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Highly efficient 
hyperentanglement concentration 
with two steps assisted by 
quantum swap gates
Bao-Cang Ren1,2,3 & Gui Lu Long1,2,3

We present a two-step hyperentanglement concentration protocol (hyper-ECP) for polarization-
spatial hyperentangled Bell states based on the high-capacity character of hyperentanglement 
resorting to the swap gates, which is used to obtain maximally hyperentangled states from partially 
hyperentangled pure states in long-distance quantum communication. The swap gate, which is 
constructed with the giant optical circular birefringence (GOCB) of a diamond nitrogen-vacancy 
(NV) center embedded in a photonic crystal cavity, can be used to transfer the information in one 
degree of freedom (DOF) between photon systems. By transferring the useful information between 
hyperentangled photon pairs, more photon pairs in maximally hyperentangled state can be obtained 
in our hyper-ECP, and the success probability of the hyper-ECP is greatly improved. Moreover, we 
show that the high-fidelity quantum gate operations can be achieved by mapping the infidelities to 
heralded losses even in the weak coupling regime.

Entanglement has significant applications in quantum communication, such as quantum teleportation1, 
quantum dense coding2,3, quantum key distribution4,5, quantum secret sharing6, and quantum secure 
direct communication7,8. These tasks are carried out by distributing entangled photon pairs between the 
remote users. On one hand, an entangled photon system is produced locally and it suffers inevitably from 
its environment noise in its distribution process. On the other hand, the fiber attenuation is a challenge to 
be overcome with the exponential decrease of photon signals during transmission, which makes a pho-
ton be transmitted no more than several hundreds of kilometers. Quantum repeater is a current known 
approach to overcome this problem in long-distance quantum communication, while the entanglement 
of quantum systems decreases in the storage process as well. In this way, the fidelity and the security of 
long-distance quantum communication protocols will be decreased by decoherence. In order to improve 
the entanglement of quantum systems, entanglement purification and entanglement concentration are 
introduced in quantum repeaters.

Entanglement purification is introduced to extract fewer copies of nonlocal quantum systems in a 
high-fidelity entangled state from many noisy copies in a nonlocal less-entangled mixed state9–14, and 
entanglement concentration is used to distill fewer copies of nonlocal quantum systems in a maximally 
entangled state from many noisy copies in a nonlocal partially entangled pure state15–24. In 1996, Bennett 
et al.15 introduced the first entanglement concentration protocol (ECP) for improving the entanglement 
of partially entangled pure states with the Schmidt projection method. Many interesting ECPs have 
been proposed since this pioneering work. These ECPs can be divided into two groups. One group is 
proposed for a partially entangled pure state with its parameters unknown16–22 to the remote users, and 
the other group is proposed for a partially entangled pure state with its parameters accurately known22–24 
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to the remote users. In 2008, Sheng and Deng18 proposed a high-efficiency ECP for photon systems in 
a partially entangled Bell state by iterative application of the ECP process, resorting to nonlinear optical 
elements. This iteration protocol can also be used to improve the success probability of the ECPs for 
other entangled photon systems14,19.

Hyperentanglement, which is described as the quantum states entangled in different degrees of free-
dom (DOFs) of quantum systems25,26, is a promising resource with its fascinating applications in quantum 
computation (e.g., hyperparallel photonic quantum computation27) and quantum communication. With 
hyperentanglement, many quantum communication protocols have been proposed in a simple way, such 
as entanglement purification for polarization DOF of photon pairs9,10, complete Bell-state analysis9,28,29, 
and high-efficiency quantum repeater30. Also, there are many interesting long-distance high-capacity 
quantum communication protocols based on hyperentanglement, such as quantum teleportation31, 
entanglement swapping31,32, and hyperentangled Bell-state analysis31–35 based on the polarization and 
spatial-mode DOFs of photon systems. In 2008, Barreiro et al.36 demonstrated a superdense coding 
by using polarization-orbital-angular-momentum hyperentanglement, which has beaten the channel 
capacity limit with linear optics. In 2013, Ren et al.22 introduced the parameter-splitting method for 
concentrating the partially hyperentangled pure states with known parameters, which can obtain maxi-
mally hyperentangled states with the maximal success probability by using linear optical elements only, 
and they also proposed two hyperentanglement concentration protocols (hyper-ECPs) for the partially 
hyperentangled pure states with unknown parameters resorting to the Schmidt projection method22. By 
using the nonlinear optical elements, the success probability of the hyper-ECP with the Schmidt projec-
tion method can be improved by resorting to the iteration protocol14,19. However, these hyper-ECPs for 
photon systems were implemented by concentrating the polarization states and the spatial-mode states 
independently. In 2013, Vitelli et al.37 implemented experimentally the quantum-state-joining process 
for combining the two-dimensional quantum states of two input photons into an output single photon 
with linear optical elements.

In this article, we present a two-step hyper-ECP for nonlocal photon systems in polarization-spatial 
partially hyperentangled Bell states with the high-capacity character of hyperentanglement, resorting 
to the quantum swap gate for one DOF of photon systems. The swap gate is constructed with the giant 
optical circular birefringence (GOCB, defined as the differences in effective refractive index, phase, or 
reflection/transmission coefficients between the two circular polarizations38) of a nitrogen-vacancy (NV) 
center in a diamond embedded in the evanescent field of a photonic crystal cavity coupled to a waveguide 
(one-sided cavity-NV-center system), and it can be used to transfer the information in the polarization 
(spatial-mode) DOF between photon systems in the hyperentangled states. In the previous hyper-ECPs, 
the polarization states and the spatial-mode states are concentrated independently with polarization 
parity-check quantum nondemolition detector (P-QND) and spatial-mode parity-check quantum non-
demolition detector (S-QND), respectively, where the success probability is limited without the infor-
mation transfer within the hyperentangled photon pairs. In our two-step hyper-ECP, the swap gate is 
introduced to transfer the useful information between the partially hyperentangled photon pairs, so 
more photon pairs in the maximally hyperentangled state can be obtained, which has greatly improved 
the success probability (nearly equivalent to the success probability of ECP in one DOF). Moreover, our 
calculation shows that high-fidelity basic quantum gate operations can be achieved by mapping the infi-
delities to heralded losses even in the weak coupling regime. This two-step hyper-ECP with swap gates 
is very useful for obtaining maximally hyperentangled states in the long-distance high-capacity quantum 
communication protocols based on several DOFs of photon systems.

