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Small Sample Sizes Yield Biased 
Allometric Equations in Temperate 
Forests
L. Duncanson1,2, O. Rourke3 & R. Dubayah1

Accurate quantification of forest carbon stocks is required for constraining the global carbon cycle 
and its impacts on climate. The accuracies of forest biomass maps are inherently dependent on 
the accuracy of the field biomass estimates used to calibrate models, which are generated with 
allometric equations. Here, we provide a quantitative assessment of the sensitivity of allometric 
parameters to sample size in temperate forests, focusing on the allometric relationship between 
tree height and crown radius. We use LiDAR remote sensing to isolate between 10,000 to more than 
1,000,000 tree height and crown radius measurements per site in six U.S. forests. We find that fitted 
allometric parameters are highly sensitive to sample size, producing systematic overestimates of 
height. We extend our analysis to biomass through the application of empirical relationships from 
the literature, and show that given the small sample sizes used in common allometric equations for 
biomass, the average site-level biomass bias is ~+70% with a standard deviation of 71%, ranging 
from −4% to +193%. These findings underscore the importance of increasing the sample sizes used 
for allometric equation generation.

Global forests cover approximately 30% of the land’s surface and have been estimated to store approxi-
mately 1.03 million megatons (Mt) of carbon1. Estimates of forest carbon content are not only important 
inputs to global carbon cycle and climate models, but integral to the mitigation of climate change through 
market-based initiatives such as Reduced Emissions from Deforestation and Degradation (REDD +  )2,3. 
Much research in the field of forest carbon mapping has focused on the development of remote sensing 
approaches to map biomass; in particular examining statistical methods for bringing together field and 
satellite data that permit estimation of carbon stocks and their associated errors4–11. Considerably less 
attention has been given to the accuracies of the field-based estimates themselves12–14.

Virtually all field estimates of biomass rely on the application of allometric equations relating proper-
ties that can be measured in the field, such as stem diameter and height, to individual tree carbon stock15. 
These allometric equations are typically derived through the destructive sampling of a relatively small 
number of trees that have been measured and felled to assess their carbon stock. Equations are gener-
ated either for individual species16,17, groups of species15,18 or for geographic regions19,20. In the tropics, 
it has been demonstrated that allometric equation selection is the primary source of error in tropical 
field-based biomass estimates, and that the sample size of trees used to generate allometric equations was 
one of the primary drivers of this error12–14.

In temperate systems, allometric equations generated with small sample sizes are widely applied, with 
popular allometric equations being built with average sample sizes of 2315, 8121,22 or a few hundred23–26 
destructively sampled trees per species. The effects of these relatively small sample sizes on allometric 
equation development in temperate systems are unknown because data to test allometric parameter 
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sensitivity to sample size have been previously unavailable. However, new remote sensing methods allow 
the extraction of individual tree properties across wide areas, with large sample sizes, and thus provide 
an alternate means to assess the impact of sample size on allometric parameterization27. LiDAR remote 
sensing is now a well-established means of obtaining individual tree height and crown dimensions, not 
just for a few hundred trees, but for millions of trees across entire landscapes. This is particularly feasi-
ble in temperate forests with relatively simplistic structures and open canopies where LiDAR has been 
demonstrated to most accurately extract individual crown information27.

Allometric equations can be developed between any number of tree structural properties, not just 
related to biomass but also describing relationships such as between stem diameter and height or crown 
diameter and height28–30. In this study we focus on an analysis of the impact of sample size on the gen-
eration of allometric relationships between crown radius and tree height, because we do not have direct 
measurements of biomass with LiDAR. However, these results are important for biomass estimation in 
two ways. First, if crown radius is an appropriate proxy for stem diameter, which we assert, then these 
results have direct implications for biomass estimates that rely on diameter to height relationships14,19,20. 
Second, these results have implications for biomass estimates that are not dependent on height, but 
estimated from diameter alone, because tree structural allometric relationships have been demonstrated 
to scale in the form of power laws31–33, and thus we can translate between structural allometries to infer 
how the error on fitted parameters for any one allometric equation will potentially impact another. We 
fit parameters to allometric equations relating LiDAR-derived height and crown radius, and translate 
observed biases in fitted parameters to expected biases between stem diameter and biomass through the 
application of regionally applicable empirical scaling relationships.

