
1Scientific Reports | 5:16840 | DOI: 10.1038/srep16840

www.nature.com/scientificreports

KATZLDA: KATZ measure for 
the lncRNA-disease association 
prediction
Xing Chen1,2

Accumulating experimental studies have demonstrated important associations between alterations 
and dysregulations of lncRNAs and the development and progression of various complex human 
diseases. Developing effective computational models to integrate vast amount of heterogeneous 
biological data for the identification of potential disease-lncRNA associations has become a hot 
topic in the fields of human complex diseases and lncRNAs, which could benefit lncRNA biomarker 
detection for disease diagnosis, treatment, and prevention. Considering the limitations in previous 
computational methods, the model of KATZ measure for LncRNA-Disease Association prediction 
(KATZLDA) was developed to uncover potential lncRNA-disease associations by integrating known 
lncRNA-disease associations, lncRNA expression profiles, lncRNA functional similarity, disease 
semantic similarity, and Gaussian interaction profile kernel similarity. KATZLDA could work for 
diseases without known related lncRNAs and lncRNAs without known associated diseases. KATZLDA 
obtained reliable AUCs of 7175, 0.7886, 0.7719 in the local and global leave-one-out cross validation 
and 5-fold cross validation, respectively, significantly improving previous classical methods. 
Furthermore, case studies of colon, gastric, and renal cancer were implemented and 60% of top 10 
predictions have been confirmed by recent biological experiments. It is anticipated that KATZLDA 
could be an important resource with potential values for biomedical researches.

Sequence analysis indicates that more than 98% of the human genome doesn’t encode protein sequences 
and the proportion of non-coding sequence even significantly increases with the organism complex-
ity1–9. Furthermore, growing evidences based on biological experiments have demonstrated that plenty 
of noncoding RNAs (ncRNAs) play critical roles in various fundamental and important biological pro-
cesses10. According to transcript length, ncRNAs could be further categorized into small ncRNAs (such 
as miRNA, siRNA, piRNA) and long ncRNAs (lncRNA)11. LncRNAs are a large and important class of 
heterogeneous ncRNAs with a length more than 200 nucleotides6,12,13. Along with the rapid development 
of experimental technology and computational methods in the recent years, thousands of lncRNAs have 
been discovered in the eukaryotic organisms ranging from nematodes to humans14,15. Furthermore, the 
significant differences between lncRNAs and protein-coding genes have been revealed. For example, lncR-
NAs have lower cross-species conservation, much more tissue specificity, and relatively lower expression 
level15–17. Therefore, it is no surprise that people questioned the functionality of lncRNAs and considered 
them to be transcriptional noises in the past. However, increasing number of experimental studies in 
recent years have demonstrated many critical biological roles of lncRNAs in various important biological 
processes, such as cell differentiation, proliferation and apoptosis, transcriptional, post-transcriptional, 
and epigenetic regulation, cell cycle control, and so on7,12,14,17–22. Accumulating evidences have further 
demonstrated the important associations between lncRNAs and a broad range of complex human dis-
eases12,17,18, such as breast cancer23, hepatocellular cancer24, prostate cancer25, colon cancer26, lung can-
cer27, leukemia24, cardiovascular diseases28, and neurodegenerative disorders29. Nowadays, lncRNAs have 
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been further considered as potential biomarkers in human disease diagnosis, treatment, and prognosis 
and potential drug targets in drug discovery and disease treatment30.

Various lncRNA-related biological datasets have been generated and stored in well-known publicly 
available databases, such as NRED31, lncRNAdb20, NONCODE32, including the information of lncRNA 
sequence, expression, function, and so on. However, only a relatively limited number of lncRNAs have 
been linked with the development and progression of diseases. In the recent several years, researchers 
have begun to pay more attention to analyzing known lncRNA-disease associations, exploring their asso-
ciation mechanism, and identifying potential associations21,33,34. The benefits of lncRNA-disease asso-
ciation identification are manifold21,34. First, it could accelerate the understanding of human complex 
disease mechanism at the lncRNA level. Furthermore, more available disease-related lncRNAs could 
benefit disease biomarker detection and molecular tool design for disease diagnosis, treatment, prog-
nosis, and prevention. Finally, it could effectively promote personalized medicine and human medical 
improvement. Computational models could quantify lncRNA-disease association probability and select 
the most probable associations for biological experimental validation. In this case, the number of candi-
date lncRNAs and the time and cost of experiment could be significantly decreased. Developing effective 
computational models and tools to predict potential disease-lncRNA associations has become a hot topic 
in the fields of human complex diseases and lncRNAs.