Results
Basic quantum gate elements for hyper-ECP.  A cavity-NV-center system consists of a negatively 
charged NV center in diamond embedded in the evanescent field of a photonic crystal cavity, where the 
photonic crystal cavity is coupled to a waveguide as shown in Fig. 1(a). The negatively charged NV center 
is composed of a substitutional nitrogen atom, an adjacent vacancy, and six electrons. These six electrons 
come from the nitrogen atom and three carbon atoms surrounding the vacancy. The ground states of the 
negatively charged NV center are electronic spin triplet 0  and ±1  with a splitting of 2.88 GHZ, and 
their orbit states are E0 . Here 0  (ms =  0) and ±1  (ms =  ± 1) are the magnetic sublevels, and the orbit 
state E0  represents the angular momentum projection 0 along the NV axis. The excited states of the NV 
center are dependent of the Hamiltonian with the spin-orbit and spin-spin interactions and C3v symme-
try39. In the six excited states, the specifically excited state = ( + + − )− +A E E1 12

1
2

 is robust 
with the stable symmetry40. Here, the orbit states ±E  represent the angular momentum projections ± 1 
along the NV axis. In the spin-preserving condition, the optical transitions between the ground states 
and the excited states are created by the electronic orbital angular momentum change through the pho-
ton polarization. That is, if the NV center is in the ground state −1  (+1 ), a right (left) circularly 
polarized photon R  ( L ) is absorbed to create the excited state A2  (shown in Fig. 1(b)).

The GOCB of a one-sided cavity-NV-center system can be calculated by the Heisenberg equations of 
motion for the cavity field operator â and diploe operator σ−ˆ 41,
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Here, ω, ωc, and ωk (k =  ± 1) are the frequencies of the waveguide channel mode, the cavity field mode, 
and the energy transition between ±1  and A2 , respectively. η/2 is the decay rate of the cavity field 
mode to the waveguide channel mode, and κ/2 is the decay rate of the cavity field mode to the cavity 
intrinsic loss mode. γ/2 is the decay rate of the dipole emitter in the NV center. g is the coupling strength 
between the cavity field mode and the dipole emitter in the NV center. âin and âout are the input and 
output field operators of the waveguide channel mode, and they are decided by the boundary relation 

η= +ˆ ˆ ˆa a aout in . In the weak excitation limit with the NV center mainly in the ground state 
( σ = −1z ), the reflection coefficient of the one-sided cavity-NV-center system can be expressed as42
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In the resonant condition ωc =  ωk =  ω, the reflection coefficient is ω λ λ( ) = ( − + )/( + + )r F F1 1p p  
for g >  0, and it is ω λ λ( ) = ( − )/( + )r 1 10  for g =  0. Here ηγ= ( ) /( )F g2p

2  is the Purcell factor, and 
λ κ η= / . When 

F 1p , we have ω( ) →r 1. When the coupling strength is g =  0 and the cavity decay 
rate satisfies λ  1, we have ω( ) → −r 10 . After the photon-spin interaction assisted by the cavity, the 
evolution of the states of the system composed of the photon and the electron spin in an NV center is 
expressed as:

, − → , − , , + → − , + ,

, − → − , − , , + → , + . ( )

R R R R
L L L L

1 1 1 1
1 1 1 1 3

The basic gate elements of our hyper-ECP are constructed by the GOCB of the one-sided 
cavity-NV-center system, and their quantum circuits are shown in Fig. 2. The initial states of NV1 and 
NV2 are prepared in + e1

 and + e2
, respectively. Here, ± = ( − ± + )1 11

2
, and the states 

1  
can be transformed into the superposition states ±  with a Hadamard operation, resorting to the micro-
wave pulses40. That is, − → +1  and + → −1 . The two-photon system AB is initially in one of 
the partially hyperentangled Bell states φ ±±k AB (k =  1, 2, 3, 4). Here, φ ±±k AB

 are polarization-spatial 
partially hyperentangled Bell states, and they are defined as

φ α β γ δ

φ α β γ δ
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= ( ± ) ⊗ ( ± ) ,

= ( ± ) ⊗ ( ± ) ,
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Figure 1.  The GOCB of a diamond NV center embedded in the evanescent field of a photonic crystal 
cavity. (a) One-sided cavity-NV-center system, where the photonic crystal cavity is coupled to a waveguide. 
(b) The spin-preserving optical transition between the ground states ±1  and the excited state A2  with the 
electronic orbital angular momentum change.
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i1 and i2 are the two spatial modes of photon i (i =  a, b).