Results
The Effects of Sampling on Allometric Parameters. In each of our six study sites, the relation-
ship between crown radius and tree height is highly variable (Fig. 1). We simplify these relationships as 
power laws describing the median height in a 25 cm crown-radius bin. These site-level equations (Fig. 2) 
are developed with the full sample size at each site. We then extract samples of trees from our LiDAR 
datasets, and fit power laws relating median height to crown radius bin for various sample sizes, in an 
attempt to assess the sensitivity of allometric parameters to sample size. We use two different sampling 
strategies for this analysis: random sampling and stratified sampling (see Methods). We assess the sen-
sitivity of the two power law parameters, the exponent, α , and the scalar, β , for each sampling strategy.

Random Sampling. As sample size increases, there is a consistent decrease in α  (Fig.  3), and a cor-
responding increase of β  (Fig.  4), with both values approaching an asymptote at the population value 
(represented by the vertical red lines on Figs.  4 and 5). These trends are consistent across study sites. 
Taken alone, an overestimation of α  would yield an overestimation in height for large crown radii, while 
an underestimation of β  would yield an underestimation of height.

Stratified Sampling. For our stratified sampling approach, our results are generally similar to those 
found with random sampling, suggesting that the trend of overestimating α , and underestimating β  at 
small sample sizes is not a function of sampling strategy. However, the fitted parameters converge to dif-
ferent values using stratified sampling than random sampling. In most sites, parameters approach higher 
values of α  and lower values of β . This represents a more linear relationship (higher α ) between height 
and crown radius, with a shallower slope (lower β ). Deviations from site-level parameters are generally 
larger with stratified sampling than with random sampling.

Carbon Implications. To address expected biomass implications, we use equation (7) (see Methods) 
to estimate tree biomass as a function of crown radius and our allometric parameters, α  and β . Summing 
these tree level estimates over the number of trees found in each study area, we estimate the deviation 
from site-level biomass as a function of sample size for random sampling (Table 1) and stratified sam-
pling (Table 2). From here forward, we refer to error as this observed deviation from site-level estimated 
biomass. Results vary considerably across our six study sites and between our two sampling strategies. 
However, we generally overestimate site-level biomass when using allometric equations developed from 
small sample sizes. The mean site-level overestimations are presented as a function of sample size in 
Fig. 5.

Our analysis shows that the parameterization of allometric equations varies considerably as a function 
of sample size. Our results corroborate the findings of Chave et al. (2004) and Hunter et al. (2015) but 
suggest that in some forests, the potential impact of using allometric models based on small sample sizes 
for biomass prediction extends well above Chave’s 30% error, in some cases causing overestimations of 
more than double the presumed biomass. This overestimate of biomass is caused by the under sampling 
of large trees, because of the non-linear relationships between both crown radius and height, and crown 
radius and biomass. When we only sample smaller trees, we fit more linear relationships. When extended 
over the full tree size distribution of an area, this overestimates the height and biomass of large individ-
uals. It is therefore important to sample the full tree size distribution over which allometric equations 
will be applied.
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Figure 1. The relationships between tree height and crown radius at the six study sites. The number of 
delineated crowns at each site is displayed in the top left of each figure. The blue bars represent the 10th to 
90th percentiles of heights in each crown radius bin, while the black lines represent the median tree height in 
each bin, at (a) Teakettle, (b) SERC, (c) Howland, (d) Parker Tract, (e) Hubbard Brook and (f) Gus Pearson, 
respectively.
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Figure 2. The population-level allometric equations using all delineated crowns. The black dots represent 
the median tree height in each 25 cm crown radius bin, roughly representative of the black bars in Fig. 1. 
The lines are power law curves fit to each distribution. The parameters of these curves are assumed to 
represent the true, or site-level allometry at each site.
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Figure 3. The average allometric power law exponent, α, for a given sample size from the random sampling 
approach at (a) Teakettle, (b) SERC, (c) Howland, (d) Parker Tract, (e) Hubbard Brook, and (f) Gus Pearson. 
In general, the exponent decreases as the sample size increases, approaching an asymptote representing the 
true or site-level allometry.
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Figure 4. The average allometric power law scalar, β, for a given sample size at (a) Teakettle, (b) SERC, (c) 
Howland, (d) Parker Tract, (e) Hubbard Brook and (f) Gus Pearson, using the random sampling approach. 
In general, the scalar increases as the sample size increases, approaching an asymptote representing the true 
or site-level allometry.
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There are three important trends visible in Tables  1 and 2. First, as sample size increases, errors in 
biomass estimation decrease because a higher number of large trees are sampled (Fig. 5). Importantly, 
in all sites but Gus Pearson, biomass is overestimated with small sample sizes, and this overestimation 
decreases as more trees are sampled. Second, stratified sampling typically yields lower overestimations 
than random sampling for the smallest sample size (n =  30), because it samples the size distribution 

