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Exploring comprehensive within-
motif dependence of transcription 
factor binding in Escherichia coli
Chi Yang1 & Chuan-Hsiung Chang1,2

Modeling the binding of transcription factors helps to decipher the control logic behind 
transcriptional regulatory networks. Position weight matrix is commonly used to describe a binding 
motif but assumes statistical independence between positions. Although current approaches take 
within-motif dependence into account for better predictive performance, these models usually 
rely on prior knowledge and incorporate simple positional dependence to describe binding motifs. 
The inability to take complex within-motif dependence into account may result in an incomplete 
representation of binding motifs. In this work, we applied association rule mining techniques and 
constructed models to explore within-motif dependence for transcription factors in Escherichia 
coli. Our models can reflect transcription factor-DNA recognition where the explored dependence 
correlates with the binding specificity. We also propose a graphical representation of the explored 
within-motif dependence to illustrate the final binding configurations. Understanding the binding 
configurations also enables us to fine-tune or design transcription factor binding sites, and we 
attempt to present the configurations through exploring within-motif dependence.

Most transcription factors (TFs) bind to specific DNA motifs to modulate gene expression. Understanding 
TF binding deciphers the control logic behind transcriptional regulatory networks, and modeling the 
binding motifs resolves the components of the networks. A TF binding model can be used to detect novel 
binding sites, describe the sequence requirements for TF-DNA recognition, and design binding sites for 
desired genetic regulations. Position weight matrix (PWM) is a classical way to model TF binding motifs 
in a position-independent manner1,2. Although PWM usually fits the binding motif well and reasonably 
approximates the true specificity of a TF3, it cannot capture within-motif dependence which has been 
described in previous structural, biochemical and statistical studies4–7. Modeling approaches that con-
sider within-motif dependence can therefore obtain more accurate binding motif models.

There are currently two main modeling strategies that incorporate within-motif dependence to improve 
the predictive performance. In the first strategy, a binding model considers presumed dependencies: 
between adjacent positions8, among contiguous k-mers9, or between dinucleotides at any two positions10 
in the DNA sequence. The work by Zhao et al. suggested that most of the within-motif dependence 
can be captured between adjacent positions11. The second strategy discovers within-motif dependence 
through searching correlated positions. Zhou et al. applied Gibbs motif sampling to search correlated 
position pairs from binding sequences12. Although the identified correlated pairs need not be neighbors, 
they have limited the pairs to be nonoverlapping. In a later study, Sharon et al. presented a feature motif 
model which couples motif discovery and feature selection for capturing within-motif dependence13. This 
approach searches correlated position pairs and allows overlaps among pairs. Although these modeling 
approaches assume within-motif dependence, they are either limited to some presumed arrangements 
without selection (strategy 1) or limited only to selected dinucleotides (strategy 2).
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In addition to the two sequence feature-based strategies, an alternative approach is to include DNA 
shape-based features when describing a binding motif. These shape features can be derived from 
DNA sequences14 and incorporated into the binding motif modeling. These shape features encode the 
within-motif dependence implicitly to improve the performance of the model15.

In reality, we are far from obtaining the complete within-motif dependence of a TF binding. A 
TF may have base readout within more than one sub-region in a binding site, such as the previously 
resolved TF-DNA recognition structures of Ada16, HipB17 or PurR18 in E. coli. To model TF binding 
configuration for this type of interaction, both neighboring (within sub-region) and distant (between 
sub-regions) dependencies have to be considered. In addition, other dependencies may also exist for 
structural requirement such as the specific bending of DNA molecule for Fis binding19. Such dependen-
cies cannot be directly retrieved by the aforementioned approaches. Therefore, we developed a strategy 
that can explore underlying within-motif dependence and present the binding configurations in TF-DNA 
recognition.

This study aims to improve the modeling of TF binding by searching within-motif dependence and 
construct robust and concise models. We first applied association rule mining techniques to explore 
potential dependencies. The resulting dependencies can consist of more than two distant positions that 
overcome the limitation of previous methods. We then used an elastic net regularized logistic regression 
model (ELRM), a machine learning approach, to describe the TF binding motif based on the dependen-
cies. By employing feature selection, the ELRM can describe a binding motif more concisely. In addition, 
we also proposed an intuitive graphical representation of ELRM to illustrate the TF binding configura-
tions. As a proof-of-concept demonstration, we analyzed the binding motifs of 86 TFs in E. coli K12 
MG1655. The within-motif dependence discovered using our methodology can both explain the TF 
binding specificity and meet the TF-DNA recognition requirements. The core scripts of our proposed 
approach and the constructed ELRMs are publicly available at https://github.com/chiyang/ELRM.