Parity-check QND for the polarization DOF of two-photon systems.  The parity-check QND for the polar-
ization DOF of two-photon systems (P-QND) is used to distinguish the two-photon system with its 
polarization DOF in an even-parity mode from the one in an odd-parity mode, which is implemented 
with a hybrid controlled-phase-flip (CPF) gate for the polarization DOF of a photon. The setup of our 
hybrid CPF gate for the polarization DOF is shown in Fig.  2(a). Here, the initial state of photon A is 
φ α β γ δ= ( + ) ⊗ ( + )R L a aA A 1 2 . After we put the two wavepackets from spatial modes a1 and 
a2 of photon A into X1, CPBS (CPBS1 and CPBS2), NV1, CPBS (CPBS3 and CPBS4), X2, and Z in sequence, 
the state of the quantum system Ae1 can be transformed into

φ α β α β γ δ+ ⊗ → − ( + ) + + ( − ) ( + ).
( )

R L R L a a1
2

[ 1 1 ]
5e A e A e A 1 2

1 1 1

This is the result of the hybrid CPF gate, in which NV1 is used as the control qubit and the polar-
ization DOF of photon A is used as the target qubit, without affecting the state of photon A in the 
spatial-mode DOF. We abbreviate this hybrid CPF gate as P-CPF.

If we have two photons A and B ( φ ±±k AB
 ) pass through the quantum circuit shown in Fig. 2(a) in 

sequence, the state of the system composed of NV1 and photon pair AB becomes

φ φ

φ φ

⊗ + → ⊗ + ,

⊗ + → ⊗ − . ( )

±± ±±

±± ±±
6

k AB e k AB e

k AB e k AB e

1 1 1 1

2 1 2 1

Here k1 =  1, 3 and k2 =  2, 4. The result of the P-QND can be obtained by measuring the electronic state 
of NV1 in the orthogonal basis + , −{ }e e1 1

. If the electronic state of NV1 is + e1
, the polarization DOF 

Figure 2.  (a) Schematic diagram of the hybrid controlled-phase-flip gate for the polarization DOF of a 
photon (P-CPF). (b) Schematic diagram of the hybrid controlled-phase-flip gate for the spatial-mode DOF 
of a photon (S-CPF). (c) Schematic diagram of the swap gate for the polarization DOF of a two-photon 
system, resorting to a P-CPF gate. NV1 and NV2 are two one-sided cavity-NV-center systems. CPBSi 
(i =  1, 2, …), the abbreviation of polarizing beam splitter in the circular basis, transmits the photon in the 
right-circular polarized state R  and reflects the photon in the left-circular polarized state L , respectively. 
Xi, which is implemented by a half-wave plate, performs a polarization bit-flip operation 
σ = +R L L Rx

P  on a photon. Z performs a polarization phase-flip operation σ = −R R L Lz
P  on 

a photon, and it is implemented by a half-wave plate. HP performs a Hadamard operation on the 
polarization DOF of a photon [| 〉 → (| 〉 + | 〉), | 〉 → (| 〉 − | 〉)R R L L R L1

2
1
2

], which can be implemented by 
a half-wave plate. i1 and i2 are the two spatial modes of photon i (i =  a, b, c, d).
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of two-photon system AB is in an even-parity mode (φ| 〉±±k AB1
). If the electronic state of NV1 is |−〉e1

, the 
polarization DOF of two-photon system AB is in an odd-parity mode (φ| 〉±±k AB2

).

Parity-check QND for the spatial-mode DOF of two-photon systems.  The parity-check QND for the 
spatial-mode DOF of two-photon systems (S-QND) is used to distinguish the two-photon system with 
its spatial-mode DOF in an even-parity mode from the one in an odd-parity mode, which is imple-
mented with a hybrid CPF gate for the spatial-mode DOF of a photon. The setup of our hybrid CPF gate 
for the spatial-mode DOF is shown in Fig.  2(b). If we let photon A in the state 
φ α β γ δ= ( + ) ⊗ ( + )R L a aA A 1 2  pass through NV2 and Z in sequence, the state of the quan-
tum system Ae2 can be transformed into

φ γ δ γ δ α β+ ⊗ → − ( + ) + + ( − ) ( + ) .
( )

a a a a R L1
2

[ 1 1 ]
7e A e e A1 2 1 2

2 2 2

This is the result of the hybrid CPF gate, in which NV2 is used as the control qubit and the spatial-mode 
DOF of photon A is used as the target qubit, without affecting the state of photon A in the polarization 
DOF. We abbreviate this hybrid CPF gate as S-CPF.

If we have two photons A and B in the state φ ±±k AB
 pass through the quantum circuit shown in 

Fig. 2(b) in sequence, the state of the system composed of NV2 and photon pair AB becomes

φ φ

φ φ

⊗ + → ⊗ + ,

⊗ + → ⊗ − . ( )

±± ±±

±± ±±
8

k AB e k AB e

k AB e k AB e
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Here k3 =  1, 2 and k4 =  3, 4. The result of the S-QND can be obtained by measuring the electronic state 
of NV2 in the orthogonal basis + , −{ }e e2 2

. If the electronic state of NV2 is |+〉e2
, the spatial-mode 

DOF of two-photon system AB is in an even-parity mode (φ| 〉±±k AB3
). If the electronic state of NV2 is 

|−〉e2
, the spatial-mode DOF of two-photon system AB is in an odd-parity mode (φ| 〉±±k AB4

).

Swap gate for one DOF of two-photon systems.  Our swap gate is used to transfer the information in one 
DOF between photon systems encoded in both two DOFs. For example, the swap gate for the polariza-
tion (spatial-mode) DOF of two-photon system AB is used to swap the polarization (spatial-mode) states 
of photons A and B. The setup of our swap gate for the polarization DOF of a two-photon system is 
shown in Fig. 2(c), which is constructed with a P-CPF gate (shown in Fig. 2(a)). Suppose that the initial 
states of two photons A and B are

φ α α γ γ

φ β β δ δ

= ( + ) ⊗ ( + ),

= ( + ) ⊗ ( + ), ( )

R L a a

R L b b 9

i A A

i B B

1 2 1 1 2 2

1 2 1 1 2 2

and the electronic state of NV1 is prepared in |+〉e1
.