Figure 5. The deviation from the site-level biomass estimated using the full sample size, as a function 
of sample size. Random sampling yields lower overestimations, on average, and approaches zero bias with 
a sample size of 500, while 500 samples retains an ~20% overestimate in site-level biomass for the stratified 
sampling approach.

Sample n Teakettle SERC Howland Parker
Hubbard 

Brook Gus Pearson

30 48 193 32 109 34 − 4

50 32 165 20 64 23 − 5

80 25 103 11 42 13 − 4

100 20 93 9 32 10 − 6

150 18 72 6 22 7 − 5

200 16 55 3 15 6 − 5

500 12 34 0 5 − 1 − 6

Table 1.  Percentage deviation from site-level biomass estimation as a function of sample size, using 
random sampling. Values are presented as % under or overestimation. The largest deviations at small 
sample sizes are at the SERC, Parker Tract and Teakettle Sites.

Sample n Teakettle SERC Howland Parker
Hubbard 

Brook Gus Pearson

30 143 147 40 78 16 9

50 106 122 24 67 10 6

80 92 86 20 51 8 4

100 93 68 17 36 13 6

150 88 57 13 34 7 5

200 78 47 12 31 5 − 1

500 65 29 6 15 1 − 5

Table 2.  Percentage deviation from site-level biomass estimation as a function of sample size, using 
stratified sampling. Values are presented as % under or overestimation. The overestimations in all but 
Teakettle are lower than with random sampling with a sample size of 30, but higher as sample size increases.
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in each pseudo plot, ensuring some small and some large trees are included in each sample. However, 
stratified sampling yields comparable or higher overestimations for larger sample sizes (n >  80). Third, 
there is considerable variability in overestimations between sites, and this variability also decreases with 
increasing sample size.

In general, random sampling is more accurate than stratified sampling for larger sample sizes (n >  80). 
This is because the stratified sampling skews the sampling towards the largest and smallest trees (tails of 
the distribution) allowing a more representative sample for the smallest sample sizes, but over sampling 
large and small trees as the sample size increases.

Focusing on the results from stratified sampling, as these are likely more representative of real world 
forest mensuration, we see that at a sample size of 30, consistent with the average sampling from Jenkins 
et al., (2003), there is an overestimation of site level biomass ranging from 20% at Hubbard Brook to 
193% at Teakettle. The two largest overestimations, at SERC and Teakettle, are likely because these are the 
sites with the largest trees, and biomass overestimation will increase with tree size. Therefore although 
the fitted parameters deviate more from site level values at Hubbard Brook than at Teakettle, the higher 
proportion of large trees at Teakettle yields a larger site level overestimation of biomass.