Some computational methods have been developed to predict novel disease-lncRNA associations, 
which could be classified into the following three categories. The first category is developing machine 
learning-based models to predict potential lncRNA-disease associations based on known disease-related 
lncRNAs. For example, based on the assumption that similar diseases are often associated with lncRNAs 
which have similar functions, Chen et al. developed the method of Laplacian Regularized Least Squares 
for LncRNA–Disease Association (LRLSLDA) in the semi-supervised learning framework to effectively 
identify potential disease–lncRNA associations by integrating known associations and lncRNA expres-
sion profiles34. In 2015, Chen et al. further developed two novel lncRNA functional similarity calcula-
tion models (LNCSIM) to calculate lncRNA functional similarity by measuring the semantic similarity 
between their associated disease groups35. Then, reliable performance improvement has been obtained 
based on cross validation and case studies about colorectal cancer and lung cancer when LRLSLDA was 
combined with LNCSIM. The second category is predicting novel lncRNA-disease associations based on 
random walk by integrating known lncRNA-disease association and similarity among lncRNAs or/and 
diseases. Most of these methods can’t be applied to new diseases without known associated lncRNAs 
and/or new lncRNAs without any known associated diseases or known miRNA interaction partners. For 
example, Sun et al. proposed a novel computational framework of RWRlncD to detect potential human 
lncRNA–disease associations by implementing random walk with restart on a lncRNA functional simi-
larity network36. Recently, Zhou et al. constructed lncRNA–lncRNA crosstalk network by examining the 
significant co-occurrence of shared miRNA response elements on lncRNA transcripts, and proposed the 
model of RWRHLD to identify potential lncRNA–disease associations by implementing random walk 
with restart on the heterogeneous network37. The third category is constructing lncRNA-gene association 
network and obtaining potential lncRNA-disease associations based on known disease –related genes. 
These methods all strongly relied on disease related gene records. So these models can’t effectively predict 
potential related lncRNAs for the diseases with few or no related gene records. It has limited their wide 
applications. For example, based on hypergeometric distribution test, Liu et al.38 and Chen39 developed 
novel computational models to predict lncRNA-disease associations based on known disease-associated 
genes and miRNAs, respectively. In their studies, the relationship between lncRNAs and genes/miR-
NAs was calculated through expression profiles of lncRNAs and genes and known lncRNA-miRNA 
interactions, respectively. Li et al. presented a simple computational method to predict novel associ-
ations between lncRNAs and vascular disease based on genomic locations of vascular disease-related 
genes and candidate lncRNAs40. In addition, Yang et al. constructed a coding-non-coding gene-disease 
bipartite network based on known disease genes and disease-related ncRNAs and uncovered the hidden 
lncRNA-disease associations by implementing a global propagation algorithm on this network41.