We put two photons A and B into the quantum circuit shown in Fig. 2(c) in sequence, and the state 
of the system composed of photon pair AB and NV1 is transformed from φ| 〉ABe 01

 to φ| 〉ABe 11
. Here

φ φ φ

φ α α β β

α α β β

γ γ δ δ

| 〉 = | + ⊗ 〉 ⊗ | 〉 ,

| 〉 = − ( ′ + ′ ) ( ′ + ′ )

+ + ( ′ − ′ ) ( ′ − ′ )

⊗ ( + )( + ), ( )

R L R L

R L R L

a a b b

1
2

[ 1

1 ]

10

ABe e i A i B

ABe e A B

e A B

0

1
1 2 1 2

1 2 1 2

1 1 2 2 1 1 2 2

1 1

1 1

1

where α α α′ = ( + )1
1
2 1 2 , α α α′ = ( − )2

1
2 1 2 , β β β′ = ( + )1

1
2 1 2 , and β β β′ = ( − )2

1
2 1 2 .

After the Hadamard operation is performed on the electronic state of NV1 we put two photons A and 
B into the quantum circuit shown in Fig. 2(c) again. These operations transform the state of the system 
composed of photon pair AB and NV1 from φ| 〉ABe 11

 to φ| 〉ABe 21
. Here
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Finally, after another Hadamard operation is performed on the electronic state of NV1 again, the state 
of the system composed of photon pair AB and NV1 is transformed from φ| 〉ABe 21

 to φ| 〉ABe 31
. Here

φ β β α α

β β α α

γ γ δ δ

| 〉 = − ( + ) ( + )

+ + ( + ) ( + )

⊗ ( + )( + ). ( )
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The result of the swap gate for the polarization DOF can be obtained by measuring the electronic 
state of NV1 in the orthogonal basis |− 〉 , |+ 〉{ 1 1 }e e1 1

 and performing condition operations on photons 
A and B. If the electronic state of NV1 is |+ 〉1 e1

, the bit-flip operations σ = +R L L Rx
P  are per-

formed on the polarization DOF of photons A and B. The final states of two photons A and B are

φ β β γ γ

φ α α δ δ

| 〉 = ( + ) ⊗ ( + ),

| 〉 = ( + ) ⊗ ( + ). ( )

R L a a

R L b b 13

f A A

f B B

1 2 1 1 2 2

1 2 1 1 2 2

The swap gate for the spatial-mode DOF of two-photon systems can be constructed in the same way 
by replacing Hp and our P-CPF gate with BS and our S-CPF gate, respectively.

Two-step hyper-ECP for partially hyperentangled Bell states.  Our two-step hyper-ECP is used 
to distill some nonlocal photon pairs in maximally hyperentangled Bell state ψ0  from those in partially 
hyperentangled Bell state ψ  after the transmission over a noisy channel. Here

ψ

ψ α β γ δ

= ( + ) ⊗ ( + ),

= ( + ) ⊗ ( + ). ( )

RR LL a b a b

RR LL a b a b

1
2

14

AB

AB

0 1 1 2 2

1 1 2 2

Now, let us introduce the principle of our two-step hyper-ECP, resorting to our quantum swap gate for 
one DOF. The setup of our two-step hyper-ECP with quantum swap gates is shown in Fig. 3. It includes 
two steps as shown in Fig. 3(a,b), and they are discussed in detail as follows.

The first step of our two-step hyper-ECP.  In this step, we suppose that there are two identical two-photon 
systems in a nonlocal partially hyperentangled Bell state. That is,

ψ α β γ δ

ψ α β γ δ

= ( + ) ⊗ ( + ),

= ( + ) ⊗ ( + ), ( )

RR LL a b a b

RR LL c d c d 15
AB AB

CD CD

1 1 2 2

1 1 2 2

where the subscripts AB and CD represent two photon pairs. The two photons A and C belong to Alice, 
and the two photons B and D belong to Bob. α, β, γ, and δ are four unknown real parameters, and they 
satisfy the relation α β γ δ+ = + = 12 2 2 2 .

The setup of the first step of our hyper-ECP is shown in Fig.  3(a). The initial state of four-photon 
system ABCD is ψ ψ|Ψ 〉 = | 〉 ⊗ | 〉AB CD0 . Alice performs the P-QND on photon pair AC, and Bob per-
forms the S-QND on photon pair BD. After the measurements on the electronic states of the P-QND 
and S-QND, four cases will be obtained by Alice and Bob in this step.

(1) The outcome of the P-QND shows that the polarization DOF of photon pair AC is in an odd-parity 
mode, and the outcome of the S-QND shows that the spatial-mode DOF of photon pair BD is also in an 
odd-parity mode. In this case, the state of four-photon system ABCD is transformed into Ψ1  with the 
probability of αβγδ( ) =p 1 4 2. Here

Ψ = ( + ) ( + ). ( )RRLL LLRR a b c d a b c d1
2 16ABCD1 2 2 1 1 1 1 2 2
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Subsequently, Alice performs the Hadamard operations on the polarization and spatial-mode DOFs 
of photon C as shown in Fig. 3(a), and Bob also performs the Hadamard operations on the polarization 
and spatial-mode DOFs of photon D. Then the state Ψ1  is transformed into Ψ′1 . Here

Ψ′ = 
 ( + ) ( + )

− ( − ) ( + ) 
⊗ ( + )( + )

− ( − )( + ) . ( )