Discussion
Improving Allometric Equations. We show that allometric parameters are sensitive to sample size, 
and that parameters are systematically biased as a function of small sample sizes across six forested sites 
in the United States. Our analysis on the carbon implications of these results suggests that we may be 
systematically overestimating field carbon stocks in North America through the application of allomet-
ric equations developed with small samples sizes. This problem has been difficult to address in the past 
because of a lack of destructively sampled trees34, and consequently we have not been able to quantify 
the potential carbon implications of small sample sizes in temperate systems. Nonetheless, the magni-
tude of these biases confirms for temperate forests what others have suggested for tropical forests: that a 
much more thorough analysis of forest allometry is needed. These results may also have implications for 
allometric equations developed to estimate below-ground biomass, which are also based on small sample 
sizes of destructively sampled root systems35.

In this study we demonstrate the utility of LiDAR data for population-level analyses of forest struc-
ture. We rely on data acquired in North America where there is wide availability of high point density 
LiDAR datasets and relatively simple forest structures that allow the extraction of individual crown infor-
mation from the LiDAR data. This research would be more difficult to conduct in tropical forests, where 
complex, intertwined canopies are more problematic to delineate. However, improvements in delineation 
algorithms, wider availability in high point density LiDAR datasets, and fusion with terrestrial scanning 
LiDAR could soon enable a complimentary study focused specifically on tropical systems.

We conclude that past sample sizes have been insufficiently large to accurately parameterize allometric 
relationships in temperate forests. The same technology we use to illuminate the problem of small sample 
sizes could also be used to remedy it. The limiting factor here has always been the destructive sampling 
of trees, and we believe that destructive sampling may no longer be a requirement, given recent advances 
in LiDAR technologies, particularly highly portable ground-based LiDAR36. Highly precise estimates of 
individual tree volumes are increasingly available37. These estimates do not require the destructive sam-
pling of trees, and can be conducted in a systematic fashion in the field. As such, much higher sample 
sizes can be acquired, including samples of very large trees for which destructive sampling would be 
logistically impractical. In tandem with an increased understanding of the variability of wood densi-
ties38,39, these individual tree volume measurements could be used to produce the sample sizes necessary 
to reduce biomass bias at the individual tree level. With appropriate sampling and campaign design, a 
system could be developed to sample in situ tree volume across environmental gradients, providing a 
potential solution to outstanding problems related to forest allometry.

Methods
Study Areas. We use forested areas in the United States, selecting sites with a range of species compo-
sitions, ages, and management practices in order to determine how variable the effects of sample size are 
on allometric equations across disparate conditions. High-resolution airborne LiDAR data were acquired 
over each study site and processed through an individual tree detection algorithm27.

Teakettle Experimental Forest, Sierra Nevada, California. Teakettle is located within Sierra National 
Forest in the Sierra Nevada Mountain range in California. Dominant species include Abies concolor 
(white fir), Pinus ponderos (ponderosa pine), Abies magnifica (red fir) and Quercus kelloggii (California 
black oak). The elevation range of the site is approximately 1000 m to 2500 m above sea level, with 
aboveground biomass values averaging 200 Mg ha−1 with individual tree values up to 20 Mg tree−1. The 
forest is mature, with rocky outcrops intermixed between clusters of trees. Fire is the primary disturbance 
affecting the ecosystem.

SERC, Maryland. The Smithsonian Environmental Research Center (SERC) study site is located near 
Edgewater, Maryland, adjacent to a sub-estuary of the Chesapeake Bay. The area is generally comprised 
of two forest types: mature secondary upland forest, and lowland forests. Dominant species in the 
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upland forest include Liriodendron tulipifera (tulip poplar), Fagus (beech), several species of oak, and 
hickory, with mid canopy Acer rubrum (red maple) and Nyssa sylvatica (black tupelo) and understory 
Carpinus caroliniana (American hornbeam), Lindera benzoin (spicebush) and Asimina triloba (paw-paw). 
Dominant species in the lowland areas are Fraxinus (ash), Platanus occidentalis (sycamore), and Ulmus 
americana (American elm). Both the upland and the floodplain forests have been relatively undisturbed 
for approximately 120 years.