Results
Exploration of within-motif dependences. We introduce a novel approach to explore within-mo-
tif dependence of TF binding. (Fig. 1). In this study, two kinds of features were used in conjunction to 
describe a binding motif: (1) a single-base feature to describe a nucleotide base at a position and (2) an 
association feature to describe associations among single-base features. For example, a single-base fea-
ture “C2” describes the nucleotide base C at the second position in a motif, and an association feature 
“C2:G5” describes an association between C2 and G5. By considering a string of DNA sequence as a 
collection of single-base features, we first looked for potential association features in a binding motif 
(Steps 1 to 5 in Fig. 1). We then chose relevant features by constructing a model to describe the binding 
motif (Steps 6 to 8 in Fig. 1).

For every TF binding motif, we searched association features from the E. coli genome. Specifically, 
we constructed a PWM for each motif and performed a whole-genome PWM scanning. We then used 
the sequences that had PWM scores greater than zero to search for association features. After mining 
frequent itemsets and association rules on these sequences (Steps 3 and 4 in Fig.  1), we determined 
these single-base features in each association rule as potential dependencies. The association rules were 
integrated into association features as depicted in the Step 5 of Fig. 1. Then, we trained the elastic net 
regularized logistic regression model (ELRM) with these association features. The regularized regression 
allows us to select relevant single-base and association features by removing features of zero coefficients. 
We regard the remaining relevant association features as the within-motif dependence. The advantage 
of this approach is the capacity to accommodate comprehensive and complex within-motif dependence 
without presuming positional dependencies. The final ELRMs of the 86 E. coli TFs are summarized in 
Supplementary Table S1 and the full models are presented in Supplementary Table S2.

TF binding specificity. To investigate whether the explored within-motif dependence can reflect 
TF binding specificity, we calculated the correlation between the ratio of association features in an 
ELRM and the width-normalized information content. We estimated the TF binding specificity using 
width-normalized information content as described in a previous study20. Among the 86 ELRMs, we 
observed a positive correlation of 0.73 between the ratio of association features and the information 
content (Supplementary Fig. S1). The positive correlation suggested that within-motif dependence can 
reflect TF binding specificity. Highly specific TFs tolerate little binding sequence variations, and thus 
have more dependencies to confine the binding pattern to one or a few conserved sequences. In contrast, 
low binding specificity TFs that allow many binding configurations will have few dependencies.

Conserved binding sequences are characteristics of highly specific TFs, yet small training sets may 
also produce binding sequences of limited variations. There are 25 ELRMs that contain only association 
features (Supplementary Fig. S1 and Supplementary Table S1). Among these, 18 ELRMs were trained 
from no more than six known binding sequences (Supplementary Table S1). The small training sets may 
result in overfitting and high ratio of association features. Therefore, TFs of high binding specificity are 
expected to have a high ratio of relevant association features in the constructed ELRMs, but not vice 
versa.

https://github.com/chiyang/ELRM
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Base readout in TF-DNA complexes. We further evaluated whether our explored within-motif 
dependence may reflect the TF-DNA recognition. In a TF-DNA complex, some side chains of a protein 
interact with nucleotide bases through hydrogen bonds, van der Waals interactions, or water-mediated 
interactions. The base readout usually plays roles in TF binding specificity. Based on the known TF-DNA 
binding profiles and the descriptions in structural studies (Table 1), around three-quarters of positions 
in base readout are involved with relevant association features (76.17% ±  18.55% (mean ±  SD)). On the 
other hand, around 60% of the positions in association features are base readout positions. The base 
readout ratio of association features ranged from 20% to 100%. The large variation indicates that while 
the base readout contributed considerably to within-motif dependence in a few TFs, they only make up 
a part of the within-motif dependence in many TFs as indicated by the relatively low average (60%). In 
addition to base readout, the shape of a DNA molecule also contributes to TF-DNA recognition21. To 
investigate the roles of the within-motif dependence in the TF-DNA recognition, we presented examples 
in the following section.

