks, the distribution of node degrees is 
typically heavy-tailed: a few nodes are very highly connected (“hubs”), but most have small degree. To 
capture degree heterogeneity, we also simulate networks from the Barabási-Albert (BA) model18,34. These 
networks are generated beginning with a small group of connected nodes and successively adding nodes 
one at a time, connecting them to the nodes in the existing network with probability proportional to the 
degree of each existing node. This mechanism has been shown to yield a power-law degree distribution18: 
P(k) ~ k−α with α =  3. This distribution is heavy-tailed, so the probability that some individuals are highly 
connected is more likely than in other network models like the ER. While it can be difficult to assess 
whether an observed network has a power-law degree distribution35, the BA model comes closer to cap-
turing the heavy-tailed degree distributions observed in social networks than the ER model. Another 
hallmark of real-world social networks is that individuals tend to cluster together into communities, or 
groups of individuals who share more edges with each other than between them36 http://www.sciencedi-
rect.com/science/article/pii/S0370157309002841. We use stochastic blockmodels (SBMs)19 to model 
within-cluster communities by assuming that each node is a member of a one block in a partition of 
blocks B comprising all nodes in the network, and that the probability of an edge between two nodes 
depends only on block membership (see supplementary material S3 for additional details). Other popu-
lar families of random networks include Exponential Random Graphs (ERGMs)37 and Small-World net-
work of Watts and Strogatz, among others38. We leave their implications for CRTs for future research. 
Network instances generated using Python’s networkx library. Each node within each cluster has the 
same expected number of edges =k 4. For Figs  2 and 3, we chose C =  20 and n =  300, because for 
γ =  0 these parameters yield empirical power within 0.8–0.9, which is a typical range used in cluster 
randomized trials.

Network mixing. In each cluster pair, one cluster is randomly assigned to treatment. The mixing 
parameter γ can be expressed in terms of the entries in the adjacency matrix, A, and the treatment 
assignment of clusters:

( )
γ

δ
=
∑ − ( , )

∑ ( )

A r r

A
:

1

2

ij ij i j

ij ij

∑ δ= − ( , ).
( )m

A r r1 1
2 3ij

ij i j

Here, = ∑ <m A: i j ij is the total number of edges in the study, ri =  1 if node i is in the treatment arm 
and ri =  0 otherwise, and δ(a, b) is equal to 1 when a =  b and 0 otherwise. This definition of between-cluster 
mixing is closely related to the concept of modularity, used extensively in network community detection 
(see supplementary material S2). If γ =  0, the two clusters share no edges with each other. If γ =  1/2, there 
are as many edges reaching across two clusters as exist within them. Finally, if γ =  1, edges are only found 
between clusters, and the cluster pair network is said to be bipartite. A schematic of network mixing is 
shown in Fig. 5.

Network rewiring. We first simulate two random networks from the same network model and with 
the same number of nodes and edges, each corresponding to a cluster in a pair of clusters. Then, we 
randomly select one edge from each cluster in the pair and remove these two edges. Finally we create 
two new edges among the four nodes such that the two edges reach across the cluster pair. This process is 
called degree-preserving rewiring20 because it preserves the degrees of all the nodes involved. The process 
is depicted in Fig.  6. We repeat the rewiring process until proportion γ of the total edges are rewired. 
The result is a single cluster pair in our simulated CRT, and the pair-generating process is repeated until 
we have generated our target number of cluster pairs.

Infectious spread. Compartmental models assume that each node in a population is in one of a few 
possible states, or compartments, and that individuals switch between these compartments according 
to some rules. Although more realistic models include more states39, we will assume for simplicity that 
nodes are in only one of two states: uninfected but susceptible (S), and infected and contagious (I). We 
assume that the network structure of each cluster pair represents the possible transmission paths from 
infected nodes to susceptible ones.

Let Iirct represent the infectious status for node i in treatment arm r =  {0, 1} and cluster pair c =  1, …, C 
at discrete time t =  1, …, Tc, with Iirct =  1 if the node is infected and 0 otherwise. We define r =  0 if node 
i is in the control arm, and r =  1 if i is in the treatment arm. Let =I I:rct irct  represent the proportion 
of infected nodes in cluster pair c at discrete time t. At the beginning of the study, 1% of individuals 
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selected at random in each cluster is infected, i.e. Irc0 =  0.01. For each time step t, each node i selects qi 
network neighbors at random, and infects each one with probability pi. Because different infectious dis-
eases have different infectivity behavior, we study both unit and degree infectivity, or qi =  1 and qi =  ki, 
respectively. We assume that the infection probability depends only on the treatment arm membership 
of each node ri, thus =p pi ri

. Treatment reduces the probability pri
 of infection. If two clusters in a pair 

have the same infection rate, the treatment has no effect and =p pr 0i
. This is the null hypothesis under 

examination in our hypothetical study. When we simulate trials under the null hypothesis we set  
p0  =  0.30 in every cluster. The alternative hypothesis holds if the treatment succeeds in reducing the 
infection rate, p1 <  p0. When we simulate under the alternative hypothesis, p0 =  0.30 and p1 =  0.25. The 
trial ends when the cumulative incidence of infection grows to 10% of the population, i.e., when the 
cluster pair infection rate 〈 〉 = .I 0 1ircT c

 for some time Tc.