Parker Tract, North Carolina. The Parker Tract study site is located near Plymouth in North Carolina. 
It is largely a commercially managed loblolly pine plantation (Pinus taeda) although some stands have 
a mixed composition, containing native broadleaf species. One segment of the site is retained as natural 
forest.

Gus Pearson Natural Area, Arizona. Gus Pearson is located within the Fort Valley Experimental Forest 
in Arizona. The site is comprised primarily of ponderosa pine (Pinus ponderosa). The primary distur-
bance at this site is from thinning and burning experiments that have effectively decreased the frequency 
of small trees, shifting the tree size distribution toward larger individuals40.

Howland Research Forest, Maine. The Howland Research Forest is a conifer-dominated mixed forest 
located in central Maine. The site is dominated by Red Spruce, Eastern Hemlock, and White Cedar. The 
site is mature, with stand ages ranging from 45 to 130 years. Although it has been used for studying 
the effects of acid rain and carbon flux, management has not significantly altered the natural tree size 
distribution.

Hubbard Brook Experimental Forest, New Hampshire. Hubbard Brook is the largest study area we exam-
ined. The area is a mixed forest site located near Woodstock, New Hampshire, and is primarily domi-
nated by second-growth northern hardwoods, red spruce, and balsam fir. The site exhibits considerably 
ecological variation across topographic gradients41.

LiDAR Data. LiDAR data at four sites were acquired by NASA Goddard’s LiDAR, Hyperspectral 
and Thermal Imager (G-LiHT42). G-LiHT uses a 300 kHz multi-stop scanning-LiDAR operating at 
1550 nm with a 60° field of view and 10 cm diameter footprint. At Teakettle, LiDAR were collected by 
the University of Florida with an Optech Gemini ALSM unit, operating at 1064 nm with a 100–125 kHz 
frequency, a 25° scan angle, and 50–75% overlapping swaths. At Hubbard Brook LiDAR were collected 
by the Canaan Valley Institute, flying an Optech instrument operating at 1064 nm with a 18° scan angle, 
100 kHz frequency, and 15 cm footprint. The sites were generally flown during the snow-free, leaf-on 
season. The collection dates were in the spring of 2013 at Teakettle, June of 2012 at SERC, July of 2011 
at Parker Tract, March of 2013 at Gus Pearson, June of 2012 at Howland Forest, and fall of 2009 at 
Hubbard Brook. Sites were typically flown from an altitude of 335 m with 50% overlap in north-south 
and east-west directions to achieve a mean return density of up to 50 laser pulses m−2.

Canopy Delineation. Individual tree metrics are derived from the LiDAR point cloud through a 
multilayered canopy delineation algorithm27 that is capable of accurately extracting crown dimensions 
from both coniferous and deciduous trees, and from understory and overlapping crowns. In a previous 
study, we tested this algorithm in two of the six study areas used in this analysis, and found that it per-
formed best in open conifer forests, but even in closed-canopy deciduous forests was able to accurately 
extract ~70% of dominant crowns27. Although errors of omission and commission will always occur 
when attempting to detect every tree across a landscape, we have demonstrated that the tree size dis-
tributions gleaned from the LiDAR delineation match those found in the field datasets (Supplementary 
Figures 1 and 2). Because the algorithm has been tested in both conifer and deciduous high-biomass 
forests and can be run without requiring local parameterization, it is ideal for our study as it allows a 
comparison of tree crowns and heights across a variety of forested ecosystems. The algorithm is run on 
the Pleiades supercomputer at NASA Ames as part of the NASA Earth Exchange.