Participations of within-motif dependence in TF-DNA recognition. Between asymmetrical sub- 
regions. Ada is known to recognize the conserved A box (AAT, from positions 1 to 3) and B box 
(GCAA, from positions 10 to 13) of the promoters of the ada regulon by its N-terminal and C-terminal 
domains. The resolved X-ray crystal structure of N-Ada-DNA shows sequence-specific A box recognition 
while the NMR solution structure gives a better understanding of specific B box recognition16. The base 
readout around A and B boxes presented in Table 1 were based on the crystal and solution structures, 
respectively.

Our model discriminates binding motifs by nine association and six single-base features (Fig. 2(a) and 
Supplementary Table S1). Six of the nine association features are involved with known base readout in 

Figure 1. Flowchart for exploring within-motif dependence. Given a TF binding motif (composed of 
a collection of binding sequences used as the positive set), Steps 1 to 5 (red color) aimed to search for 
association features from similar sequences in a genome. In Step 6 (purple color), the training sequences 
were processed into coded single-base features through a dummy coding (see the coding table in Table 2). 
Step 6 also processed the training sequences to represent the state of association features with binary coding. 
Then, we applied an elastic net regularized logistic regression to construct the model (ELRM) and select 
relevant features simultaneously (Step 7). For interpreting the model, we extracted coefficients from the 
regressed model (Step 8). The regressed coefficients of coded single-base features can be decoded back to 
coefficients for the “non-coded” single-base features. The magnitude of the coefficients was represented by a 
color scale shown at the bottom right of this figure.
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Ada-DNA recognition, and they encompass the entire B box and the less-conserved C9. Our approach 
catches the essential features to reflect the Ada-DNA recognition despite the small positive training set.

Between repeated regions. Binding of dimeric TF complexes to DNA is a common regulatory event in 
a cell. The DNA motif consists of two unjoined repeated regions where each subunit of the homodimer 
recognizes a repeat. An example is the HipB protein that binds to DNA as a dimer (one on each strand)17. 
The HipB binding motif consists of inverted repeats of the consensus sequence TATCC. The two repeats 
are spaced by eight nucleotides. In the constructed ELRM of HipB, the model considered 25 association 
features and zero single-base features. Figure  2(b) illustrates extensive dependencies between the two 
repeated regions, and the model accurately reflects the binding characteristics of a HipB dimer.

In the HipB model, A19 is involved in 15 of the total 25 association features. The nineteenth position 
in the positive training sequences is always adenine, but guanine was used in the crystal structure17. 
Like the Ada example, only four positive training sequences were used to construct the HipB model. 
Replacing A19 with G19 greatly reduced the predicted probability from 0.9977 to 0.0198. The model 
became overfitted due to insufficient training sequences, much like the PWM of HipB described in a 
previous study22. Despite overfitting, A19 formed many valid associations with other positions based on 
the association rule mining but the significance remains to be resolved.

Within one of the two repeated regions. The cyclic AMP receptor protein (CRP) is a well-known global 
regulator and has the largest positive training set. Like HipB, CRP also recognizes a binding motif con-
sisting of two inverted repeats. The repeated sequence is TGTGA, and two repeats are spaced by six 
nucleotides23. its model contains 83 single-base features and three association features (Supplementary 
Table S1). As a global regulator, CRP has a low binding specificity and can recognize a variety of sequence 
patterns. This property can be expressed by the high number of single-base features and few association 
features. As depicted in Fig. 2(c), the inverted repeats are expressed by the high coefficients of single-base 
features, whereas all of the three association features are located solely within the repeat on the right. This 
agrees with the fact that the right repeat is more conserved than the left repeat in the positive training 
set (Fig. 2(c)), and suggests that synergistic interactions may play roles in the CRP-DNA recognition.