RR LL RR LL

RR LL RL LR

a b a b c d c d
a b a b c d c d

1
8

[
] 17

AB CD

AB CD

1

1 1 2 2 1 1 2 2

1 1 2 2 1 2 2 1

Finally, Alice and Bob detect photons C and D with single-photon detectors as shown in Fig. 3(a). If 
the outcome of the detection shows that the polarization DOF and the spatial-mode DOF of photon pair 
CD are both in the even-parity modes, the maximally hyperentangled Bell state ψ AB0  is obtained by 
Alice and Bob. If the outcome of the detection shows that the polarization DOF (the spatial-mode DOF) 
of photon pair CD is in an odd-parity mode, Bob has to perform the polarization phase-flip operation 
σz

P (the spatial-mode phase-flip operation σz
S) on photon B to obtain the state ψ| 〉AB0 . Here 

σ = −b b b bz
S

1 1 2 2 .
(2) The outcome of the P-QND shows that the polarization DOF of photon pair AC is in an even-parity 

mode, and the outcome of the S-QND shows that the spatial-mode DOF of photon pair BD is also in an 
even-parity mode. In this time, the state of four-photon system ABCD is transformed into Ψ2  with the 
probability of α β γ δ′( ) = ( + )( + )p 1 1

4 4 4 4 . Here

α β γ δΨ =
′( )

( + ) ( + ).
( )p

RRRR LLLL a b c d a b c d1
1 18

ABCD2
1

2 2 2
1 1 1 1

2
2 2 2 2

Subsequently, Alice and Bob perform the Hadamard operations and detections on two photons C and 
D as shown in Fig. 3(a), and the state ψ| 〉AB1  can be obtained after Bob performs the conditional local 

Figure 3.  (a) Schematic diagram of the first step of our two-step hyper-ECP. The quantum circuit for Bob is 
the same as Alice by replacing P-QND and photons A and C with S-QND and photons B and D, 
respectively. (b) Schematic diagram of the second step of our two-step hyper-ECP. The quantum circuit for 
Bob is the same as Alice by replacing photons A and A′  with photons B and B′ . Dj (j =  L1, R1, R2, L2) is a 
single-photon detector. BS, the abbreviation of 50:50 beam splitter, performs a Hadamard operation on the 
spatial-mode DOF of a photon [| 〉 → (| 〉 + | 〉), | 〉 → (| 〉 − | 〉)i i i i i i1

1
2 1 2 2

1
2 1 2 ]. P-SWAP (S-SWAP) is the 

swap gate for the polarization (spatial-mode) DOF of a two-photon system.
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phase-flip operation σz
P (σz

S) on photon B. Here the state ψ| 〉AB1  is a partially hyperentangled Bell state 
with less entanglement, and it is described as

ψ α β γ δ=
′( )

( + ) ( + ).
( )p

RR LL a b a b1
1 19

AB AB1
1

2 2 2
1 1

2
2 2

In this case, the polarization and spatial-mode DOFs of photon pair AB are both in partially entan-
gled Bell states, so another round of our two-step hyper-ECP with quantum swap gates is required to 
obtain more nonlocal photon pairs in a maximally hyperentangled Bell state.

(3) The outcome of the P-QND shows that the polarization DOF of photon pair AC is in an even-parity 
mode, and the outcome of the S-QND shows that the spatial-mode DOF of photon pair BD is in an 
odd-parity mode. In this case, the state of four-photon system ABCD is transformed into Ψ3  with the 
probability of γδ α β′( ) = ( + )p 1 22

2 4 4 . Here

α β
α βΨ =

( + )
( + ) ( + ).

( )
RRRR LLLL a b c d a b c d1

2 20
ABCD3 4 4

2 2
1 1 2 2 2 2 1 1

Subsequently, Alice and Bob perform the Hadamard operations and detections on two photons C and 
D as shown in Fig. 3(a), and the state ψ| 〉AB2  can be obtained after Bob performs the conditional local 
phase-flip operation σz

P (σz
S) on photon B. Here

ψ
α β

α β=
( + )

( + ) ( + ).
( )

RR LL a b a b1

2 21
AB AB2 4 4

2 2
1 1 2 2

In this case, the spatial-mode DOF of photon pair AB is in a maximally entangled Bell state and the 
polarization DOF of photon pair AB is in a partially entangled Bell state with less entanglement, so the 
second step of our two-step hyper-ECP with quantum swap gates is required to transform the state of 
photon pair AB into a maximally hyperentangled Bell state.

(4) The outcome of the P-QND shows that the polarization DOF of photon pair AC is in an odd-parity 
mode, and the outcome of the S-QND shows that the spatial-mode DOF of photon pair BD is in an 
even-parity mode. Then the state of four-photon system ABCD is transformed into Ψ4  with the proba-
bility of αβ γ δ′( ) = ( + )p 1 23

2 4 4 . Here

γ δ
γ δΨ =

( + )
( + ) ( + ).

( )
RRLL LLRR a b c d a b c d1

2 22
ABCD4 4 4

2
1 1 1 1

2
2 2 2 2

Subsequently, Alice and Bob perform the Hadamard operations and detections on two photons C and 
D as shown in Fig. 3(a), and the state ψ| 〉AB3  can be obtained after Bob performs the conditional local 
phase-flip operation σz

P (σz
S) on photon B. Here

ψ
γ δ

γ δ=
( + )

( + ) ( + ).
( )

RR LL a b a b1

2 23
AB AB3 4 4

2
1 1

2
2 2

In this case, the polarization DOF of photon pair AB is in a maximally entangled Bell state and the 
spatial-mode DOF of photon pair AB is in a partially entangled Bell state with less entanglement, so the 
second step of our two-step hyper-ECP with quantum swap gates is required to transform the state of 
photon pair AB into a maximally hyperentangled Bell state.