In this study, I developed the model of KATZ measure for LncRNA-Disease Association prediction 
(KATZLDA) to predict potential lncRNA-disease associations by integrating known lncRNA-disease 
associations, lncRNA expression profiles, lncRNA functional similarity, disease semantic similarity, 
and Gaussian interaction profile kernel similarity for diseases and lncRNAs. Different from many pre-
vious computational models, KATZLDA could work for the lncRNAs without any known associated 
diseases and diseases without any known related lncRNAs. Leave-one-out cross validation (LOOCV) 
and 5-fold cross validation were implemented for KATZLDA based on known experimentally verified 
lncRNA-disease associations in the LncRNADisease database21. As a result, KATZLDA obtained reliable 
AUCs of 7175, 0.7886, 0.7719 in the local and global leave-one-out cross validation and 5-fold cross 
validation, respectively, significantly improving previous classical methods. Furthermore, case studies 
of colon cancer, gastric cancer, and renal cancer were implemented based on the prediction results of 
KATZLDA and 60% of top 10 predictions for these three important diseases have been confirmed by 
recent biological experiments. Both cross validation and case studies fully demonstrated the performance 
improvement over previous methods and potential value for disease-lncRNA association identification 
and lncRNA biomarker detection for human disease diagnosis, treatment, prognosis, and prevention.
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Results
Model design.  KATZLDA was developed to predict potential disease-related lncRNAs by measuring 
the importance of candidate nodes relative to given seed nodes and identifying nodes similar to seed 
nodes (motivated by literature42,43, see Fig. 1). In the context of lncRNA-disease association prediction, 
KATZLDA computes the similarity scores between candidate lncRNAs and investigated diseases by inte-
grating walks of different lengths between corresponding lncRNA and disease nodes (See the Method 
section for the detail of KATZLDA) in the heterogeneous network consisting of known disease-ln-
cRNA association network, disease similarity network, and lncRNA similarity network. The novelty of 
KATZLDA could be largely attributed to the combination of the following several factors. Firstly, various 
types of biological datasets were integrated to implement the prediction, such as disease semantic sim-
ilarity, lncRNA expression similarity, and lncRNA functional similarity (See the Method section for the 
detail of datasets used in this paper). New diseases (diseases without any known related lncRNAs) and 
lncRNAs (lncRNAs without any known associated diseases) are discovered each year. However, it is not 
clear whether newly discovered diseases would be correlated with some lncRNAs or uncorrelated with 
any lncRNAs. For these new diseases, KATZLDA could be used to quantify lncRNA-disease association 
probability and provide the potential lncRNA-disease pairs with higher association probability for bio-
logical experimental validation. If new disease is indeed related with some lncRNAs, KATZLDA could 
predict its potential related lncRNAs. The same conclusion is also true for newly discovered lncRNAs. 
Therefore, KATZLDA could work for both new diseases and lncRNAs. Finally, KATZLDA is a global 
method, which could reconstruct potential lncRNA-disease associations for all the diseases simultane-
ously. Therefore, KATZLDA represents an important and effective computational tool for biomedical 
research. Here, 293 distinct experimentally confirmed lncRNA–disease associations download from the 
LncRNADisease database were used as gold standard dataset in the cross validation for model evaluation 
and training dataset in the potential disease-lncRNA association prediction, respectively.

Performance evaluation.  Global and local LOOCV were implemented based on known experimen-
tally verified lncRNA-disease associations in the lncRNADisease database to evaluate the performance 
of KATZLDA. When LOOCV was implemented, each known disease-lncRNA association was left out 
in turn as test sample and other known disease-lncRNA associations were regarded as training samples 
for model learning. The only difference between global and local LOOCV is the selection of candidate 
samples resulting from whether all the diseases were investigated simultaneously. For the global LOOCV, 
all the disease-lncRNA pairs without known relevance evidences would be considered as candidate sam-
ples. However, for the local LOOCV, attention is only paid to the disease in the test sample. Only all 

Figure 1.  Flowchart of KATZLDA, demonstrating the basic ideas of adopting kATZ measure for 
lncRNA-disease association prediction. 
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the lncRNAs without known associations with this disease would be regarded as candidate samples. 
How well the left-out test sample was ranked relative to candidate samples would be further evaluated. 
If the rank of test sample exceeds the given threshold, then the model was considered to implement a 
successful prediction. For the different thresholds, corresponding true positive rates (TPR, sensitivity) 
and false positive rates (FPR, 1-specificity) could be further obtained. Here, Sensitivity is the percentage 
of the test samples with the rank higher than the given threshold and specificity is the percentage of 
samples with the rank below this threshold. Therefore, Receiver-operating characteristics (ROC) curve 
could be drawn, which plots TPR versus FPR at different thresholds. Area under ROC curve (AUC) was 
calculated to evaluate the prediction performance of KATZLDA. AUC =  1 indicates perfect performance 
and AUC =  0.5 indicates random performance.

KATZLD was compared with the following three the-state-of-art computational models in the frame-
work of LOOCV: LRLSLDA34, RWRlncD36, and NRWRH44. LRLSLDA could reconstruct the missing 
associations for all the diseases simultaneously. Therefore, both global and local LOOCV could be 
implemented for LRLSLDA. However, global LOOCV can’t be implemented for RWRlncD and NRWRH 
because they only predict associated lncRNAs for the given disease. As a result, KATZLDA achieved 
AUCs of 0.7886 and 0.7175 for the global and local LOOCV, respectively (see Fig. 2). The performance 
of KATZLDA significantly improved all the previous classical models in the framework of both global 
and local LOOCV. LRLSLDA and RWRlncD can’t work for diseases without any known associated lncR-
NAs. Furthermore, RWRlncD and NRWRH can’t uncover the missing associations for all the diseases 
simultaneously. Therefore, except for significant improvement in the term of LOOCV, KATZLDA could 
effectively overcome these important limitations in the previous models.