Allometric Equation Fitting. Individual tree heights and crown radii are extracted from the LiDAR 
point cloud at each study area, all of which include a very high number of delineated crowns with dif-
fering tree size distributions. To remove the influence of tree size distribution or outliers on our analysis, 
we bin our data by calculating the median tree height in 0.25 m crown radius bins. For a more thorough 
discussion of the effects of binning, refer to the Supplementary Information (SI Figs. 3 and 4). Log-log 
linear models provide the best descriptions of the relationship between stem diameter and Height32. 
Accordingly, we fit a model in the form of a power law using the full tree dataset at each study site to 
produce a set of site-level scaling parameters. Each power law model is fit using Model 2 regression on 
log transformed, binned data with ranged major axis (RMA). RMA is used because errors exist in the 
estimation of both tree heights and radii43. The relationship between height and crown radius is given by:

= β ( )αH CR 1
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where H is height, CR is crown radius, and β  and α  are the scaling parameter and fitted exponent, 
respectively. The allometric parameters that are calculated using the full population of delineated trees at 
each site are assumed to be the true scaling parameters representing the allometry at each site. We extract 
samples from the full dataset to assess the influence of sample size on the fitted parameters. From the 
literature, studies either do not report how they selected trees to fell, or report that they selected trees 
that appeared representative of the apparent size distribution. To represent both random selections of 
trees and stratified selections of trees, we use two sampling strategies in this paper: (1) random sampling, 
and (2) stratified random sampling.

Random sampling. We iteratively generate samples from our full dataset in each study area, selecting 
trees randomly with sample sizes increasing by 5, from n =  10 until the full number of trees at each study 
site. For each randomly sampled set of trees, we follow the model fitting procedure used for the site-level 
analysis, as outlined above. As random sampling produces highly variable fitted parameters, we iterate 
the random sampling 500 times for each sample size, and calculate the average parameter over the 500 
iterations to produce a single average estimate of α  (the scaling exponent) and β  (the scaling coefficient) 
for each sample size.

Stratified Random Sampling. In an attempt to simulate a more realistic approach to sampling in the 
field, we also apply a technique that samples trees that are spatially clustered. We adopt a stratified 
sampling scheme that is approximately representative of field mensuration. It should be noted, however, 
that sampling for biomass equation development varies considerably, often based on arbitrary decisions 
made in the field. In our stratified sampling approach, we simulate sampling at a pseudo plot-level. We 
randomly select locations within each study area, and extract all trees in a 30 m plot corresponding to 
each randomly selected location. We then select five trees from within each plot, taken at the 10th, 30th, 
50th, 70th, and 90th percentiles of crown radius. Sample size is increased by randomly selecting more plot 
locations, and extracting five trees from each new plot. For each sample size, the data are pooled, binned, 
and a model is fit following the methods for the site-level and random sampling analysis.

Carbon Implications of Small Sample Sizes. As discussed, we explicitly test the allometry between 
crown radius and height rather than between stem diameter and biomass. We use crown radius as a 
proxy for stem diameter, with the assumption that a) there is a linear relationship between diameter and 
crown radius, and b) that we are correctly extracting crown radii. These assumptions are satisfied with 
an analysis of the data presented in Supplementary Figures 1 and 2, which show similar size distribu-
tions from field collections of stem diameters and corresponding LiDAR collections of crown radii. In 
an attempt to translate our results to the relationship between stem diameter, D, to biomass, M, we use 
regional empirically fitted exponents from the literature (for D to M) or the Forest Inventory Analysis 
(FIA) dataset (for D to height):

∝ ( )H D 2a

∝ ( )D M 3b

∝ ( )H M 4ab

∝ ( )D CR 5

where H is height, D is stem diameter at breast height, M is aboveground tree biomass, and CR is crown 
radius. Combining these three equations allows us to translate biases in the estimation in exponents 
relating CR and H to the relationship between CR and M.

= β ( )αH CR 1

∝ β ( )αM CR 6ab

∝ β ( )α/( ) ( / )M CR 7ab ab1 1

where a and b are the regional empirically fitted exponents in equation (2) and equation (3), respec-
tively, and alpha and beta are the parameters we fit in this study, which vary with sample size. To estimate 
site-level biomass, we use equation (7) to calculate the individual tree level biomass for each 25 cm CR 
bin in each study site, and multiply by the number of trees within that bin. The biomass in all CR bins is 
summed to estimate site level biomass. First, we estimate site-level biomass with the site-level allometric 
parameters, followed by parameters corresponding to sample sizes of 30, 50, 80, 100, 150, 200, and 500 
for each sampling strategy (random and stratified). The biomass estimates corresponding to each sample 
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size are divided by the biomass estimate using the site-level allometry to give a percentage over- or 
underestimate of biomass for each site as a function of sample size. Note that the effects of binning will 
be the same on the population-level and the sampled analyses, and therefore will not affect our results.