For intensive base readout. The binding motif of PurR contains two inverted repeats as shown in 
Fig. 2(d), where each repeat is recognized by one subunit of the PurR homodimer18. From the resolved 
X-ray structure, DNA bound by PurR forms a kink structure at the central C8 and G9 nucleotides. In 
addition, A7 and its reverse complement T10 show severe unwinding. Extensive interactions between 

TF PDB id Consensus sequence
No. of base readout in 

association features
No. of base 

readout
No. of positions in 
association features

Ada16 1zgw aATTAaagCGCAA 7 9 1

CRP23 1cgp gtGtGAcatatgTCaCactttt 3 6 2

DnaA35 1j1v tgTTATcCACA 8 8 2

FadR36 1h9t atcTGGtaCgaCCAga 4 7 7

Fis19 3jr9 GttTaaattttGagC 2 4 5

HipB17 3dnv TATCCccttaaggGGATAg 10 10 2

IHF37 1ihf cAacaaaTTGata 3 4 3

LexA38 3jso taCTGTAtgcgcaTACAGta 8 10 5

MarA39 1bl0 aTTTAGcAaaacGTGGCat 5 11 3

MetJ40 1cma aGAcgTC 3 4 3

MqsA41 3o9x ccttttAGGTTAta 5 6 5

NarL26 1je8 aATgGGTA 5 6 0

PhoB42 1gxp ctGTcataAAgttGTc 4 6 6

PurR18 1pnr acGaAAACGTTTtCgt 10 10 3

PutA43 2rbf cGGTTGCACc 6 8 1

Rob44 1d5y acaGCactgaatgtcaa 2 2 8

Table 1.  Base readout positions in TF-DNA recognition. These base readout positions were collected 
based on the binding schema and descriptions in the corresponding studies as cited in the first column. 
Both strands of DNA sequence were used during mapping. For studies that provide half-site arrangement 
for symmetrical repeats, base readout positions of the other half were inferred. In the consensus sequence 
column, base readout positions are written in upper cases; associated positions are indicated by underlines; 
bold-face characters indicate both the associated positions and base readout positions.
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Figure 2. Graphical representations of constructed ELRMs. Sub-panel (i) presents our proposed graphical 
representation of ELRMs constructed for each of the six TFs: (a) Ada, (b) HipB, (c) CRP, (d) PurR, (e) Fis, 
and (f) NarL. Sub-panel (ii) shows the sequence logo representation of the original PWM of each TF. ELRM 
contains two types of features: single-base features and association features. Single-base features are depicted 
as rectangle boxes labeled with A/T/G/C, while association features are edges that link between single-
base features (see Supplementary Methods for detailed explanations). The color of the boxes represents the 
magnitude of coefficients of the single-base features according to the color scale at the bottom of this figure. 
Both the width and color of the edges indicate the magnitude of the coefficients for association features, 
and the scale is also displayed at the bottom. For each sub-panel (i), single-base features which are part of 
the association features are shown at the top, whereas unassociated single-base features are displayed at the 
bottom.
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PurR and DNA are required for the energetic compensation of the unstacked base pairing to stabilize the 
kink structure18. The PurR-DNA recognition is also suggested to be dominated by base readout from an 
energy-based model24. Strong dependencies were expected to reflect this characteristic.

As expected, the ELRM of PurR had the highest number of association features in the 86 models. 
It contains 54 association features and four single-base features. Each association feature in the model 
constitutes of at least three single-base features (average 3.43 single-base features). This is the most com-
plex among the 86 models (Supplementary Table S1). The graphical representation of the PurR ELRM in 
Fig. 2(d) depicts the complex association features. There are 87.04% (47/54) association features involved 
in connecting the two inverted repeats. As for the within-repeat associations, there are 68.52% (37/54) 
and 50% (27/54) association features involved connections within the left and right repeats respectively. 
PurR recognizes DNA through intensive base readout, and our approach expressed this characteristic 
with the high number of complex association features.