Furthermore, 5-fold cross validation was implemented for KATZLDA. In the known lncRNA-disease 
association dataset, there were only about 1.75 known related lncRNAs for each disease and 2.48 known 
associated diseases for each lncRNA on average. Therefore, 5-fold cross validation was implemented 
based on all the known lncRNA-disease associations. All the known associations were randomly divided 
into 5-folds, i.e. 80% of the known associations were used as training samples for model learning, and 
the remaining 20% were used as test samples for model evaluation. All the disease-lncRNA pairs without 
known association evidences would be regarded as candidate samples.

As mentioned above, RWRlncD and NRWRH only could predict associated lncRNAs for the given 
disease and couldn’t infer all the missing associations for all the diseases simultaneously. Therefore, 
5-fold cross validation couldn’t be implemented for these two computational models. Here, the compar-
ison between KATZLDA and LRLSLDA based on 5-fold cross validation was implemented to further 

Figure 2.   Performance comparisons between KATZLD and three the-state-of-art disease-lncRNA 
association prediction models (LRLSLDA, RWRlncD, and NRWRH) in terms of ROC curve and AUC based 
on LOOCV. As a result, KATZLDA achieved AUCs of 0.7886 and 0.7175 for the global and local LOOCV, 
respectively, which significantly improved all the previous classical models and effectively demonstrated its 
reliable predictive ability
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demonstrate the predictive ability of KATZLDA. To minimize the influence caused by sample division, 
the performance was evaluated under 100 different random divisions of known lncRNA-disease associa-
tions. ROC curves were drawn and AUCs were calculated for all the 100 experiments in the similar way 
to LOOCV, respectively. As a result, the mean and the standard deviation of AUCs for KATZLDA and 
LRLSLDA were 0.7719 + /– 0.0084 and 0.7295 + /– 0.0089, respectively. In conclusion, KATZLDA has 
demonstrated significant performance improvements over previous computational models in the evalu-
ation framework of local LOOCV, global LOOCV, and 5-fold cross validation, respectively.

Case studies.  In order to further evaluate the predictive performance of KATZLDA, KATZLDA was 
applied to three kinds of important cancers for potential associated lncRNA prediction by regarding all 
the known disease-lncRNA associations as training samples for model learning. Prediction results were 
verified based on the recent updates in the LncRNADisease database and recently published experi-
mental literatures. Validating prediction results in this framework for the model evaluation has been 
frequently adopted for previous computational models of disease related lncRNAs prediction34–38,41. 
Almost all the previous computational models reviewed in the Introduction section have been evaluated 
based on this framework. Furthermore, performance comparison between KATZLDA and LRLSLDA 
was implemented based on newly updated disease-lncRNA associations in the LncRNADisease database. 
All the updated associations for these three kinds of cancers have been checked and all the corresponding 
ranking results have been listed in Table 1.

Colon cancer is one of the most common malignant tumors worldwide and a great threat to public 
health45, even with the disease-specific mortality rate of nearly 33% in the developed world46. In China, 
the prevalence rate of colon cancer has increased dramatically in recent years due to the changes of 
human lifestyle45. Biological experiments have discovered some important association between the devel-
opment and progression of colon cancer and mutations and dysregulations of lncRNAs35. KATZLDA was 
implemented to predict potential colon cancer-related lncRNAs. As a result, seven out of top ten poten-
tial related lncRNAs have been validated by the updates of lncRNADisease database21, MNDR database47 
and recent biological experiments literature48. For example, the association between colon cancer and 
MALAT1, HOTAIR, UCA1, KCNQ10T1, and CRNDE (ranked 2nd, 4th, 6th, 7th, 9th in the predic-
tion results, respectively) were validated by lncRNADisease database or MNDR database. Furthermore, 
according to The Cancer Network Galaxy (http://tcng.hgc.jp/index.html?t= gene&id= 100048912), 
CDKN2B-AS1, 1st in the prediction results, has been included in many colon cancer-related networks 
constructed based on the expression data of primary colorectal cancers. Furthermore, real time PCR has 