Regional Allometric Parameters. In order to translate between our observed allometry, equation (1), 
and potential biomass implications, equation (7), we rely on the use of empirically derived regional 
allometries relating crown radius to stem diameter, equation (5), stem diameter to height, equation (2) 
and stem diameter to biomass, equation (3). We assume that crown radius scales linearly with stem 
diameter31,44, and rely on the assumption that regional allometries are applicable to our study sites. We 
take exponents for equation (2) from the freely available U.S. Forest Service’s Forest Inventory Analysis 
(FIA) dataset by extracting individual stem diameter and height measurements for the county corre-
sponding to each study location and fitting an empirical allometric equation in the form of a log-log 
linear relationship, assuming that the slope represents the exponent in equation (2) These exponents are 
presented in Table 3.

For equation (3), stem diameter to biomass, we rely on recent generalized allometric equations applica-
ble to U.S. forests18. These generalized equations are based on a meta analysis, combining species-specific 
localized equations into more generally applicable ones, based on wood specific density and species 
structural form. We select the generalized allometric equation or equations in each study site corre-
sponding to the dominant species available. Table  4 provides information pertaining to the selected 
species at each site.

For both sets of empirically fitted allometries there is a scalar and an exponent, however we only use 
the exponent in this analysis. This is because we do not focus on the precise estimation of biomass at a 
given study site, but on the over- or underestimation of biomass as a function of sample size. Therefore 
the scalars for each of the equations (2–6) combine to a single scalar in equation (7) that does not impact 
the over- or underestimations reported in Tables 1 and 2.

Site State County Scalar Exponent R2

Teakettle California Fresno − 0.07 0.785 0.80

Parker Tract North Carolina Washington 1.01 0.586 0.85

Hubbard Brook New Hampshire Grafton 0.73 0.636 0.49

Howland Forest Maine Penobscot 0.87 0.579 0.55

Gus Pearson Arizona Coconino − 0.53 0.855 0.50

SERC Maryland Anne Arundel 0.88 0.643 0.66

Table 3.  Empirically-derived regional coefficients relating stem diameter to height from the Forest 
Service’s forest inventory dataset, fit to all individual tree data for the county corresponding to each field 
site. The Exponents in this table are used as the a coefficients in equation (2).

Site Group Taxa Scalars Exponents
Average 

Exponent

Teakettle Conifer Abies <  0.35 spg 
Pinus >  0.45 spg − 2.3123, − 2.6177 0.4259, 0.4060 0.4156

Parker Tract Conifer Pinus >  0.45 spg − 3.0506 0.3779 0.3779

Hubbard Brook Conifer/Hardwood
Abies <  0.35 

Picea >  0.35 Fagae, 
deciduous Betulaceae, 

0.4–0.49

− 2.3123, − 2.1364, − 2.0705, 
− 2.2271

0.4259, 0.4304, 0.4097, 
0.4079 0.4182

Howland Forest Conifer
Picea >  0.35 spg 

Cupressaceae <  0.3 spg 
Tsuga <  0.40 spg

− 2.1364, − 1.9615, − 2.3480 0.4304, 0.4748, 0.4188 0.4401

Gus Pearson Conifer Pinus <  0.45 spg − 2.6177 0.4059 0.4059

SERC Hardwood Fagae, deciduous − 2.0705 0.4097 0.4097

Table 4.  Average allometric parameters relating stem diameter to biomass for the dominant tree species 
found at each study site. The average exponents are used as the b coefficients in equation (3). Spg is the 
specific gravity of wood for a given taxa.
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