For structural requirements. Structural requirements can be captured by association features. As 
described in previous studies15,21, dependencies between adjacent positions can describe stacking inter-
actions and short structural elements can be represented through continuous 3-mers. Here, we used Fis 
as an example to show association feature can be used to describe the underlying DNA shape. Fis is a 
well-known nucleoid-associated protein (NAP) in E. coli. Within the Fis-binding site, the most impor-
tant base readout for each subunit of the Fis dimer in the Fis-DNA complex had been characterized by 
Stella et al.19. The G1 and C15 (guanine on the opposite strand) are base contacted with each of the Fis 
homodimer (see Table 1 for the base readout positions). In addition, the participation of the three cen-
tral AT-rich base pairs (continuous 3-mers) in DNA bending was demonstrated in previous studies19,25. 
Replacement of the three AT-rich base pairs with GC-rich base pairs destabilizes the Fis-DNA complex. 
The DNA bending role of the central 3-mers is related to the minor groove widths and the stabilization 
of the complex19,25. Figure 2(e) depicts the relevant association features in the final model. The associa-
tions of G1, T8, and C15 are consistent with the result from the refined binding motifs, since the original 
motifs show higher information contents at these three positions (Fig.  2(e). The central three AT-rich 
positions are also part of the relevant association features, which suggests that the structural requirement 
for TF-DNA recognition can be expressed by the within-motif dependence.

For multiple binding configurations. In ELRM, the association features can also express multiple bind-
ing configurations. In the constructed model for NarL, the binding was summarized by 29 single-base 
features and six association features (Supplementary Table S1). As shown in Fig. 2(f), positions 7 and 8 
each has two single-base features, i.e. T7/C7 and A8/T8. These single-base features form three association 
features, T7:A8, T7:T8, and C7:A8, and the summed coefficients are 6.80, 3.48, and 3.05, respectively. 
This case illustrates that the model allows multiple binding configurations where a position may have 
more than one single-base feature and form association with other positions.

There are 11 ELRMs that have multiple binding configurations, with at most two single-base features 
at a position. These multiple binding configurations occurred at one position in seven models; two posi-
tions in the models of MetJ and NarL; three positions in the NarP model; and four positions in the MalT 
model. Overall, these multiple binding configurations occurred at eighteen of the total 1380 positions of 
the 86 TF binding motifs. Thus, the data suggest that multiple-configuration model is rare.

Using the NarL model as an example, we found that taking association features into consideration can 
improve our understanding of the binding configurations. The consensus sequence of the NarL binding is 
AATGGGTA (Fig. 2(f)), and is also used in a structural study of the NarL-DNA complex26. Interestingly, 
our model generated a more optimal sequence, TAGGGGTA, that was not present in the positive train-
ing set. The two sequences differ only at the first and third positions. A native gel shift assay suggests that 
the TAGGGGTA is more favorable for the NarL binding than the AATGGGTA under the same binding 
condition26. Our model gives similar coefficients of the first three positions, AAT and TAG, but favors 
the TAG due to a negative coefficient of the association feature, T3:T7. The small negative coefficient thus 
differentiates the subtle differences between the two binding sequences.

Discussion
Through constructing an ELRM, we interpreted the relevant association features as the within-motif 
dependence and used the dependence to describe TF binding motifs comprehensively. We used this 
approach to construct improved binding models for the 86 E. coli TFs. Without presumed dependencies 
in a binding motif, our within-motif dependence can express neighboring and distant dependencies 
composed of more than two positions. In addition, the explored within-motif dependence has a high 
correlation with the TF binding specificity and known base readout in the TF-DNA recognition. This 
suggests that the inclusion of our explored within-motif dependence in a model can improve our descrip-
tion of a binding motif.

During feature selection, the model can select relevant features from both coded single-base fea-
tures and association features. Our approach reduced the number of selected features to almost half the 
amount used by the PWM (56.02 ±  22.96%, Supplementary Table S1). This means ELRM can use concise 
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features to present a binding motif. Furthermore, the graphical representations can illustrate these fea-
tures to facilitate our understanding of TF binding.

Although ELRM can be used as a binding site prediction tool (see Supplementary Methods for the 
workflow of sequence analysis with ELRM), we focused more on retrieving intact and concise TF binding 
characteristics. Our modeling approach sacrificed a little performance for the ability of feature selection. 
Considering fewer features can avoid overfitting to some extent and would leads to a reduced perfor-
mance. The average cross-validation AUC of the 86 ELRMs is 0.9734 ±  0.0327 (mean ±  SD). We consider 
this learning performance acceptable, although the reduced performance (1.7% ±  3%) is statistically sig-
nificant compared to PWM, which has an average AUC of 0.9906 ±  0.0121 (Supplementary Table S3). 
Despite the slightly reduced performance, ELRM captures the majority of the binding characteristics of 
a TF.