Disease lncRNA KATZLDA LRLSLDA

Colon cancer MALAT1 2 3

Colon cancer HOTAIR 4 15

Colon cancer KCNQ1OT1 7 6

Colon cancer CRNDE 9 32

Colon cancer LSINCT5 85 115

Gastric cancer H19 1 1

Gastric cancer CDKN2B-AS1 2 2

Gastric cancer MEG3 3 4

Gastric cancer PVT1 4 3

Gastric cancer HOTAIR 7 18

Gastric cancer UCA1 11 16

Gastric cancer LSINCT5 107 116

Gastric cancer SPRY4-IT1 109 100

Renal cancer H19 1 1

Renal cancer MEG3 3 4

Renal cancer PVT1 4 3

Renal cancer MALAT1 6 9

Renal cancer GAS5 62 63

Renal cancer KCNQ1OT1 71 111

Average ranking 26.21 32.74

Table 1.   Performance comparison between KATZLDA and LRLSLDA based on the rankings of 
newly discovered lncRNAs associated with Colon, Gastric, and Renal cancer, which were updated in 
LncRNADisease database.

http://tcng.hgc.jp/index.html?t=gene&id=100048912
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indicated the expression level of PVT1 (3rd in the prediction results) in colon cancer tissues was higher 
than normal tissues and PVT1 was functionally correlated with the proliferation and invasion of colon 
cancer cells46,48. Therefore, it has been considered as a new oncogene in colon cancer tissues and an 
independent risk biomarker for overall survival of colon cancer patients46,48.

Gastric cancer is the second leading cause of cancer-related death and the fourth most common can-
cer worldwide49. Therefore, it is imperative to identify novel molecules for early diagnosis, prognosis, and 
treatment of gastric cancer. Accumulating evidences have demonstrated that lncRNAs have played criti-
cal roles in the de velopment and progression of gastric cancers50. KATZLDA was further implemented to 
identify lncRNAs potentially associated with gastric cancer. As a result, six out of top ten predicted lncR-
NAs have been validated by the updates of lncRNADisease database and recent biological experiment 
literatures51. H19, CDKN2B-AS1, MEG3, PVT1, and HOTAIR have been validated by lncRNADisease 
database, which was ranked 1st, 2nd, 3rd, 4th, and 7th in the prediction results, respectively. For example, 
both microarray and qRT-PCR have indicated that H19 was the most upregulated lncRNA among 135 
differentially expressed lncRNAs in gastric cancer tissues relative to adjacent normal gastric mucosa49. In 
gastric cancer tissues, HOTAIR was also confirmed to exhibit abnormally high expression level relative 
to adjacent normal tissues52. The association between MALAT1 (5th in the prediction results) and gastric 
cancer has also been confirmed by experimental observations that MALAT1 was frequently upregulated 
in gastric cancer cell lines and could induce gastric cancer cell proliferation51.

Among the urinary system tumors, renal cancer has the third highest incidence, with more than 
250,000 new cases diagnosed each year worldwide53. Nowadays, biological experiments have further 
discovered the associations between the development and progression of renal cancer and the mutations 
and dysregulations of some lncRNAs53. KATZLDA was applied to renal cancer for potentially related 
lncRNA prediction. As a result, five out of top ten predicted renal cancer-related lncRNAs have been 
validated by the update of lncRNADisease database and recent biological experiment literature reports. 
For example, H19, MEG3, PVT1, and MALAT1, ranked the 1st, 3rd, 4th, 6th in the prediction results, 
were validated by lncRNADisease database. Another confirmed lncRNA is UCA1, which was ranked 
the 8th in the prediction results. Biological experiments have shown that expression level of UCA1 
in renal cancer tissue was significantly higher than normal tissues (http://www.cnki.com.cn/Article/
CJFDTotal-ZLYD201507007.htm).

In addition, performance comparisons between KATZLDA and LRLSLDA were implemented based 
on the rankings of lncRNAs associated with colon, gastric, and renal cancer according to the updates of 
LncRNADisease database after gold-standard associations in this paper were downloaded (See Table 1). 
After getting rid of duplicate associations with different evidences and lncRNA-disease associations 
involved with lncRNAs which were not investigated in this paper, there were 19 distinct experimentally 
confirmed lncRNA–disease associations about these three important diseases. Observed results further 
indicated KATZLDA has more effective ability of inferring potential lncRNA-disease associations than 
LRLSLDA.