The second step of our two-step hyper-ECP.  In this step, the maximally hyperentangled Bell state ψ| 〉AB0  
can be obtained from the cases (3) and (4) in the first step with our swap gates for one DOF, which can 
greatly improve the success probability of the hyper-ECP. The setup of the second step of our two-step 
hyper-ECP is shown in Fig. 3(b).

Suppose that there are another two identical two-photon systems ′ ′A B  and ′ ′C D , and they are in the 
states

ψ α β γ δ

ψ α β γ δ

= ( + ) ⊗ ( ′ ′ + ′ ′ ),

= ( + ) ⊗ ( ′ ′ + ′ ′ ). ( )
′ ′ ′ ′

′ ′ ′ ′

RR LL a b a b

RR LL c d c d 24
A B A B

C D C D

1 1 2 2

1 1 2 2

The two photons A′  and C′  belong to Alice, and the two photons B′  and D′  belong to Bob. In the 
first step, Alice and Bob perform the same operations on two-photon systems ′ ′A C  and ′ ′B D  as they did 
on two-photon systems AC and BD.

If four-photon systems ABCD and A′ B′ C′ D′  are projected into the states in the cases (3) and (4) in 
the first step, respectively, Alice and Bob can perform the polarization swap gates on two-photon systems 
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′AA  and ′BB  to transfer the useful information in the polarization DOF. In this way, the states of 
two-photon systems AB and ′ ′A B  are transformed into ψ| 〉AB0  and ψ| 〉 ′ ′A B1  with the probability of ′( )p 1 2 
(αβ γδ> ).

If four-photon systems ABCD and A′ B′ C′ D′  are projected into the states in the cases (4) and (3) in 
the first step, respectively, Alice and Bob can perform the spatial-mode swap gates on two-photon sys-
tems ′AA  and ′BB  to transfer the useful information in the spatial-mode DOF. Then the states of 
two-photon systems AB and ′ ′A B  are transformed into ψ| 〉AB0  and ψ| 〉 ′ ′A B1  with the probability of ′( )p 1 2 
(αβ γδ> ).

At last, the state ψ| 〉AB3  (ψ| 〉 ′ ′A B3 ) is left with the probability of ′( ) − ′( )p p1 13 2 (αβ γδ> ) in this 
step. Another round of our two-step hyper-ECP with quantum swap gates is required for the two-photon 
systems in the states ψ| 〉 ′ ′A B1 , ψ| 〉AB3 , and ψ| 〉 ′ ′A B3  to obtain more nonlocal photon pairs in a maximally 
hyperentangled Bell state.

The success probability of our two-step hyper-ECP.  After the first round of our two-step hyper-ECP, the 
success probability to obtain the maximally hyperentangled Bell state ψ| 〉AB0  is 

γδ( ) = ( ) + ′( ) =P p p1 1 1 22
2 (for a pair of partially hyperentangled Bell states). The success prob-

ability of the hyper-ECP can be improved by iterative application of the two-step hyper-ECP process as 
discussed in the previous work14. For example, in the second round, Alice and Bob have to perform both 
of the two steps of this hyper-ECP on the photon pairs in the states ψ| 〉AB1  and ψ| 〉 ′ ′A B1 , and they only 
have to perform the first step of this hyper-ECP on the photon pairs in the states ψ| 〉AB3  and ψ| 〉 ′ ′A B3 . So 
the success probability of the states ψ| 〉AB1  and ψ| 〉 ′ ′A B1  is γδ α β γ δ( )= ( + )/( + )p 2 2 4 4 4 4 4 2, and 
the success probability of the states ψ| 〉AB3  and ψ| 〉 ′ ′A B3  is 

γδ αβ γ δ γδ α β γ δ′( )= ( + ) − ( + ) /( + )p 2 2 [2 2 ]4 2 4 4 2 4 4 4 4 2. The success probability of the 
second round is ( )= ( ) + ′( )P p p2 2 2  (for a pair of partially hyperentangled Bell states). The success prob-
ability of each round of our two-step hyper-ECP process is (for the case αβ γδ> )

γδ

γδ α β

α β γ δ
γδ

αβ γ δ γδ α β

γ δ

γδ α β

α β γ δ

α β γ δ

α β γ δ
γδ α β

αβ γ δ γδ α β

γ δ α β γ δ

γδ γ δ

γ δ γ δ

αβ γ δ γδ α β

( ) = | | ,

( ) =
| | (| | + | | )

(| | + | | )(| | + | | )
+ | |

×
| | (| | + | | ) − | | (| | + | | )

(| | + | | )
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( ) =
| | (| | + | | )

(| | + | | )(| | + | | )

×
(| | + | | )(| | + | | )

(| | + | | )(| | + | | )
+ | | (| | + | | )

×
| | (| | + | | ) − | | (| | + | | )

(| | + | | ) (| | + | | )(| | + | | )

+
| | (| | + | | )

(| | + | | ) (| | + | | )

× | | (| | + | | ) − | | (| | + | | ) ,
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2
2

[ ]
2

2 2
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2

[ ]

[ ]
2

2 2
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2
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4 4 4 4 2

4 4 4 4 2
8 4 4
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After n rounds of our two-step hyper-ECP process are completed, the entire success probability of the 
hyper-ECP is obtained as

∑= ( ).
( )