This study applies a logistic regression model to learn and report a DNA sequence in a binary state of 
it being a TF binding site or not. The regression model can be adapted to make use of high-throughput 
experimental data. In addition, the TF-DNA binding may involve at least two mechanisms: through base 
readout and through the DNA shape in the binding site21. Although we showed ELRM can express the 
intense base readout or the structural requirement for TF binding, the DNA shape features may also be 
included as an additional feature to describe a binding motif15,27. In this way, we envision the model can 
directly present the TF-DNA recognition mainly through base readout, DNA shape features, or both. 
For engineering design purposes, we foresee the need for modeling detailed and wide-range TF bind-
ing configurations. Our ELRM is the first attempt to satisfy the need by exploring the comprehensive 
within-motif dependence.

Methods
TF binding motifs and E. coli genome sequence. We analyzed the binding motifs of 86 TFs in 
E. coli K12 MG1655 listed in Supplementary Table S1. These binding motifs were previously defined 
by Medina-Rivera et al.22. and were obtained from RegulonDB28. The genome sequence of E. coli K12 
MG1655 was retrieved from NCBI RefSeq database (Accession No. NC_000913.2) and was used to 
search within-motif dependence.

Whole genome PWM scanning. For each TF, we first constructed a PWM with a background model 
of the first-order Markov chain1. Then, the E. coli K12 MG1655 genome was scanned with the PWM 
(Step 1 of Fig. 1) using the MOODS tool29. Sequences were retained if their PWM scores were greater 
than zero. We considered each single-base feature in a sequence as an item, and the remaining unique 
sequences were converted into collections of items (Step 2 of Fig. 1).

Frequent itemset mining. We applied the Apriori algorithm30 to find frequently co-occurring item-
sets among the collections of single-base features. In this algorithm, a support of an itemset is defined 
as the proportion of the collections which contains the given itemset. The minimum support threshold 
was then used to partition the itemset into frequent and infrequent itemsets. Thus, a lower minimum 
support threshold will increase the amount of resulting frequent itemsets. With this step, we can find 
frequent sets of single-base features where the proportion of co-occurring itemsets is higher than the 
minimum support.

Association rule mining. The association rule mining aims to find associations in the frequent 
single-base feature sets. For each frequent itemset X, we tested any two subsets A and B to see if a positive 
association A →  B is valid. The two subsets must satisfy the conditions, A ∪  B =  X and A ∩ B =   0 . The two 
measures of an association rule A →  B, confidence and correlation are, respectively, defined as31,32

∪
( → ) =

( )

( ) ( )
A B

A B
sup A

conf
sup

1

∪
=

( ) − ( ) ( )

( )( − ( )) ( )( − ( )) ( )

A B A B

A A B sup B
corr

sup sup sup

sup 1 sup sup 1 2
AB

where sup(A) is the support value of A. The confidence, conf(A →  B), describes a conditional prob-
ability P(B|A), while the correlation, corrAB, measures the correlation strength between sets A and B 
similar to a correlation coefficient. A positive association rule A →  B is valid if conf(A →  B) ≥  mc and  
|corrAB| ≥  MCS, where mc is the minimum confidence and MCS is the minimum correlation strength. 
In addition to the positive association rules, we also searched negative association rules A →  ¬B,  
¬A →  B, and ¬A →  ¬B (see Supplementary Method for detailed information). After the positive and neg-
ative association rule mining, a set of single-base features that forms the association rules was integrated 
as an association feature (Step 5 of Fig. 1).
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Model construction. In this study, a TF binding motif can be modeled through the logistic regression 
model as,

∑ ∑ ∑β β β β β( = ) = +
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where L is the motif length, K is the number of association features, Zi is the state of coded single-base 
feature generated by a dummy coding process, Aj is the state of the association feature, and Y represents 
the state of being a binding sequence. According to the dummy coding table (Table  2), each position 
has three coded single-base features in the regression model to represent the existence status of the four 
nucleotide bases. Therefore, a motif with the length L will have 3L coded single-base features for selec-
tion. As for association features, Aj is a binary code which was generated according to the state of each 
association feature present in a training sequence. Each training sequence was processed with this coding 
step before being inputted into the regression model (Step 6 of Fig. 1).