Discussions
As valuable complements to experimental studies, computational models are in pressing need to effec-
tively identify potential disease-related lncRNAs and lncRNA signature for disease diagnosis, therapeu-
tic effect prediction, and treatment evaluation, considering the limitations of experimental methods 
and the generation of vast amount of biological datasets. In this article, KATZLDA was developed to 
predict potential lncRNA-disease associations on a large scale by integrating known lncRNA-disease 
associations, lncRNA expression profiles, lncRNA functional similarity, disease semantic similarity, and 
Gaussian interaction profile kernel similarity for diseases and lncRNAs to measure the importance of 
candidate lncRNAs relative to known disease-related lncRNAs. KATZLDA could be applied to new 
diseases and lncRNAs without any known associations. In order to validate reliable prediction perfor-
mance of KATZLDA and demonstrate its advantage over previous classical models, local LOOCV, global 
LOOCV, and 5-fold cross validation were implemented based on known lncRNA-disease associations. 
Furthermore, case studies of colon cancer, gastric cancer, and renal cancer were implemented and 18 
potential associations in the top 10 predictions for these three important diseases have been confirmed 
by recent experimental results. In the future, it is anticipated that KATZLDA could play important roles 
in potential lncRNA-disease association identification and disease biomarker detection.

Some limitations exist in the current version of KATZLDA. Firstly, although KATZLDA has signif-
icantly improved previous methods, its performance is still not very satisfactory, especially in the local 
LOOCV. Further data integration would benefit the improvement of predictive ability. For example, 
disease phenotypic similarity, known disease-genes/miRNAs associations, and various lncRNA-related 
interactions could be introduced into this model. Meanwhile, it is also very important to develop more 
effective similarity integration method. Furthermore, since Gaussian interaction profile kernel simi-
larity and lncRNA functional similarity was calculated based on known lncRNA-disease associations, 
miRNA-disease associations, and lncRNA-miRNA interactions, KATZLDA may cause the bias to dis-
eases with more known related lncRNAs and lncRNAs with more known associated diseases or/and more 
known miRNA interaction partners. Data integration would also benefit the decrease of the prediction 
bias. Thirdly, how to reasonably select nonnegative coefficients to differentiate the contribution from the 
different walks with different lengths is still not solved well. Finally, the new era of personalized medicine 

http://www.cnki.com.cn/Article/CJFDTotal-ZLYD201507007.htm
http://www.cnki.com.cn/Article/CJFDTotal-ZLYD201507007.htm
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has dawned, so it is very important to design different models and different lncRNA biomarkers for 
different patients54–56.

Methods
LncRNA-disease associations.  Known lncRNA-disease associations were downloaded from the 
LncRNADisease database in October, 201221. After getting rid of duplicate associations with different 
evidences, there were 293 distinct experimentally confirmed lncRNA–disease associations about 118 
lncRNAs and 167 diseases (see Supplementary Table 1). In order to use new associations added into this 
database after October, 2012 for the validation of potential lncRNA-disease associations predicted by 
KATZLDA, the latest version lncRNA-disease association dataset in the LncRNADisease database was 
not used as golden-standard dataset in this paper. Variable nl and nd represents the number of lncRNAs 
and diseases, respectively. Furthermore, matrix A is the adjacency matrix of lncRNA–disease association 
network. If lncRNA l(i) is related to the disease d(j), A(i,j) is 1, otherwise 0.

Disease semantic similarity.  Furthermore, disease semantic similarity was calculated according to 
newly developed methods of constructing large-scale lncRNA functional similarity network35. Disease 
semantic similarity has been widely applied to identify disease-related ncRNAs and its effective perfor-
mance has been fully demonstrated in plenty of previous studies35,39,57,58.

Disease semantic similarity would be calculated based on disease MeSH descriptors and their cor-
responding direct acyclic graphs (DAGs). Disease A can be described as DAG(A) =  (D(A),E(A)), where 
D(A) is composed of the nodes of this disease itself and its ancestor diseases and E(A) consists of all the 
direct edges from parent nodes to child nodes. In the traditional disease semantic similarity calculation 
model35, the disease terms in the same layer would have the same contribution to the semantic value of 
disease A. However, considering the fact that two diseases in the same layer of DAG(A) may appear in 
the different numbers of disease DAGs, it is less accurate to assign the same contribution value to them. 
Based on the assumption that a more specific disease should have a greater contribution to the semantic 
value of disease A, the contribution of disease term t in DAG(A) was defined as follows:

( ) = − / ( )C t log the number of DAGs including t the number of diseases[ ] 1A

Therefore, the semantic value of disease A was obtained by summing all the contributions from ances-
tor diseases and disease A itself as follows.