P P n
26n

In the ECP for quantum systems in one DOF18, the success probability of each round decreases expo-
nentially with the increase of iteration number n. The success probability of each round of a hyper-ECP 
decreases much faster with the increase of iteration number n than the one of a ECP, when the polari-
zation states and the spatial-mode states are concentrated independently. In the second step of our 
two-step hyper-ECP, swap gates are introduced to transfer the useful information between the photon 
pairs in partially hyperentangled Bell states, so more photon pairs in a maximally hyperentangled Bell 
state are obtained. This is different from the ECP for photon pairs in one DOF, because the information 
in one DOF can be transferred between the photon pairs in hyperentangled states, resorting to the 
high-capacity character of hyperentanglement. The success probability P vs the parameter α2 2 and the 
iteration number n is shown in Fig. 4 (α γ= ). For instance, in the case α = .2 0 92  and n =  5, the 
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success probabilities are ( ) = . %P 1 24 5  and = . %P 80 8  for the hyper-ECP without swap gates (the 
entire success probability P is nearly equivalent to the value α= = %P 4 81m1

4 )14. Here α=P 4m1
4 

is the maximal value to obtain a maximally hyperentangled Bell state from a partially hyperentangled 
Bell state. In the same condition, the success probabilities are ( ) = . %P 1 49 5  and = . %P 89 97  for our 
two-step hyper-ECP, where the entire success probability P is nearly equivalent to the value 

α= = %P 2 90m2
2 . Here α=P 2m2

2 is the maximal value to obtain a maximally entangled Bell 
state from a partially entangled Bell state in one DOF. That is, the success probability of the hyper-ECP 
is greatly improved by transferring the useful information between the photon pairs in partially hyper-
entangled states, and the number of iteration steps is reduced in this condition.

Discussion
Fidelities of the basic gate elements.  An NV center in diamond is a promising solid-state matter 
qubit for quantum information processing due to its long electron-spin decoherence time (~ms)43,44. 
With its long spin coherence time45,46 and nanosecond manipulation times47, an NV center in diamond 
can be used as a dipole emitter in the cavity QED to obtain the high-fidelity GOCB. There are many 
interesting works about NV centers in diamonds coupled to optical resonators (including optical cavities) 
both in theory48 and in experiment49–53. In experiment, the diamond NV center coupled to nanoresona-
tor has been investigated either in the strong coupling regime49 or in the weak coupling regime50.

The quantum entanglement between the polarization of a single photon and the electron spin of an 
NV center in diamond is useful in quantum information network, which has been demonstrated in 
experiment40. If an NV center in diamond is coupled to a nanocavity, the spontaneous emission into the 
zero-phonon line can be greatly enhanced, which can improve the interaction between the NV center 
and the photon51–53. In 2012, Faraon et al.51 showed experimentally that the zero-phonon transition rate 
of an NV center can be greatly enhanced (~70) by coupling to a photonic crystal resonator (Q ~ 3000) 
fabricated in a monocrystalline diamond.

The reflection coefficients of the one-sided cavity-NV-center system are dependent of the Purcell 
factor FP and the cavity decay rate λ. The fidelity of a quantum information process is defined as 

ψ ψ= |〈 | 〉|F f
2, where ψ  is the ideal final state of the quantum information process, and ψ| 〉f  is the final 

state of the quantum information process in the experimental environment. The fidelities of our basic 
gate elements are shown in Fig. 5 with the cavity decay rate λ =  0.154, and it shows that the fidelities are 
mainly reduced by the small Purcell factor FP. The fidelities of the basic gate elements may also be 
reduced by the large cavity decay rate λ19.

From Eq. (2), one can see that the reflection coefficients for g >  0 and g =  0 may be unequal ( ≠r r0 ), 
and it is <r r0  in experiment55,56. Here we show that the infidelities of the basic gate elements are 
mainly caused by ≠r r0 , and =r r0  can be achieved by adjusting the Purcell factor FP and the cavity 
decay rate λ. When the reflection coefficients are =r r0 , the Purcell factor FP and the cavity decay rate 
λ should satisfy the relation λ λ= ( − )/F 1P

2 . In this time, the final states of the P-QND for hyperen-
tangled Bell states are described as

α

Figure 4.  Success probability of our two-step hyper-ECP vs the parameter α2 2 and the iteration 
number n (for a pair of partially hyperentangled Bell states). The parameters of the state ψ  are α γ=  
and β δ= .
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The final states of the S-QND for hyperentangled Bell states are described as
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The final state of the P-CPF gate is described as

φ α β

α β γ δ
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− ( + ) + +

( − )  ( + ), ( )
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and the final state of the S-CPF gate is described as

1. 2 3 4 5 6
0.5
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Figure 5.  Fidelities of the basic gate elements. The green line represents the fidelity of the P-QND for 
the hyperentangled Bell state with its polarization DOF in an odd-parity mode (or the S-QND for the 
hyperentangled Bell state with its spatial-mode DOF in an odd-parity mode). The red line represents the 
fidelity of the P-QND (or the S-QND) for the hyperentangled Bell state with its polarization and spatial-
mode DOFs both in the even-parity modes. The blue dotted line represents the fidelity of the P-QND for the 
hyperentangled Bell state with its polarization DOF in an even-parity mode and its spatial-mode DOF in an 
odd-parity mode (or the S-QND for the hyperentangled Bell state with its spatial-mode DOF in an even-
parity mode and its polarization DOF in an odd-parity mode). The black dashed line represents the fidelity 
of the P-SWAP gate.
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In Eqs. (27) and (28), the fidelities of the P-QND and S-QND are unit for the odd-parity modes, and 
the infidelities of the basic gate elements are transformed into the states of the photon systems in the case 
=r r0 . The infidelities of the photon systems can be transformed into the heralded loss by introducing 

the unbalanced BS (UBS) with the reflection coefficient r  into the quantum circuits shown in Fig. 2(a,b), 
as introduced in the previous hyper-ECP22. For instance, with UBS, the P-CPF gate operation can be 
transformed into α β α β|− 〉 ( | 〉 + | || 〉) + |+ 〉 ( | 〉 − | || 〉)R r L R r L[ 1 1 ]e A e A1 1