To prepare the data for model construction, the same refined sequences used in Step 1 (Fig. 1) were 
also used as the positive set in the training model. We generated the negative set by employing the 
following three procedures. First was to draw 10X sequences randomly from the scanning results of 
column-permuted PWMs as described in a previous study22. The threshold for the PWM scores was set at 
0. Theoretically, results from a column-permuted PWM do not have the same characteristics as the orig-
inal PWM unless the binding motif has low sequence complexity. Second was to generate 10X random 
sequences with the same overall GC percentage as sequences in the positive set. Third, 10X sequences 
were drawn from sequences with PWM scores less than 0 (calculated in Step 1). In this step, we set the 
lower bound of the scores to − 2 to reduce computation time. In the end, a total of 30X non-redundant 
negative sequences and 1X positive sequences were obtained to train the regression model.

Feature selection. When performing logistic regression, we applied an elastic net regularization33,34 
to select relevant coded single-base and association features. This elastic net regularized logistic regres-
sion solves the minimization
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The elastic net regularization uses a mixture of ridge and lasso penalties. When α =  1, the regres-
sion is regularized by the lasso penalty, and the model tends to select one of the correlated features as 
a representative and discard the rest. This makes lasso a strong selection approach. When α =  0, the 
ridge regression is performed. The ridge penalty shrinks the regressed coefficients and tends to preserve 
all features without selection. We set α to be 0.5 so the resulting model preserves correlated groups of 
features without losing too many dependencies (see Supplementary Methods for detailed information). 
The λ in the minimization controls the degree of coefficient shrinkage in the regression model. This λ 
is a soft thresholding where an optimal λ can be obtained by a ten-fold cross-validation procedure. The 
optimal λ has minimum mean cross-validation error and the threshold for each constructed ELRM is 
given in Supplementary Table S1. The R package, glmnet34, was used to perform the elastic net regular-
ized logistic regression.

After minimization, coefficients of coded single-base features were decoded to interpret TF binding 
configurations. Three coefficients of the coded single-base features (Table  2), Z3(p−1)+1, Z3(p−1)+2, and 
Z3(p−1)+3, can be further decoded for the four nucleotide bases as

Zn Zn+1 Zn+2

Ap 1 0 0

Cp 0 1 0

Gp 0 0 1

Tp − 1 − 1 − 1

Table 2.  The dummy coding table. To process the dummy coding, the single-base features of Ap, Cp, Gp, 
and Tp were dummy coded to be Zn, Zn+1, and Zn+2 according to this table. The p is the position number in 
a motif and the n is defined as 3(p −  1) +  1.
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where p is the position in a motif. In this way, we can intuitively make use of the decoded coefficients of 
the single-base features to investigate the TF binding configuration. Features that have zero coefficients 
were considered as irrelevant and discarded. The remaining single-base features and association features 
were selected as relevant features to describe the binding motif.

Cross-validation. N-fold cross-validation was applied to estimate the learning performance for each 
TF. Since the number of positive sequences varied from 4 to 236 for different TFs, a leave-one-out pro-
cedure was applied for TFs with ten or less positive sequences. The remaining TFs were assessed with a 
ten-fold cross-validation procedure. To summarize the learning performance, results from the N-folds 
were combined to produce a single estimate. Varied thresholds of the model responses were used to 
calculate the sensitivities and specificities, and an area under the curve (AUC) was used to assess the 
performance.

Threshold settings. We screened 48 combinations of the three thresholds used in our approach to 
find the optimal settings for each TF (Supplementary Fig. S2). The tested threshold values were 0.1, 
0.15, and 0.2 for the minimum support; 0.5, 0.6, 0.7, and 0.8 for the minimum confidence; 0.05, 0.1, 
0.15, and 0.2 for the minimum correlation strength. We first searched for stable settings when (1) the 86 
ELRMs have at most six cross-validation AUC outliers, and (2) the worst-case AUC is above 0.8. Then 
we searched for the optimal setting that gives the smallest standard deviation of cross-validation AUC 
among the stable settings. With this, we determined the optimal thresholds for minimum support, con-
fidence and correlation strength to be 0.2, 0.6, and 0.1, respectively (Supplementary Fig. S2). The optimal 
setting also gives the maximum average AUC among all stable settings. Using the optimal setting, we 
constructed the ELRMs for the 86 E. coli TFs as shown in Supplementary Tables S1 and S2.
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