∑( ) = ( )
( )∈ ( )

C A C t
2t DAG A

A

Furthermore, disease semantic similarity between disease A and B could be defined as follows by 
paying attention to the nodes shared by their corresponding disease DAGs:

( , ) =
∑ ( ( ) + ( ))

( ) + ( ) ( )
∩∈ ( ) ( )

SS A B
C t C t

C A C B 3
t D A D B A B

In this way, disease semantic similarity matrix SS could be constructed, where the entity SS(i, j) in 
row i column j is the disease semantic similarity between disease d(i) and d(j).

LncRNA expression similarity.  Considering the fact that comprehensive lncRNA expression data 
has been unavailable till now and long intergenic non-coding RNA (lincRNA) occupies a large part of the 
whole lncRNA set, lincRNA expression profiles were downloaded from UCSC Genome Bioinformatics 
(http://genome.ucsc.edu/) in October, 2012, which included 21626 lincRNAs’ expression profiles across 
22 human tissues or cell types (Supplementary Table 2). Then, lincRNA expression similarity was defined 
by calculating the Spearman correlation coefficient between the expression profiles of each lincRNA pair. 
Matrix ES represents the lncRNA expression similarity matrix, where ES(i, j) is the expression similarity 
between lncRNA l(i) and l(j) if they are both lincRNA, otherwise 0.

LncRNA functional similarity.  In the previous study, based on the assumption that lncRNAs with 
similar functions tend to interact with similar miRNAs and similar miNAs tend to be associated with 
similar diseases, the model of LFSCM was developed to calculate lncRNA functional similarity by inte-
grating disease semantic similarity, miRNA-disease associations, and lncRNA-miRNA interactions39. 
Here, lncRNA functional similarity results in that study was introduced into the current study. Therefore, 
lncRNA functional similarity matrix FS could be obtained, where the entity FS(i,j) in row i column j is 
the functional similarity between lncRNA l(i) and l(j) according to the similarity calculation model of 
LFSCM.

Gaussian interaction profile kernel similarity for diseases and lncRNAs.  Based on the topology 
information of known lncRNA–disease association network and the assumption that similar diseases 
tend to show a similar interaction and non-interaction pattern with the lncRNAs, Gaussian interaction 

http://genome.ucsc.edu/
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profile kernel similarity could be constructed for diseases34,59. Firstly, the interaction profile IP (d(i)) of 
disease d(i) was defined as the ith column of the adjacency matrix A, which was a binary vector encod-
ing the presence or absence of the known associations between disease d(i) and each lncRNA. Then, the 
Gaussian interaction profile kernel similarity between disease d(i) and d(j) was defined based on their 
interaction profiles as follows.

γ( ( ), ( )) = (− ( ( )) − ( ( )) ) ( )KD d i d j IP d i IP d jexp 4d
2

∑γ γ= ′ /





( ( ))



 ( )=

IP d i
5

d d
i

nd

1

2

Here, the parameter γ d controlled the kernel bandwidth, which was obtained by dividing a new band-
width parameter γ ′d by the average number of associations with lncRNAs per disease. Therefore, disease 
Gaussian interaction profile kernel similarity matrix KD could be obtained, where the entity KD(i,j) is 
the Gaussian interaction profile kernel similarity between disease d(i) and d(j).

LncRNA Gaussian interaction profile kernel similarity matrix KL can be constructed in the similar 
way:

γ( ( ), ( )) = (− ( ( )) − ( ( )) ) ( )KL l i l j IP l i IP l jexp 6l
2

Here, IP(l(i)) was the binary vector encoding the presence or absence of known associations between 
lncRNA l(i) and each disease. Parameter γ l controlled the kernel bandwidth, which can be obtained by 
normalizing a new bandwidth parameter γ ′l.