 γ δ( | 〉 + | 〉) → | | |− 〉a a r [ 1 e1 2 1
 

α β α β( | 〉+ | 〉) + |+ 〉 ( | 〉− | 〉)R L R L1 ]A e A1
γ δ α γ δ( | 〉+ | 〉)+( −| |) | 〉(|− 〉 +|+ 〉 )( | ′′ 〉+ | ′′ 〉)a a r R a a1 1 1e e1 2 1 21 1

, 
and the infidelity of the P-CPF gate can be heralded if the photon is detected in the spatial modes ′′a 1  
and ′′a 2 , which is similar to the one introduced in the hyper-ECP with the parameter-splitting method22. 
That is, in the case =r r0 , the infidelities of the basic gate elements can be mapped to the heralded 
loss57. If the cavity decay rate is adjusted to λ = .0 1, the Purcell factor is = .F 9 9P  for =r r0 , which 
requires π∼ ×g 2 1 GHZ and η π∼ × .2 5 05 GHZ (γ π∼ ×2 80 MHZ)56. The high-fidelity basic 
gate elements can be achieved even in the weak coupling regime, and the cavity intrinsic loss can be 
controlled in a appropriate regime instead of being set to zero for a high-fidelity quantum information 
processing, which may be easier to achieve in experiment.

In this hyper-ECP, the efficiency of the linear-optical elements and detectors, including PBSs, BSs, 
wave plates, and half-wave plates, are assumed to be perfect, which means there is no photon loss in 
linear-optical elements and detectors. In the practical application, the linear-optical elements and detec-
tors may have inherent optical losses, so the success probability of each round of the hyper-ECP will be 
decreased. Because of the use of the swap gate, the success probability of each round of this hyper-ECP 
process is greatly improved, and the number of iteration steps is reduced, compared with the one with-
out the swap gate. Hence the influence of the inherent optical losses is also reduced compared to that 
without the swap gate.

Conclusion
We have presented a two-step hyper-ECP for polarization-spatial hyperentangled Bell states with the 
high-capacity character of hyperentanglement, resorting to the quantum swap gates for one DOF of 
photon systems. With the swap gate for one DOF of photon systems, the useful information can be 
transferred between the photon pairs in the hyperentangled states, so the success probability of each 
round of the hyper-ECP process is greatly improved. With our two-step hyper-ECP, more maximally 
hyperentangled Bell states are obtained and the number of iteration steps is reduced, compared with the 
one without the swap gate.

The basic quantum gate elements in our hyper-ECP, including P-QND, S-QND, and polarization 
(spatial-mode) swap gates, are constructed with the GOCB of one-sided cavity-NV-center systems. We 
showed that the high-fidelity basic gate elements can be achieved even in the weak coupling regime in 
the case =r r0 , by mapping the infidelity to the heralded loss. Moreover, the cavity intrinsic loss can 
be controlled in a appropriate regime instead of being set to zero, and it may be easier to achieve in 
experiment.

By performing the swap gates on multiphoton system, our high-fidelity two-step hyper-ECP can be 
generalized for multiphoton hyperentangled states by transferring useful information between multi-
photon systems in hyperentangled states. Besides hyper-ECP, the basic gate elements, including P-QND, 
S-QND, and polarization (spatial-mode) swap gates, can also be used to construct the high-efficiency 
hyperentanglement purification protocol for obtaining high-fidelity hyperentangled states from mixed 
hyperentangled states, by transferring useful information between nonlocal hyperentangled states. This 
will be the objective of a further work.

Methods
P-CPF gate.  The setup of our P-CPF gate is shown in Fig.  2(a). The initial state of photon A is 
φ α β γ δ| 〉 = ( | 〉 + | 〉) ⊗ ( | 〉 + | 〉)R L a aA A 1 2 . If we put the wavepacket from spatial mode a1 of photon A 
into X1, the state of photon A is changed to φ γ α β δ α β| 〉 = | 〉( | 〉 + | 〉) + | 〉( | 〉 + | 〉)a L R a R LA A A1 1 2 . 
Subsequently, we put two wavepackets from spatial modes a1 and a2 of photon A into CPBS (CPBS1 and 
CPBS2), NV1, and CPBS (CPBS3 and CPBS4), and the state of the quantum system Ae1 is transformed 
into
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Finally, we put two wavepackets from spatial modes a1 and a2 of photon A into X2 and Z, and the 
state of the quantum system Ae1 is transformed into

φ α β α β γ δ= 
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This is just the result of the P-CPF gate.

S-CPF gate.  The setup of our S-CPF gate is shown in Fig. 2(b). The state of photon A is prepared in 
φ α β γ δ| 〉 = ( | 〉 + | 〉) ⊗ ( | 〉 + | 〉)R L a aA A 1 2 . After the wavepacket from spatial mode a2 of photon A 
passes through NV2, the state of the quantum system Ae2 is transformed into

φ γ α β δ α β

γ α β δ α β

+ ⊗ → − ( + ) + ( − )

+ + ( + ) + (− + ) . ( )

a R L a R L

a R L a R L

1
2

{ 1 [ ]

1 [ ]} 33

e A e A A

e A A

1 2

1 2

2 2

2

Subsequently, the wavepacket from spatial mode a2 of photon A is put into Z, and the state of the 
quantum system Ae2 is transformed into

φ γ δ γ δ α β= − ( + ) + + ( − ) ( + ) .
( )

a a a a R L1
2

[ 1 1 ]
34Ae e e A1 2 1 2

2 2 2

This is just the result of the S-CPF gate.
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