Analysis. At the end of the simulation, we test whether the treatment was effective by comparing 
the number of infections between treated and control clusters according to two analysis scenarios. In 
real-world CRTs, the most efficient and robust way to compare the two groups depends on what infor-
mation about the infection can feasibly be gathered from the trial. In some trials, surveying the infectious 

a

c d

b

Figure 5. A diagram showing two clusters with various proportions of mixing. 

= 0 = 1 = 0 = 1

= 0 = 1 = 0 = 1

a b

dc

Figure 6. Degree-preserving rewiring is performed by selecting an edge within each cluster, and 
swapping them to reach across the cluster pair. The dashed gray lines represent another way the edges 
could have been rewired while still preserving degree; either rewiring is chosen with equal probability.
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status of individuals is difficult, and therefore this information is only available for the beginning and 
end time points of the trial. In others, the times to infection for each node are available. In addition to 
what information is available, the researcher must choose a statistical test according to which assump-
tions they find suitable to their study. A model-based test assumes that the data are generated according 
to a particular model, which can be more powerful than other tests if the model is true40. Alternatively, 
a permutation test41 does not make any assumptions about how the data were generated. To show how 
to conduct an analysis suited to different scenarios based on available data, we analyzed our simulated 
trial using two different sets of assumptions. In Scenario 1, we assume that outcomes are only known 
at the end of the trial, and perform a model-based test. In Scenario 2, we assume that the time to each 
infection is known, and perform a permutation test. We show that the results of the simulation are 
qualitatively similar under both scenarios. (Note that it is possible to use a permutation test for Scenario 
1 or a model-based test for Scenario 2, which would create two new analyses.) For both scenarios, a 
description of how to carry out a simulation-based power calculation for a CRT studying an infectious 
spread through networks is as follows:

Scenario 1: The log risk ratio is the logarithmic ratio of infected individuals in the treatment clusters to 
the control clusters at the end of study. For simulation m, let = = 〈 − 〉( )I I I: log log logm

I

I cT cT
0

0 1
cTc

cTc c c

0

1
 

be the difference in the number of infections between two clusters in a pair averaged over each of the C 
cluster pairs at the trial end Tc. The simulation was repeated 20,000 times under the null hypothesis and 
cutoff values .

⁎I2 5 and .
⁎I97 5 were established such that α( < < ) =.

( )
.

⁎ ⁎P I I Im2 5
0

97 5  for significance level 
α =  0.05. We repeated this process under the alternative 20,000 times, and the proportion of these trials 
with statistics ( )Im

1  more extreme than ( , ). .
⁎ ⁎I I2 5 97 5  is the simulated power or empirical power.

Scenario 2: We pool the individual infection times for the treatment arm and the control arm, and 
summarize the difference between the two arms’ infection times using an appropriate statistic (e.g. the 
logrank statistic42). The permutation test is performed by comparing the observed logrank statistic to the 
distribution of log-rank statistics when the treatment labels are permuted, or switched, for each cluster 
pair. The p-value for this analysis is the proportion of times the log-rank statistic with the observed labels 
is more extreme than the permuted log-rank statistics. Because the permutation test is computationally 
expensive, this entire process is repeated 2,000 times, and we calculate the proportion of permutation 
p-values below 0.05, which is the empirical or simulated power.

We also compare this formulation to traditional methods. From Hayes and Bennett16, the number of 
clusters required for power β in a CRT with binary outcomes is:

π π π π
π π π π= + ( + ) ×






( − )

+
( − )

+ ( + )





/( − )

( )
α β/C z z

n n
k2

1 1
42

2 0 0 1 1 2
0
2

1
2

0 1
2

To calculate power, we fix n =  300, C =  20, and α =  0.05, and solve for power β. In this formula, π0 and 
π1 are the mean proportion of outcomes within control and treated clusters, and k is the coefficient of 
variation, which is directly related to the ICC ρ6,43:

ρ
π
π

= ×
−

( )




k 1
5

where π is the overall prevalence by study end. This calculation assumes that the log risk ratio by study 
end ( )ππlog 0

1
 takes on the values observed in our simulation setting 0.135 for no between-cluster mixing 

γ =  0, and the overall prevalence is 10%, both assumed to be accurately estimated from a small pilot 
study. The value for the ICC must also be assumed beforehand or estimated in a small pilot study. To 
compare this approach with our simulation design, we assumed that the ICC took on a range of plausible 
empirical values 0.0–0.1 reported in the literature7,43,44. For more details, see supplementary material S4.

Application. For the calling dataset, we consider two definitions for an edge Aij between individuals 
i and j, belonging to clusters ci and cj respectively. The number of calls between i and j over the period 
of investigation is defined as dij. For the unweighted case, we assume an edge exists between the two 
individuals if they have called each other at least once, = ( ≥ )A d 1ij ij , and otherwise no edge exists 
between them Aij =  0. For the weighted case, we assume an edge between them may be weighted by the 
number of total calls made between them, Aij =  dij. Using both definitions, we found the degree distri-
bution of each cell phone to be heavy-tailed (see supplementary material S5).
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