∑γ γ= ′ /





( ( ))



 ( )=nl

IP l i1
7

l l
i

nl

1

2

Integrated similarity for diseases and lncRNAs.  Based on the aforementioned disease semantic 
similarity, lncRNA expression similarity, lncRNA functional similarity, and Gaussian interaction profile 
kernel similarity, integrated disease similarity matrix DS and integrated lncRNA similarity matrix LS 
could be constructed as follows based on trivial combinatorial coefficients.

( , ) =









( , ) + ( , )
, ∈

( , ) ( )

DS i j
SS i j KD i j

i j IS

KD i j otherwise
2

8

( , ) =
( , ) ∗ ( , ) + ( , ) ∗ ( , ) + ( , )

( , ) + ( , ) + ( )
LS i j

we i j ES i j wf i j FS i j KL i j
we i j wf i j 1 9

where DS(i, j) is the integrated similarity between disease d(i) and d(j), LS(i, j) is the integrated similarity 
between lncRNA l(i) and l(j), IS is the set of diseases with MeSH descriptors and tree numbers (disease 
semantic similarity could only be calculated for the diseases with both MeSH descriptors and tree num-
bers), we(i, j) is a binary variable indicating whether both of these two lncRNA are lincRNA, and wf(i, j)  
is a binary variable indicating whether both of these two lncRNAs have known functional similarity 
according to the similarity results calculated in the literature39. Here, trivial combinatorial coefficients 
were adopted according to previous similar studies, where robust performance has been demonstrated 
for various combinatorial coefficients and reliable predictive ability has been fully demonstrated based on 
cross validation and case studies34,44,60. Actually, further cross validation based on another independent 
dataset could be implemented to select these combinatorial coefficients.

Katzlda.  Inspired from the success of applying KATZ measure to link prediction in social networks 
and disease-gene association network41,42, the model of KATZLDA was developed to demonstrate its 
effectiveness for the identification of disease-lncRNA associations (See Fig.  1). KATZ is a graph-based 
computational method which transforms the problem of link prediction into a problem of calculat-
ing similarities between nodes in a heterogeneous network. The number of walks between nodes and 
walk lengths have been regarded as effective similarity metrics in the social network and biological 
network41,42,61,62. Therefore, in the context of lncRNA-disease association prediction, calculating sim-
ilarities between the nodes of lncRNA and disease is further transformed into the problem of count-
ing the number of walks that connect lncRNA node and disease node in the heterogeneous network. 
Furthermore, the number of walks and their lengths were integrated to decide the potential association 
probability of this lncRNA-disease pair. Here, heterogeneous network consists of disease similarity net-
work constructed based on integrated disease similarity, lncRNA similarity network constructed based 
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on integrated lncRNA similarity, and known disease-lncRNA association network constructed based on 
known associations downloaded from the lncRNADisease database.

KATZLDA only based on known disease-lncRNA association network is first introduced here. 
Therefore, the number of walks connecting lncRNA node l(i) and disease node d(j) in the known 
lncRNA-disease association network is calculated. It is easy to see ( , )A i jl  is exactly the number of walks 
of length l that link lncRNA node l(i) and disease node d(j). In order to obtain a single similarity measure 
between these two nodes as the potential association probability between corresponding lncRNA and 
disease, different walks of different lengths are integrated. To differentiate the contribution of different 
walks of different lengths based on the assumption that walks with shorter lengths tend to contribute 
more to the similarity between two nodes, nonnegative coefficient sequence β l are introduced to dampen 
the contributions from longer walks by ensuring βl1 is smaller than βl2 when l1 is larger than l 2. In this 
way, potential association probability between lncRNA l(i) and disease d(j) could be calculated based on 
the following formula.

∑β( ( ), ( )) = ( , )
( )=

S l i d j A i j
10l

k

l
l

1

Here, I further let → ∞k , replace βl by βl, and write above formula in the matrix form:

∑β β= = ( − ) −
( )≥

−S A I A I
11l

l l

1

1

where the matrix S denotes the similarities between all the lncRNA-disease pairs. Above model only 
uses known disease-lncRNA associations. To make full use of the heterogeneous network constructed 
before, integrated disease similarity matrix DS and integrated lncRNA similarity matrix LS are further 
introduced into this computational model by replacing adjacency matrix A by the following form:











 ( )

LS A
A DS 12T

By integrating lncRNA and disease similarity, KATZLDA could be applied to new diseases and lncR-
NAs without any known associations.
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